Proceedings of the First Workshop of
the INitiative for the Evaluation of
XML Retrieval (INEX)

December 9-11, 2002
Schloss Dagstuhl
International Conference and Research
Center for Computer Science

Editors:

Norbert Fuhr
Univergty of Duisburg- Essen

Norbert Govert
Universty of Dortmund

GabridlaKaza
Queen Mary Universty of London

Mounia Lamas
Queen Mary Univergty of London

http://gmir.des.gmul .ac.uk/inex/

Preface

The widespread use of XML in digital libraries, product catalogues, scientific data repositories and
across the Web prompted the development of appropriate retrieval (searching and browsing) methods
for XML documents. Thisin turn led to the need to evaluate the developed XML retrieval systems.

As part of a large-scale effort to improve the efficiency of research in information retrieval and digital
libraries, the INitiative for the Evaluation of XML retrieval (INEX) has started an international,
coordinated effort to promote evaluation procedures for content-based XML retrieval. The aim of the
INEX initiative is to provide means, in the form of alarge XML test collection and appropriate scoring
methods, for the evaluation of XML retrieval systems. During the first year of the evaluation effort, in
2002, participating organisations contributed to the building of a large-scale XML test collection by
creating topics, performing retrieval runs and providing relevance assessments (along two relevance
dimensions) for XML components of varying granularity.

The INEX Workshop, held at the Schloss Dagstuhl Research Centre, concluded the results of this
large-scale effort, summarised and addressed the encountered issues and devised a workplan for the
evaluation of XML retrieval systems. The workshop brought together researchers in the field of XML
retrieval and, in particular, researchers who participated in INEX 2002. The workshop was organised
into presentation and workshop sessions. During the presentation sessions participants had the
opportunity to present their approaches to XML indexing and retrieval. The workshop sessions served
as discussion forums to review issues related to the creation of INEX topics, the specification of the
retrieval result submission format, the definition of the two relevance dimensions and the use of the on-
line assessment system provided by INEX. The results of these discussions have provided valuable
input for the organisation of INEX 2003. Finally, the workshops on evaluation measures aimed to
provide a forum to develop guidelines and procedures for the evaluation of XML retrieval systems
based on the employed relevance dimensions. As aresult, the discussed evaluation metrics have been
implemented and applied to the INEX 2002 submissions.

This proceeding contains a collection of papers describing the research of the INEX 2002 participants.
The papers have been grouped according to the approach to XML retrieval that they report on. The
categories have been defined using the following definitions:

IR-oriented: Research groups that focus on the extension of a specific type of information
retrieval (IR) model, which they have applied to standard IR test collections in the past, to
deal with XML documents.

DB-oriented: Groups that are working on extending database (DB) management systems to
deal with semistructured data; most of these groups al so incorporate uncertainty weights, thus
producing ranked results.

XML-specific: Groups that, instead of aiming to extend existing approaches towards XML,

have developed models and systems specifically for XML. Although these groups have very
different backgroundsthey usually base their work on XML standards (like XSL or XPath).

In addition to the research papers, the proceeding includes an overview paper providing details of the
constructed INEX test collection, its construction process and the applied evaluation metrics. Detailed
evaluation results are attached in the Appendix.

We would like to thank the participating organisations and people for their contributions to the INEX
test collection. Special thanks go to the DELOS Network of Excellence for Digital Libraries for
partially funding INEX 2002, and the IEEE Computer Society for kindly donating their XML
document collection, without which INEX would not have happened. Additional acknowledgements go
to the Deutscher Akadmischer Austausch Dienst (DAAD) and The British Council, who supported
INEX through their Academic Research Collaboration (ARC) Programme. We would also like to thank
the staff at the Schloss Dagstuhl Research Centre for all their help and efforts in managing the logistics
of this Workshop.

Norbert Fuhr
Norbert Govert
Gabridla Kazai
Mounia Lalmas

Editors
March 2003

Table of Contents

Overview of thelnitiative for the Evaluation of XML retrieval (INEX) 2002
Norbert Govert (University of Dortmund),
GabridlaKaza (Queen Mary University of London)

|R-based approaches

Cheshirell at INEX: Using aHybrid Logistic Regression and Boolean M odel for
XML Retrieval
Ray R. Larson (University of California, Berkeley)

Content-oriented XML retrieval with HyRex
Norbert Gévert (University of Dortmund), Mohammad Abolhassani, Norbert Fuhr, Kai
Grossjohan (University of Duisburg-Essen)

Language M oddsand Structured Document Retrieval
Paul Ogilvie, Jamie Callan (Carnegie Mellon University)

The Importance of Morphological Normalization for XML Retrieval
Jaap Kamps, Maarten Marx, Maarten de Rijke, Borkur Sigurbjornsson (University of
Amsterdam)

A Scalable Architecturefor XML Retrieval
GabriellaKazai, Thomas Rolleke (Queen Mary University of London)

Determining the Unit of Retrieval Resultsfor XML Documents

Kenji Hatano (Nara I nstitute of Science and Technology), Hiroko Kinutani (Japan Science
and Technology Corporation), Masahiro Watanabe (National Institute of Special
Education), Masatoshi Y oshikawa, Shunsuke Uemura (Nara Institute of Science and
Technology)

CSIRO INEX experiments: XML Search using PADRE

Anne-Marie Vercoustre (CS' RO Mathematical and Information Sciences), JamesA. Thom
(RMIT University), Alexander Krumpholz, lan Mathieson, Peter Wilkins, Mingfang Wu,
Nick Craswell, David Hawking (CSIRO Mathematical and Information Sciences)

JuruXML —an XML Retrieval System at INEX' 02
Y osi Mass, Matan Mandelbrod, Einat Amitay, David Carmel, Y oelle Maarek, Aya Soffer
(1BM Haifa Research Labs)

Naive Clustering of alarge XML Document Collection
Antoine Doucet, Helena Ahonen-Myka (University of Helsinki)

Tarragon Consulting at INEX 2002: Experiments using the K2 Sear ch Enginefrom
Verity, Inc.
Richard M Tong (Tarragon Consulting Corporation)

Using the Extended Vector Mode for XML Retrieval
Carolyn J Crouch, Sameer Apte, Harsh Bapat (University of Minnesota Duluth)

Compression and an IR Approach to XML Retrieval
Vo Ngoc Anh, Alistair Moffat (University of Melbourne)

18

26

M

49

57

73

81

DB-oriented approaches

Applying thelRstream Retrieval Enginefor Structured Documentsto INEX
Andreas Henrich, Gunter Robbert (Universitat Bayreuth)

A Database Approach to Content-based XML Retrieval
Djoerd Hiemstra (University of Twente)

XM L-specific approaches

The Xircus Search Engine
Holger Meyer, Ilvio Bruder, Andreas Heuer, Gunnar Weber (University of Rostock)

An XML Retrieval Mode based on Structural Proximities
Shinjae Y 0o (Sejong Cyber University)

|R+DB approaches

CWI at INEX 2002
Johan List, Arjen P.de Vries (Centrum voor Wiskunde en Informatica)

ETH Zirich at INEX: Flexible Information Retrieval from XML with

Power DB-XML
Torsten Grabs, Hans-Jérg Schek (ETH Zurich)

IR+XML approaches
Bayesian Networksand INEX
Benjamin Piwowarski, Georges-Etienne Faure, Patrick Gallinari (Université Pierre et

Marie Curie)

ExtremeFilelnversion
Shlomo Geva (Queensland University of Technology)

DB+XML approaches

Integration of IR into an XML Database
Cong Yu, Hong Qi, H. V. Jagadish (University of Michigan)

EXIMA™ Supply at INEX 2002: Using an Object-relational DBM Sfor XML

Retrieval

Heesop Kim (Kyungpook National University), Daesik Jang (Incom |& C Co. Ltd),
Gi Chai Hong, Jong Cheol Song, Seong Yong Lee, Hyun Soo Chung, Jae Hwan Lee,
Byung Ju Moon (Electronics and Telecommunications Resear ch I nstitute)

Appendix

INEX Guidelinesfor Topic Devel opment

INEX Retrieval Result Submission Format and Procedure
INEX Relevance Assessments Guide

INEX 2002 Evaluation Resultsin Detail

105

m

119

125

133

141

149

155

162

170

178

182

184

188

Overview of the INitiative for the Evaluation of
XML retrieval (INEX) 2002

Norbert Govert Gabriella Kazai
University of Dortmund Queen Mary University of London

Germany United Kingdom

goevert@lIs6.cs.uni-dortmund.de gabs@dcs.gmul.ac.uk

The INitiative for the Evaluation of XML retrieval (INEX) aims at providing an infrastructure for
evaluating the effectiveness of content-oriented XML retrieval. In the first round of INEX, in 2002,
a test collection of real world XML documents along with standard topics and respective relevance
assessments has been created. Research groups from 36 different organisations participated in this
collaborative effort. In this article we describe the test collection and how it was constructed. An
overview of the metrics used to evaluate the effectiveness of XML retrieval approaches and of the
evaluation results of 51 submissions from the INEX 2002 participants is also provided.

1 Introduction

The INitiative for the Evaluation of XML retrieval (INEX) was set up at the beginning of 2002 with the aim to
establish an infrastructure and to provide means, in the form of a large XML test collection and appropriate scoring
methods, for the evaluation of content-oriented retrieval of XML documents. INEX 2002 was the first in a series
of future XML retrieval evaluation efforts. As a result of a collaborative effort, during the course of 2002, INEX
created an XML test collection consisting of publications of the IEEE Computer Society between 1995 and 2002, 60
topics, and graded relevance assessments. Using the constructed test collection and the developed set of evaluation
metrics and procedures, the retrieval effectiveness of the participating organisations’ XML retrieval approaches
were evaluated and their results compared.

This paper presents an overview of INEX 2002, the constructed test collection and the developed evaluation
metrics, and provides a summary of the research in XML retrieval described in detail in the remainder of the
proceedings. Although this overview is intended to provide a complete account of INEX 2002, it does not aim to
explain or review the underlying research concepts for the evaluation of XML retrieval. On the other hand, for
completeness, we cover in this paper some material already published at the SIGIR XML Workshop in 2002 while
the initiative was still in progress and which provided an introduction into INEX [2].

The paper is structured as follows. In Sectign 2 we provide a brief summary of the INEX participants and
their systems. Sectidr] 3 outlines the evaluation task set by INEX. S¢gtion 4 provides an overview of the INEX
test collection along with a description of how the collection was constructed. In Spftion 5 a specification of the
evaluation metrics applied for INEX 2002 is given, and Sedtion 6 summarises the evaluation results. We end with
conclusions and an outlook on INEX 2003 in Secfibn 7.

2 Participating organisations

In response to the call for participation, issued in March 2002, 49 organisations from 21 countries on four conti-
nents registered within six weeks. However, throughout the year a number of groups dropped out due to resource

goevert@ls6.cs.uni-dortmund.de
gabs@dcs.qmul.ac.uk

requirements, while a number of new groups joined the initiative at the relevance assessments stage. The final 36
active INEX 2002 groups are listed in Taple 1.

Due to the diversity in the background of the participating groups, a wide range of different approaches to XML
retrieval were represented within INEX 2002. Although the approaches are quite diverse, we tried to classify them
using the following three categoriés [2]:

IR model-oriented: Research groups that focus on the extension of a specific type of information retrieval (IR)
model (e.g. vector space, rule-based, logistic regression, LSI), which they have applied to standard IR test
collections in the past, to deal with XML documents.

DB-oriented: Groups that are working on extending database (DB) management systems to deal with semistruc-
tured data; most of these groups also incorporate uncertainty weights, thus producing ranked results.

XML-specific: Groups that, instead of aiming to extend existing approaches towards XML, have developed mod-
els and systems specifically for XML. Although these groups have very different backgrounds they usually
base their work on XML standards (like XSL, XPath or XQuery).

Table[] shows the approaches followed by the different groups. As it can be seen, most of the retrieval approaches
were pure IR, DB or XML, although a few groups combined elements from two categories.

3 The task

Evaluation initiatives for flat document retrieval in IR, such as T[§E6clude several different tracks focusing

on tasks such as ad-hoc retrieval, routing, filtering, and interactive retrieval, etc. Although most of these tasks
are applicable to XML document retrieval, this being the first year of the initiative, we decided to run only one
track, where the task to be performed was set as the ad-hoc retrieval of XML documents. Just as in TREC, the
ad-hoc task was defined with the aim to evaluate the performance of systems that search a static set of documents
using a new set of topics. This task has been described as a simulation of how a library might be used, where the
collection of documents is known, while the queries to be asked are unkhown [13]. Compared with flat document
retrieval, however, for the evaluation of the ad-hoc retrieval of XML documents, we needed to consider additional
requirements.

Given the different approaches to XML document retrieval (Se€fion 2) and the widespread development and use
of XML query languages, users of XML retrieval systems are able to issue (directly or indirectly) more complex
gueries than those used in flat document retrieval. For example, users are able to exploit the structural nature of
the data and restrict their search to specific structural elements within an XML collection. This has to be reflected
in the queries used for the evaluation of such systems. Content-oriented XML retrieval systems, however, should
also support queries that do not specify structural conditions. The need for this type of queries for the evaluation
of XML retrieval is well published (even within this proceedings) and stems from the fact that users often do not
know the exact structure of the XML documents. Taking this into account, we identified the following two types of
gueries to be included in the INEX ad-hoc task:

Content-and-structure (CAS) queries are topic statements that contain explicit references to the XML struc-
ture, either by restricting the context of interest or the context of certain search concepts.

Content-only (CO) queries ignore the document structure and are, in a sense, the traditional topics used in IR
test collections. Their resemblance to traditional IR queries is, however, only in their appearance. They pose
a challenge to XML retrieval in that the retrieval results to such queries can be (possibly overlapping) XML
elements of varying granularity that fulfill the query.

The objective of the evaluation in INEX, based on the ad-hoc task, is to assess a system’s retrieval effectiveness,
where effectiveness is measured as a system’s ability to satisfy both content and structural aspects of a user’s
information need and retrieve the most specific relevant document components, which are exhaustive to the topic of
request and match its structural constraints.

Ihttp://trec.nist.org/

http://trec.nist.org/
http://trec.nist.org/

Organisation Retrieval Asgessed
approach topics
Carnegie Mellon University IR 07, 28
Centrum voor Wiskunde en Informatica (CWI) DB+IR 02, 03, 36
CSIRO Mathematical and Information Sciences IR 14, 15, 27
doctronic GmbH IR+XML 43
Electronics and Telecommunications Research Institute (ETRI) DB+XML 26,58
ETH Zurich DB+IR 16, 47
Florida A&M University 59
IBM Haifa Labs IR 08, 09
Institut de Recherche en Informatique de Toulouse (IRIT) IR
Nara Institute of Science and Technology IR 37,38
Queen Mary University of London IR 53
Queensland University of Technology IR+XML 29, 60
Royal School of Library and Information Science other 04, 34
Salzburg Research Forschungsgesellschaft IR
Sejong Cyber University XML 25
Tarragon Consulting Corporation IR 31,33
Universitat Bayreuth DB 05, 06
Universitat Dortmund / Universitat Duisburg-Essen IR 30
Université Pierre et Marie Curie IR+XML 10, 45, 50
University of Amsterdam IR 01, 42
University of California, Berkeley IR 17,18
University of California, Los Angeles 48, 49
University of Helsinki IR 19,51
University of Melbourne IR 20,52
University of Michigan DB+XML 12,13
University of Minnesota Duluth IR 11, 46
University of North Carolina at Chapel Hill IR
University of Rostock XML 21, 22
University of Twente DB 23,24
University of Zurich 41
Organisations joined at the relevance assessments stage:
Dublin City University 39,40
Ecole Nationale Supérieure des Mines de Saint-Etienne 50
Justus-Liebig-Universitat GieRen 50
University of California, San Diego 32
University of East Anglia 40
University of Granada 44

Table 1: List of INEX 2002 participants

id Publication title Year Size (MB) no of articles

an |EEE Annals of the History of Computing 1995-2001 13.2 316

cg |EEE Computer Graphics and Applications 1995-2001 19.1 680

co Computer 1995-2001 40.4 1902

¢s |EEE Computational Science & Engineering 1995-1998 14.6 571
Computing in Science & Engineering 1999-2001

dt IEEE Design & Test of Computers 1995-2001 13.6 539

ex |EEE Expert 1995-1997 20.3 702
IEEE Intelligent Systems 1998-2001

ic IEEE Internet Computing 1997-2001 12.2 547

it IT Professional 1999-2001 4.7 249

mi |IEEE Micro 1995-2001 15.8 604

mu |IEEE MultiMedia 1995-2001 11.3 465

pd |EEE Parallel & Distributed Technology 1995-1996 10.7 363
IEEE Concurrency 1997-2000

so |IEEE Software 1995-2001 20.9 936

tc IEEE Transactions on Computers 1995-2002 66.1 1042

td IEEE Transactions on Parallel & Distributed Systems 1995-2002 58.8 765

tg IEEE Transactions on Visualization & Computer Graphics 1995-2002 15.2 225

tk IEEE Transactions on Knowledge and Data Engineering 1995-2002 48.1 585

tp IEEE Transactions on Pattern Analysis & Machine Intelligence 1995-2002 62.9 1046

ts IEEE Transactions on Software Engineering 1995-2002 46.1 570

Total 494 12107

Table 2: The INEX document collection

4 The test collection

Similarly to standard IR test collections, the INEX test collection consists of three parts: a set of documents, topics
and relevance assessments.

4.1 Documents

The document collection was donated to INEX by the IEEE Computer Society. It consists of the fulltexts of 12 107
articles, marked up in XML, from 12 magazines and 6 transactions of the IEEE Computer Society’s publications,
covering the period of 1995-2002, and totalling 494 MB in size. Table 2 lists some statistics for the different
publications included in the collection. Although the size of the document collection is relatively small compared
with TREC, it has a suitably complex XML structure containing 192 different content models in its DTD. On
average, an article contains 1532 XML nodes, where the average depth of a node is 6.9.

All documents in the collection are tagged using XML conforming to one common schema, i.e. DTD.[Figure 1
shows the overall structure of a typical article consisting of a front matfenX), a body &bdy>), and a back
matter €bm>). The front matter contains the article’s metadata, such as title, author, publication information, and
abstract. Following itis the article’s body, which contains the content. The body is structured into sext@ms)|
sub-sections<ss1>), and sub-sub-sections4s2>). These logical units start with a title, followed by a number
of paragraphs. In addition, the content has markup for references (citations, tables, figures), item lists, layout (such
as emphasised and bold faced text), etc. The back matter contains a bibliography and information about the authors
of the article.

4.2 Topics

The topic format and the topic development procedures were based on TREC guidelines, which were modified to
accommodate the two types of topics used: CO and CAS (see Sgfction 3).

r<article> <sec>
<fm> <st>...</st>
<ti>IEEE Transactions on ...</ti> <ssl>...</ssl>
<atl>Construction of ...</atl> <ssl>...</ssl>
<au>
<fnm>John</fnm> </sec>
<snm>Smith</snm>
<aff>University of ...</aff> </bdy>
</au> <bm>
<au>...</au> <bib>
<bb>
</fm> <au>...<fau><ti>...</ti>
<bdy> "
<sec> </bb>
<st>Introduction</st>
<p>...</p> </bib>
</bm>
</sec> | </article>

Figure 1: Sketch of the structure of the typical INEX articles

<IELEMENT INEX-Topic (Title, Description, Narrative, Keywords)>
<IATTLIST INEX-Topic

topic-id CDATA #REQUIRED

query-type CDATA #REQUIRED

ct-no CDATA #REQUIRED
>
<IELEMENT Title (te?, (cw, ce?)+)>
<I[ELEMENT te (#PCDATA)>
<IELEMENT cw (#PCDATA)>
<I[ELEMENT ce (#PCDATA)>

<IELEMENT Description (#PCDATA)>
<I[ELEMENT Narrative (#PCDATA)>
<IELEMENT Keywords (#PCDATA)>

Figure 2: Topic DTD

4.2.1 Topic format

The topic format was modified to allow the definition of containment conditions and the specification of target
elements (e. g. elements that should be returned to the user). The DTD of an INEX topic is shown ifi|Figure 2. The
four main parts of a topic are the topic title, topic description, narrative and keywords.

As in TREC, the topic title is a short version of the topic description and usually consists of a number of keywords
that best describe what the user is looking for. In INEX, however, the topic title serves as a summary of both content
and structure related requirements of a user’s information need. An INEX topic title, hence, may contain a number
of different components: target elementtel>), a set of search conceptscfv>), and a set of context elements
(<ce>). The combination of the latter two corresponds to a containment condition. A search concept may be
represented by a set of keywords or phrases. A CO topic title consists ontyvof components as, by definition, it
does not specify constraints over the structure of the result elements. For CAS queries, a topic title may specify the
target elements of the search and/ or the context elements of given search concepts. Both target and context elements
may list one or more XML elements (e. gce>abs, kwd</ce>), which may be given by their absolute (e. g.
article/fm/au) or abbreviated path (e.dlau), or by their element type (e.qu). Omitting the target or
context element in a topic title indicates that there are no restrictions placed upon the type of element the search
should return, or the type of element a given concept should be a subject of.

The topic description is a one- or two-sentence natural language definition of the information need. The narrative
is a detailed explanation of the topic statement and a description of what makes a document/component relevant or

<INEX-Topic topic-id="09" query-type="CAS" ct-no="048">
<Title>
<te>article</te>
<cw>non-monotonic reasoning</cw> <ce>bdy/sec</ce>

<cw>1999 2000</cw> <ce>hdr/lyr</ce>
<cw>-calendar</cw> <ce>tig/atl</ce>
<cw>belief revision</cw>

<[Title>

<Description>
Retrieve all articles from the years 1999-2000 that deal with works on non-
monotonic reasoning. Do not retrieve articles that are calendar/call for papers.
</Description>
<Narrative>
Retrieve all articles from the years 1999-2000 that deal with works on non-
monotonic reasoning. Do not retrieve articles that are calendar/call for papers.
</Narrative>
<Keywords>
non-monotonic reasoning belief revision
</Keywords>
</INEX-Topic>

Figure 3: A CAS topic from the INEX test collection

<INEX-Topic topic-id="45" query-type="CQO" ct-no="056">
<Title>
<cw>augmented reality and medicine</cw>
<[Title>
<Description>
How virtual (or augmented) reality can contribute to improve the medical and
surgical practice.
</Description>
<Narrative>
In order to be considered relevant, a document/component must include
considerations about applications of computer graphics and especially augmented
(or virtual) reality to medicine (including surgery).
</Narrative>
<Keywords>
augmented virtual reality medicine surgery improve computer assisted aided image
</Keywords>
</INEX-Topic>

Figure 4: A CO topic from the INEX test collection

not. The keywords component of a topic was added in INEX as a means to keep a record of the list of search terms

used for retrieval during the topic development process carried out by the participating groups (se¢ Sedtion 4.2.2).
The three attributes of a topic ar@pic-id (e.g. 1to 60)query-type (e.g. CAS or CO), andt-no ,

which refers to the candidate topic number (e. g. 1 to 143). Figlres[3 and 4 show examples for both types of topics.

4.2.2 The topic development process

In INEX, the topics were created by the participating groups. We asked each organisation to create a set of candidate
topics that were representative of what real users might ask and the type of the service that operational systems may
provide. Participants were provided with guidelines to assist them in this task [5]. The guide identified the following
stages of the topic creation process: (1) Creation of the initial topic statement, (2) Collection exploration, (3) Topic
refinement, and (4) Topic selection. While the first three stages were carried out by the participants, the selection of
the final topics was left to us.

During the first stage participants created their initial topic statements. These were treated as a user’s description
of his/her information need and were formed without regard to system capabilities or collection peculiarities to
avoid artificial or collection-biased queries.

CAS CO

no of topics 30 30
total no of<cw> components 62 30
avg no of<cw>/topic title 206 1.0
avg no of unique words/cw 25 43
avg no of unique words/topic title 51 43
total no of<ce> components 49 0
avg no of<ce> /topic title 1.63 -
avg no of XML elements¢ce> 1.53 -
avg no of XML elements/topic title 25 -
no of topics with<ce> representing a fact 12 -
no of topics with<ce> representing content 6 -
no of topics with mixed<ce> 12 -
total no of topics with<te> components 25 0
avg no of XML elements£te> 1.68 -
no of topics with<te> representing a fact 13 -
no of topics with<te> representing content 12 -
no of topics with<te> representing articles 6 -
total no of kcw>, <ce>) pairs 49 0
avg no of kcw>, <ce>) pairs/topic title 1.63 -
avg no of words in topic description 18.8 16.1
avg no of words in keywords component 7.06 87

Table 3: Statistics on CAS and CO queries in the INEX test collection

During the collection exploration stage, participants estimated the number of relevant documents/components
to their candidate topics. Unlike TREC, we did not provide topic authors a retrieval system for this task, but
participants used their own retrieval engines. They then judged the top 25 retrieved components and the top 100
results after performing relevance feedback. Keywords used in the retrieval runs were recorded within the topic's
keywords component.

In the topic refinement stage the components of a topic were finalised ensuring coherency and that each compo-
nent could be used in a stand-alone fashion (e. g. retrieval using only the topic title).

After completion of the first three stages, the candidate topics were submitted to INEX. A total of 143 candidate
topics were received, of which 60 topics (30 CAS and 30 CO) were selected into the final set of topics. The selection
of the final 60 topics was based on the combination of criteria, such as including equal number of CO and CAS
topics, having topics that are representative of IR, DB and XML-specific search situations, balancing the load across
participants for relevance assessments, and eliminating topics that were considered too ambiguous or too difficult
to judge. We also aimed to include topics that were likely to retrieve diverse sets (varying granularity) of relevant
components. Furthermore, we based topic selection on the estimated number of relevant components, where we
selected topics with at least 2, but no more than 20 relevant items in the top 25 retrieved components. Note that due
to the lack of information with respect to the estimated number of relevant components within the top 100 results
after relevance feedback, this data was largely ignored during topic selection.

Table[3 shows some statistics on the final set of INEX topics. Note that these figures are different from that in [2]
as a result of subsequent changes to the topics. In the statistics we differentiated between context and target elements
that represent facts, such as author or title information, or content, such as the text of an article or a part of the article.
Looking at the 25 CAS topics that specified target elements, we can see that more than half requested facts to be
returned to the user. Furthermore, the majority of the CAS topics contained either only fact (e.g. specifying the
publication year and/or the title), or a mixture of fact and content containment conditions (e.g. specifying the
author and the subject of a document component).

CAS topics CO topics

no of documents submitted 64024 97947
no of documents in pools 23375 30275
reduction 63 % 69 %
no of components submitted 100904 139235
no of components in pools 47419 60066
reduction 53% 57%

Table 4: Pooling effect for CAS and CO topics

4.3 Submissions

Participating groups evaluated the final set of topics against the document collection and produced, for each topic,
a ranked list of XML documents/components (result elements). The top 100 result elements from all sixty sets of
ranked lists (one per topic) consisted the results of one retrieval run. Each group was allowed to submit up to three
runs. The submission format and procedure is detailed in [7]. Each result element was identified using a combination
of file names and XPaths. The file name and file path uniquely identified an article within the document collection,
and XPath allowed the location of a given component within the XML tree of the article. The result components
varied from author, title and paragraph elements through sub-section and section elements to complete articles and
even journals. Associated with a result element were its retrieval rank and/ or its relevance status value.

In the first round of INEX, a total of 51 runs were submitted by 25 participating organisations. 42 of the 51
submissions contained results for the CAS topics and 49 contained results for the CO topics.

For each topic, all of the results from the submissions were merged to form the pool for assessment [11]. A
median sized assessment pool for CAS topics contained 1585 document components from 749 different articles.
For CO topics the median sized assessment pool contained 1 980 document components from 981 different articles.
Table[4 shows the pooling effect for CAS and CO topics.

4.4 Assessments

The assessment pools were then assigned to participants for assessment; either to the original topic authors or when
this was not possible, on a voluntary basis, to groups with expertise in the topic’s subject area. The topics assessed
by the different groups are summarised in TdBle 1. Note that the list excludes topics 35, 54, 55, 56, and 57 as no
groups volunteered to assess them. On the other hand, we obtained multiple assessments for topics 40 and 50, which
were assessed by two and three assessors, respectively. We will analyse these sets in the near future to estimate the
consistency of the collected assessments.

The assessments were done along the following two dimensions:

Topical relevance, which reflects the extent to which the information contained in a document component satis-
fies the information need.

Component coverage, which reflects the extent to which a document component is focused on the information
need, while being an informative unit.

Both these dimensions were measured using graded scales. For topical relevance we used the following four-point
scale[8]:

Irrelevant (0): The document component does not contain any information about the topic of request.
Marginally relevant (1): The document component mentions the topic of request, but only in passing.

Fairly relevant (2): The document component contains more information than the topic description, but this in-
formation is not exhaustive. In the case of multi-faceted topics, only some of the sub-themes or viewpoints
are discussed.

Highly relevant (3): The document component discusses the topic of request exhaustively. In the case of multi-
faceted topics, all or most sub-themes or viewpoints are discussed.

@O O @ Q ‘ S5 hittpolsB-wwiw.cs.uni-dortmund. desirprojectsiinexidownloadicgi] [@\ Search] ﬂo @ O Q O Q:{;Q ﬂ-ﬂ
[Assessment guide | Download pool DT | Download pool | Edit word list | ToDo iterns] = [INEX {down,uptload area | Overview |EEE-CS publications |5
=1 | our submissions | View resultpools]
Resultpool for topic 45 (all items) -
The flags in the status column indicate how far assessments for a document are done: the Il flag indicates that Word list for topic 45 |
the document is finished (vou ticked the respective checkbox in one of the document views); the &ﬂag indicates
that the document is untouched. The mixed flag indicates that the assessments are not yet finished (you did not Fugmented green
et tick the respective checkbox in one of the document views). The mixed EESES flag indicates that inconsistent irtual green
assessments have been found, which need to be fixed; click on the flag in order to obtain information about the type of r:gl—;w g]‘_‘j:“
inconsistency. ididall bl
‘ . . o cdicine blue
Paths colored green are such paths which have been assessed in addition to those given in the pool. Assessments surge hlue
colored red indicate an inconsistency. surgery blue
surgeon hlue 2
| Status File { XML view Path / document view ﬂﬁ;‘t’:r 5
assisted
| I an/1895/a101d 0N farticle[1 " ided
I 0N farticle[1]bdy[1)sec[18] ‘| limage
0N farticle[11bdy[1Vsec[18)/n(2]
I an/1995/a3007 0N farticle[1
I an/1895/a4005 0N Zarticle[T
BN ani1996/a1025 i fartile[1]
I an/1886/a1051 0N farticle[1]
BN an/1996/a1056 2L farticle[1] =
?\: ::i C_}E[:_‘ | } Saveword list | Resetward list |
farticle y[1]/seci]
DEI ji C—}E[; bl ::SEC ::55 e[1iiel/p(1] Syntax: Each ling of the word list consists of a word and an
gE /i C—‘E[f 3 fec 155 ;f 214 optional color name, seperated by one or more whitespace
o3 % % i < 1222 122 = 1222[411 [characters, The words in the list will be stemmed and
> Tarticle[1] : Foeolilias 71552[4112[21 highlighted in the specified color when found in an article.
[e N Farticle | Colors are given hy their names, default is moccasin. L
BN Sannnciscoio Fo P BN S SR I T S RF S| ERN S R P R} fod B

Figure 5: Result pool. Result elements are listed in alphabetical order d&idure 6: Word list editor. It was used

grouped within article elements. The relevance and coverage by the assessors to specify a

values are shown in front of assessed elements. list of cue terms that were
then highlighted in the docu-
ment views.

Component coverage was selected from the following four categbries [10]:
No coverage (N): The topic or an aspect of the topic is not a theme of the document component.
Too large (L): The topic or an aspect of the topic is only a minor theme of the document component.

Too small (S): The topic or an aspect of the topic is the main or only theme of the document component, but the
component is too small to act as a meaningful unit of information.

Exact coverage (E): The topic or an aspect of the topic is the main or only theme of the document component,
and the component acts as a meaningful unit of information.

Note that the two assessed dimensions are not perfectly orthogonal to each other. Some combinations of rele-
vance/coverage values do not make sense: A component which has no relevance cannot have any coverage with
the topic. Vice versa, if a document component has no coverage with a topic, it cannot be relevant to the topic at
the same time. In a similar way, a document component which has a coverage too small, cannot be highly relevant,
since this would assume that all or most of the concepts requested by the topic are discussed exhaustively.

Assessors were sent detailed instructions on how to carry out the assessments based on the above two dimen-
sions [6]. Assessments were recorded using an on-line assessment system, which allowed users to view the pooled
result set of a given topic, to browse the document collection and view articles and result elements both in XML
(i. e. showing the tags) and document view (i. e. formatted for ease of reading). Other features included facilities
such as keyword highlighting, and consistency checking of the assessments. [Figlires §] 6, and 7 show screenshots
of the assessment system.

Table[% shows a summary of the collected assessments for CAS and CO topics. Here, the relatively large propor-
tion of non-article level elements with exact coverage compared with article elements indicates that for most topics
sub-components were considered as the preferred units to be returned to a user; this is emphasised |n Figure 8.
Figure[9 shows the relative distribution of selected non-article XML elements that were judged relevant.

5 Evaluation metrics

Due to the nature of XML retrieval, metrics from traditional evaluation initiatives like TREC and CLEF could not be
applied in INEX without modification. Therefore, it was necessary to develop new evaluation procedures. Here we

@Q 0 O Q |% hitp:/1sB-wwmw.cs.uni-dordmund.de |[C{Sean::h] C:S’Q GQ O @ O I% hittp /)5 B-www. 5. L ![QSemh] ‘:::go m

i i il i 23]
]n otherwords, a cultural transformation must occur in ;he process oftea.chlng arjd learning [a] T other wotds,. S eulbursl transformation must oscut in the. process. |
\fcustlomlzed texthooks are to be used to provide flexibility and currency in teaching of teaching and learning if customized textbooks are to be used to
materials. provide flexibility and currency in teaching materials.
</p>
(/ser)_
<ss2lE 5
ROBODOC <s >
<1 PROEODOCK/it>
In 1992, an application called the "ROBODCOC" surgical assistant won the award in the sty
medical category. ROBODOC was the first robotic device designed to be used in human <pl25 > .
surgery. The developer of the technology pointed out that in operations like hip replacement In 1922- S aPléilcatwg caltgd them"r;gaungc” Surqﬁggémc th
surgery (230,000 of which were performed in 1990), the prosthetic insert devices were Zasistan: von Lae aWarc in bae MEREEE caeqory o, She
. i - first robotic device designed to be used in humsn Surgery
machined by precision tuols‘tu tolerances ofthousandths of an inch. queverthe surgeon developer of the technology pointed out that in operations].1ke hip
used a crude, manual technigue to create the cavity in the bone for the implant. It often left replacenent surgery (230,000 of which were performed in 1990, the
large gaps hetween the cavity and the implant when the device was inserted. The prosthetic insert devices were machined by precision tools to
tolerances of thousandths of an inch. Howewver the surgeon used a

Il application of robot-guided drilling tools solved that problem. “ ol haniAl Eorhiioie Tabroats ThL Caviiyith PhehoneiEe the

implant. It often left large gaps betwsen the cavity and the

I,

_ROBODOC gsed cur.nputerized.tumlugraphic [CAT) scanning and Simula.tsd E!D computer d inplant when the device was inscrted. The application of
image to guide precision robotic drilling of the bone to receive the machined implant. The robot-guided drilling tools solved that problem.
drilling machine was capable of holding the bone in exact position and also sensing such <p>
factors as stress on the bone while the drilling was being done. Its operations could always <pfEs >
he overridden by human control [[2]]. ROBODOC used computerized tomographic (CAT) scanning and simulated
3D computer image to guide precision robotic drilling of the bone
f ? ; : : : : to receive the machined implant. The drilling machine was capable
Again the difficulty was more in combating the sumal systems than solving techno!qglca\ C holoiic the hole an ek Tuoitinh I las Sonaing aien FacEay
proplems: After ROBODOC was proved success‘wwth animals, it took years of additional as stress on the bone while the drilling was being done. Its
testing, trials, and bureaucratic procedure to get it cleared for human use. operations could always be overridden by human control
_ <ref rid="bibalO562" type="bib"| >[2] ¢/xef>
</pr
Paostal Buddy < >
Again the difficulty was more in combating the social systems than
e : : : ; lving technological probl After ROBODOC d =
Mot all the nomination stories have happy endings. In 1993, EDS corporation nominated the [30,.;“'9 T N =2 waew_ SucEsse bt
Linited States Postal Service for its develonment af the "Postal Buddyw" tem. Postal Buddy [4] [] ’.
a) Document view b) XML view

Figure 7: A section of an article in document and XML view. Result elements are highlighted and cue words are
marked as specified in the word list editor. Participants used the XML view to record their assessments,
i. e. values of relevance and coverage for a given XML element.

Rel+ CAS topics CO topics
Cov article level non-articles article level non-articles

3E 187 2304 307 1087
2E 59 1128 165 1107
1E 82 1770 114 827

3L 173 424 394 1145
2L 137 507 599 2295
1L 236 719 854 2708

2S 21 846 118 3825
1S 54 1119 116 3156

All 949 8817 2667 16150

Table 5: Assessments at article and component levels

14000 4 30.00% -
Oco="E"
12000 e OCAS topics
mcov="L or 3" 25005 I
W CO topics
10000
20.00%
g0oo
15.00%
G000
10.00% A
4000
o
000 5.00%
g — ; . . 0.00% A . . i . :
CAS article CAS non-article CO article CO nor-article bdy sec ssl s52 p au atl

Figure 8: Distribution of relevant article and non- Figure 9: Distribution of relevant non-article elements
article elements (topical relevance > 0). (topical relevance > 0).

10

describe the evaluation metrics that were discussed at the INEX Workshop and have been applied to the INEX 2002
submissions. These metrics have been implemented withiméxeeval package, which has been distributed
to the participants. In addition, a Web-based evaluation interface has also been provided for the participants.

In Sectior{ 5.1 we describe how implicit assessments have been derived from the explicit assessments done by
the assessors. The evaluation metrics proposed in S¢ctijon 5.3 are based on established recall/ precision metrics.
However, in order to apply these in INEX, the two dimensional quality assessments (see [Seftion 4.4) first had to
be guantised onto a binary relevance scale. The quantisation functions developed for this purpose are given in
Sectior 5.P.

5.1 Implicit relevance assessments

Due to the nature of the two assessed dimensitmsdal relevanceandcomponent coverag@and from the INEX
guality assessment guide [6] one can, in certain cases, deduce assessments for nodes which have not been assessed
explicitly:

e Due to the definition of the relevance dimension, the relevance level of a parent component of an assessed
component is equal to or greater than the relevance of the assessed component.

e For a component which has a coverage assessmexaator too largeit can be deduced that its parent
component has a coveragetob large

These rules have been applied recursively, up to the article level of the documents, in order to add implicit assess-
ments to the explicit assessments done by the assessors. The only exception for applying the rules are CAS topics
with target elemenspecifications, as it has been agreed to interpret the target element specifications in a strict way
in terms of evaluation.

5.2 Quantisation of relevance and coverage

In order to apply traditional recall / precision metrics, values for the two dimensions of relevance and coverage must
be quantised by some functidi,..: to a single relevance value:

fouant : Relevance x Coverage [0,1]

N
(rel, cov) — fouani(rel, cov) (1)
Here, the set of relevance assessmentRd&vance := {0,1,2,3}, and the set of coverage assessments is
Coverage :== {N,S,L,E}.

Quantisation functions can be selected according to the desired user standpoint. For INEX 2002, two different
functions have been selectef;,;.: andfycperatised-

The quantisation functioffi;,.;.; is used to evaluate whether a given retrieval method is capable of retrieving
highly relevant and highly focused document components:

&)

fstrict(rel, cov) = { 1 ifrel =3 and cov = E,

0 else

Other functions can be based on the different possible combinations of relevance degrees and coverage categories,
such adfy,qnt(rel, cov) = 1if rel > 1 andcov = E. In order to credit document components according to their
degree ofrelevance (generalised recall/ precision), the quantisation fun€liQn.qsiseq is used:

1.00 rel, cov) = 3E,
0.75 rel, cov) € {2E, 3L},

if ()
if ()
feneratisea(rel, cov) = 0.50 if (rel, cov) € {1E, 2L, 2S}, 3)
i (rel, cov)
if (rel, cov)

g

0.25 rel,cov) € {1S,1L},
0.00 rel, cov) = ON

11

5.3 Recall / precision metrics

Given the type of quantisation described above, each document component in a result ranking is assigned a single
relevance value. In INEX 2002, overlaps of document components in rankings were ignored, thus procedures
that calculate recall/ precision curves for standard document retrieval could be applied directly to the results of the
guantisation functions. The method described by Raghavan etlal. in [9] is used for this. Here, precision is interpreted
as the probabilityP(rel|retr), that a document viewed by a user is relevant. Given that the user stops viewing at
the ranking after a given number of relevant document compoiéRighis probability can be computed as:

NR NR

P N, = = = . 4
(rellretr)(NR) NR + eslnr NR+j+s-i/(r+1) @)

The expected search leng#s] yr, denotes the total number of non-relevant document components that are esti-
mated to be retrieved until th¥Rth relevant document is retrieved. Letlenote the rank from which th&¥Rth
relevant component is drawn. Thgifis the number of non-relevant document components within the ranks before
rankl, s is the number of relevant components to be taken from taakdr and: are the numbers of relevant and
non-relevant components in rahlkespectively (details on the derivation are given by Cdopeériin [1]).

Raghavan et al. also gave theoretical justification, that intermediary real numbers can be used instead of simple
recall points only (herey is the total number of relevant document components with regard to the user request in
the collectionyz € [0, 1] denotes an arbitrary recall value):

r-n r-n

P(rel|ret = — = 5
(rel|retr)(x) e zntits i/rt) ®)

This leads to an intuitive method for employing arbitrary fractional numherss recall values and thus allows for
averaging evaluation results over multiple topic results.

The metric from Raghavan etlal. has some theoretical advantages over the metric desdribed in [12]: besides the
intuitive method for interpolation it handles weakly ordered ranks correctly. The main advantage, however, is that
the variables, j, ¢, 7, ands in Formuld can be interpreted as expectations, thus allowing for a straightforward im-
plementation of the metric for the generalised quantisation function. For example, given a fusstisment(c),
which yields the relevance/coverage assessment for a given document comgahenhumberm of relevant
components with respect to a given topic and quantisation function is computed as:

n = Z fyuant (assessment(c)). (6)

cEcomponents

Expectations for the other variables are computed respectively. [Thble 6 lists the number of relevant document
components on a per topic basis, for both quantisation funcfigns; andfc,craiised-

For computation of the recall/ precision curves for a given submission using Raghavan et al.’'s method, it is as-
sumed that the submission conceptually ranks all components available through the document collection. In INEX
2002, however, participants were allowed to submit 100 document components per topic only. The evaluation
procedure therefore creates a virtual final rank, which enumerates all the components not being part of the set of
components explicitly ranked within the submission itself. A theoretical problem which arises in the case of struc-
tured document retrieval is the question of the size of this rank (needs to be determined in order to apply fFormula 5).
Obviously, not every element given by the XML markup of the documents are candidates for retrievable compo-
nents (most of them would be far too small to serve as a meaningful unit of information). We therefore computed
a rough estimation of this figure, based on the assessments available for a given topic. For this, it is assumed that
for documents where explicit assessments are availalbletrievablecomponents have been assessed (explicitly
or implicitly). In addition, it is assumed that retrievable components are distributed equally in all documents, re-
gardless of the fact whether they have been assessed or not. The estimated number of retrievable components for a
given topic can then be computed by:

|components assessed|

@)

ts| ~ |d ts| -
[components| [documents| |documents assessed)|

The number of components per topic in Tgble 6 have been computed this way.

12

strict generalised strict generalised

comp. rel. comp. rel. comp. rel. comp. rel.
01 14222 44.00 14222 44.00 31 15366 400 15366 45.25
02 12160 567.00 12160 577.50 32 141858 35.00 141858 795.50
03 48360 125.00 48360 831.50 33 13235 2.00 13235 34.50
04 26535 41.00 26535 105.00 34 26336 66.00 26336 412.50
05 14373 79.00 14373 126.50 35 - - - -
06 12186 17.00 12186 91.25 36 17507 31.00 17507 138.75
07 35246 55.00 35246 174.50 37 42102 138.00 42102 860.50
08 12220 8.00 12220 9.00 38 48006 111.00 48006 1304.00
09 12107 10.00 12107 10.25 39 105503 48.00 105503 277.25
10 30237 57.00 30237 272.50 40 13587 124.00 13587 232.50
11 15703 73.00 15703 252.00 41 22691 57.00 22691 159.00
12 22191 30.00 22191 57.50 42 63129 91.00 63129 309.50
13 19109 1.00 19109 2.75 43 49528 15.00 49528 77.75
14 72339 30.00 72339 172.00 44 65139 36.00 65139 158.00
15 90572 39.00 90572 690.25 45 31845 57.00 31845 535.75
16 12107 91.00 12107 122.25 46 19962 26.00 19962 239.50
17 97025 21.00 97025 78.25 47 78780 22.00 78780 233.75
18 30690 7.00 30690 66.25 48 21349 65.00 21349 296.75
19 15392 71.00 15392 152.25 49 21792 9.00 21792 157.25
20 149009 33.00 149009 83.50 50 133437 0.00 133437 451.50
21 45082 9.00 45082 114.50 51 15548 26.00 15548 191.25
22 29436 73.00 29436 95.75 52 135699 15.00 135699 140.50
23 14562 29.00 14562 36.75 53 76783 34.00 76783 816.25
24 12107 6.00 12107 12.25 54 - - - -
25 15303 8.00 15303 24.50 55 - - - -
26 15948 174.00 15948 280.50 56 - - - -
27 1809996 149.00 1809996 149.00 57 - - - -
28 12107 47.00 12107 47.00 58 28576 210.00 28576 722.75
29 33703 173.00 33703 618.00 59 - - - -
30 47453 424.00 47453 758.25 60 26318 174.00 26318 638.50

a) CAS topics b) CO topics

Table 6: Number of components (comp.) and relevant components (rel.) per topic, for both quantisation functions.
The number of relevant components has been computed using EqUation 6, while the number of components
has been estimated using Equafipn 7.

13

0.8 0.8
[[
S S
@ @
[&] [&]
Q Q
o o
0 0.5 1 0 0.5 1
Recall Recall
a) CAS topics; strict quantisation b) CAS topics; generalised quantisation
1 1
0.8 0.8
5 06 5 06
@ @
[&] [&]
o o
o o 0.4
0.2
0 0.5 1 0 0.5 1
Recall Recall
c¢) CO topics; strict quantisation d) CO topics; generalised quantisation

Figure 10: Summary of recall/ precision curves for all INEX 2002 submissions

6 Summary of participants’ results

For INEX 2002, a total of 51 runs (42 of them contained results for the CAS topics, 49 of them contained results for
the CO topics) were submitted by 25 participating organisations. Higlire 10 summarises the recall/ precision graphs
for CAS and CO topics, using the two quantisation functifyps... andfgenem“sedﬂ

In addition to the recall/ precision curves, tmex_eval software computes the average precision for 100
recall points. The submissions have been ranked according to the average precision. The top ten submissions for
each task and each quantisation function are displayed in[Table 7. Detailed evaluation results for the runs submitted
for INEX 2002 can be obtained froml[4].

When comparing the rankings for the two different quantisation functions it becomes evident that they are quite
similar. A regression analysis based on average precision values for the submissions shows a strong linear correla-
tion between results obtained using strict quantisation and results obtained using generalised quantisatipn] Figure 11
depicts the scatter plots for CAS and CO topics and the respective regression lines. For CAS topics the correlation
coefficient is 0.9943, for CO topics 0.8875.

2All evaluation results have been compiled using the assessment package versionide8 aenal version 0.007.

14

rank avg precision organisation run ID
1. 0.3438 CSIRO Mathematical and Information Sciences manual
2. 0.3411 IBM Haifa Labs Merge
3. 0.3248 IBM Haifa Labs ManualNoMerge
4. 0.3093 IBM Haifa Labs NoMerge
5. 0.3090 University of Michigan no-duplicate
6. 0.3090 University of Michigan allow-duplicate
7. 0.2257 University of Amsterdam UAmMsIO2NGiSt
8. 0.2233 University of Amsterdam UAmMsIO2NGram
9. 0.1865 University of California, Berkeley Berkeley03
10. 0.1839 University of Amsterdam UAmMsI02Stem
a) CAS topics; strict quantisation
rank avg precision organisation run ID
1. 0.2752 CSIRO Mathematical and Information Sciences manual
2. 0.2706 IBM Haifa Labs Merge
3. 0.2634 University of Michigan allow-duplicate
4. 0.2634 University of Michigan no-duplicate
5. 0.2535 IBM Haifa Labs ManualNoMerge
6. 0.2419 IBM Haifa Labs NoMerge
7. 0.1782 University of Amsterdam UAmMsIO2NGiSt
8. 0.1770 University of Amsterdam UAmMsIO2NGram
9. 0.1592 University of Amsterdam UAmsI02Stem
10. 0.1583 Tarragon Consulting Corporation tgnCAS_base
b) CAS topics; generalised quantisation
rank avg precision organisation run ID
1. 0.0883 Universitat Dortmund / Universitat Duisburg-Essen Epros03
2. 0.0809 Royal School of Library and Information Science bag-of-words
3. 0.0670 Universitat Dortmund / Universitat Duisburg-Essen Epros06
4. 0.0627 Queensland University of Technology inexresult2.xml
5. 0.0592 University of Amsterdam UAmMsIO2NGram
6. 0.0590 Queensland University of Technology inexresults3.xml
7. 0.0556 Universitat Dortmund / Universitéat Duisburg-Essen plain hyrex
8. 0.0532 University of Amsterdam UAmMsIO2NGiSt
9. 0.0520 Centrum voor Wiskunde en Informatica (CWI) R_article
10. 0.0503 University of Minnesota Duluth 01
c) CO topics; strict quantisation
rank avg precision organisation run 1D
1. 0.0705 Universitat Dortmund / Universitét Duisburg-Essen Epros03
2. 0.0635 Universitat Dortmund / Universitat Duisburg-Essen Epros06
3. 0.0618 Royal School of Library and Information Science bag-of-words
4, 0.0582 Sejong Cyber University TitleKeywordsWLErr
5. 0.0572 Universitat Dortmund / Universitat Duisburg-Essen plain hyrex
6. 0.0555 Centrum voor Wiskunde en Informatica (CWI) R_article
7. 0.0554 University of Amsterdam UAmMsIO2NGiSt
8. 0.0546 University of Amsterdam UAmMsIO2NGram
9. 0.0499 University of Twente utwentelpr
10. 0.0483 University of Melbourne um_mgx2_long

d) CO topics; generalised quantisation

Table 7: Ranking of submissions w.r.t. average precision

15

0.35

submission o "submission o
— 03l regression line | . regression line
B ® 0.08 | i
R K]
s 025 ¢ s
(0] (0]
5 $ 0.06
S 0.2 S
§ §
3 0.15 3 0.04
8 8
s 01r s
o 2 0.02
& 0.05 | &
O 1 1 1 1 1 1 0 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.02 0.04 0.06 0.08 0.1
avg precision (strict) avg precision (strict)
a) CAS topics b) CO topics

Figure 11: Scatter plots and regression lines for average precision of submissions, using strict and generalised quan-
tisation.

7 Conclusions and outlook on INEX 2003

Within the first round of INEX in 2002, as a result of a collaborative effort with research groups from 36 different
organisations worldwide, an infrastructure has been created for evaluating the effectiveness of content-oriented
retrieval of XML documents. A document collection with real world XML documents from the IEEE Computer
Society’s digital library has been set up; 60 topics were created; the INEX 2002 participants provided assessments
for 55 of these topics. Based on the notion of recall and precision, a metric for evaluating the effectiveness of XML
retrieval has been developed and applied for evaluating the participants’ submissions.

At the time of this writing, the call for participation in the INEX 2003 round has been published already. In 2003
we aim to extend the test collection with additional topics. The retrieval task, ad-hoc retrieval with CAS and CO
topics, will remain the same. However, participants now can benefit from the test collection created in 2002 and
optimise their retrieval approaches accordingly. We are looking forward to many participating organisations again
with a broad range of retrieval approaches, thus promoting research in the field of XML retrieval.

8 Acknowledgements

We would like to thank the DELOS Network of Excellence for Digital Libre{ﬂésr partially funding the INEX
initiative. Special thanks go to the IEEE Computer SoE}eWithout their XML document collection INEX would

not have happened. Additional acknowledgements ¢oeotscher Akadmischer Austausch Dienst (D@m)d

The British Coundﬁ] who supported INEX through their Academic Research Collaboration (ARC) Programme.
Last but not least, we would like to thank the participating organisations and people for their contributions to the
INEX test collection.

References

[1] W. S. Cooper. Expected search length: A single measure of retrieval effectiveness based on weak ordering
action of retrieval systemgournal of the American Society for Information Scierit®30-41, 1968.

Shttp://delos-noe.org/
4http://computer.org/
Shitp://www.daad.de/
Ehttp://www.britishcouncil.org/

16

http://delos-noe.org/
http://computer.org/
http://www.daad.de/
http://www.britishcouncil.org/
http://delos-noe.org/
http://computer.org/
http://www.daad.de/
http://www.britishcouncil.org/

[2] Norbert Fuhr, Norbert Govert, Gabriella Kazai, and Mounia Lalmas. INEX: INitiative for the Evaluation of
XML retrieval. In Ricardo Baeza-Yates, Norbert Fuhr, and Yoelle S. Maarek, edRooseedings of the
SIGIR 2002 Workshop on XML and Information Retrie28i02.

[3] Norbert Fuhr, Norbert Govert, Gabriella Kazai, and Mounia Lalmas, editdlitiative for the Evaluation of
XML Retrieval (INEX). Proceedings of the First INEX Workshop. Dagstuhl, Germany, December 8-11, 2002
ERCIM Workshop Proceedings, Sophia Antipolis, France, March 2003. ERCIM.

[4] INEX. INEX 2002 evaluation results in detail. In Fuhr et al. [3].
[5] INEX. INEX guidelines for topic development. In Fuhr et all [3].
[6] INEX. INEX relevance assessment guide. In Fuhr et al. [3].

[7] INEX. INEX retrieval result submission format. In Fuhr et al. [3].

[8] Jaana Kekalainen and Kalvero Jarvelin. Using graded relevance assessments in IR evadatiai.of the
American Society for Information Science and Technql68{13), September 2002.

[9] V. V. Raghavan, P. Bollmann, and G. S. Jung. A critical investigation of recall and precision as measures of
retrieval system performancACM Transactions on Information Systeg3):205-229, 1989.

[10] Thomas Schitz. Retrieval of complex objects, considering SGML documents as example (in German). Mas-
ter's thesis, University of Dortmund, Computer Science Department, 1998.

[11] K. Sparck Jones and C. J. van Rijsbergen. Report on the need for and provision of an “ideal” information
retrieval test collection. Technical report, British Library Research and Development Report 5266, Computer
Laboratory, University of Cambridge, 1975.

[12] trec_eval. Evaluation techniques and measures. In Voorhees and Harman [13].

[13] E. M. Voorhees and D. K. Harman, editoighe Tenth Text REtrieval Conference (TREC 20GHjthersburg,
MD, USA, 2002. NIST.

17

Cheshire II at INEX: Using A Hybrid Logistic Regression and
Boolean Model for XML Retrieval

Ray R. Larson

School of Information Management and Systems

University of California, Berkeley
Berkeley, California, USA, 94720-4600
email: ray@sherlock.berkeley.edu

Abstract

This paper describes the retrieval approach that
Berkeley used in the INEX evaluation. The pri-
mary approach is the combination of probabilistic
methods, using a Logistic regression algorithm for
estimation of collection relevance and element rel-
evance, with Boolean constraints. The paper also
discusses our approach to XML component retrie-
val and how component and document retrieval
are combined in the Cheshire II system. The offi-
cial INEX results are discussed, along with some
analysis of subsequent trials, and some thoughts
on future directions for XML retrieval approaches
for INEX.

1 Introduction

The Cheshire IT system originally was developed
to provide a bridge from conventional online li-
brary catalogs to full-text online resources. Early
research (circa 1990) with the system concen-
trated on the application of probabilistic ranked
retrieval to short documents consisting primarily
of bibliographic metadata and not the kinds of
full-text document collections encountered today.

Over the past several years we have started
to use the system to implement production-level
services providing access to full-text SGML and
XML document for a number of digital library
systems in the United States and the United
Kingdom, including the UC Berkeley Digital Li-
brary Initiative project sponsored by NSF, NASA
and ARPA, The Archives Hub sponsored by JISC
in the UK, The History Data Service of AHDS in
the UK and the Resource Discovery Network in
the UK. The Cheshire system is also being used to
provide scalable distributed retrieval for consortia
of institutions providing access to online catalogs
and archival collections (the WARM system and

the Distributed Archives Hub).

This paper will review the characteristics of the
Cheshire II system. It will also examine the ap-
proach taken in applying this system to a collec-
tion of large XML documents as part of the Initia-
tive for the Evaluation of XML retrieval (INEX),
some observations on its performance and behav-
ior in this area will be presented as well.

2 The Cheshire II System

When the Cheshire system was first conceived (in
the late 1980’s) the aim was to develop a “next-
generation” online library catalog system that
could provide ranked retrieval based on proba-
bilistic IR methods, while still supporting Bool-
ean retrieval methods expected in the online cat-
alog systems of that era. Since that time the sys-
tem has been constantly redesigned and updated
to accommodate the information retrieval needs
of a much broader world. The early choice of
SGML made use of XML a natural growth path,
and the system remains one of the few to acco-
modate both XML and its more complex parent,
SGML. The Cheshire II system now finds its pri-
mary usage in full text or structured metadata
collections based on SGML and XML, often as
the search engine behind a variety of WWW-
based ”search pages” or as a Z39.50 [10] server
for particular applications.

The Cheshire IT system includes the following
features:

1. It supports SGML or XML as the primary
database format of the underlying search en-
gine. Any valid DTD or XMLSchema can
be used for the the records in the database,
and multiple record types can be combined
on the same server.

2. The system uses an embedded database en-

18

gine (BerkeleyDB) for constructing and ac-
cessing indexes and for storage of component
information. The user has the option of stor-
ing the SGML/XML records un-modified as
files or in a parsed form in the database en-
gine (with some added storage overhead for
these pre-parsed records).

3. It allows parts or “components” of complete
SGML or XML documents (e.g., paragraphs)
to be defined, indexed and retrieved as if
they were individual documents, with sepa-
rate indexes and ranking statistics used dur-
ing retrieval.

4. Tt provides flexible document retrieval, in-
cluding the ability to request any individual
XPATH specification from any document se-
lected during searching.

5. It is a client/server application where the
interfaces (clients) communicate with the
search engine (server) using the 739.50 v.3
Information Retrieval Protocol. The system
also supports a variety of other protocols, in-
cluding OAI, SDLIP, SOAP, and SRW.

6. The system includes multiple clients, all of
which are scriptable using either Tcl/Tk][7]
or the Python language. All of these client
interfaces permit searches of the Cheshire IT
search engine as well as any other z39.50,
SDLIP, SOAP, or SRW compatible search
engine on the network.

7. It permits users to enter natural language
queries that may be combined with Boolean
logic. Indexing and searching can make use
of the structure of the underlying documents
to provide very complex searching. Multiple
searches can be performed on different ele-
ments of a document collection and the re-
sults merged into a single ranked result set.

8. It uses probabilistic ranking methods based
on the Logistic Regression research carried
out at Berkeley to match the user’s ini-
tial query with SGML/XML documents and
document components in the database.

9. It supports relevance feedback searching
where a user’s selection of relevant docu-
ments is used to expand upon the initial
query and automatically construct a new
query derived from the contents of the se-
lected documents.

The original design rationale and features of
the Cheshire II search engine have been discussed

elsewhere [6, 5] and will only be briefly repeated
here with an emphasis on those features that were
applied in the INEX evaluation.

The Cheshire II search engine supports both
Boolean and probabilistic searching on any in-
dexed element of the database. In probabilis-
tic searching, a natural language query can be
used to retrieve the documents that are estimated
to have the highest probability of being relevant
given the user’s query.

The search engine also supports various meth-
ods for translating a searcher’s query into the
terms used in indexing the database. These meth-
ods include elimination of “noise” words using
stopword lists (which can be different for each in-
dex and field of the data), particular field-specific
query-to-key conversion or “normalization” func-
tions, standard stemming algorithms (a modified
version of the Porter stemmer[8]) and support for
mapping database and query text words to sin-
gle forms based on the WordNet dictionary and
thesaurus using a adaption of the WordNet “Mor-
phing” algorithm and exception dictionary.

The probabilistic retrieval algorithm used in
the Cheshire II search engine is based on the logis-
tic regression algorithms developed by Berkeley
researchers and shown to provide excellent full-
text retrieval performance in the TREC evalu-
ation of full-text IR systems[3, 2, 1]. Formally,
the probability of relevance given a particular
query and a particular record in the database
P(R | @, D) is calculated and the documents or
components are presented to the user ranked in
order of decreasing values of that probability. In
the Cheshire IT system P(R | @, D) is calculated
as the “log odds” of relevance logO(R | Q, D),
where for any events A and B the odds O(4 | B)
is a simple transformation of the probabilities
%. The Logistic Regression model provides
estimates for a set of coefficients, c;, associated
with a set of S statistics, X;, derived from the
query and database, such that

5
logO(R | Q,D) = ¢ ZCin' (1)

i=1

where ¢ is the intercept term of the regression.

For the set of M terms (i.e., words, stems or
phrases) that occur in both a particular query
and a given document or document component,
the equation used in estimating the probability
of relevance for the Cheshire II search engine is
essentially the same as that used in [2] where the
coefficients were estimated using relevance judge-
ments from the TIPSTER test collection:

19

Xy = 4 1%, logQAF,; . This is the log of the
absolute frequency of occurrence for term ¢;
in the query averaged over the M terms in
common between the query and the docu-
ment or document component. The coefli-
cient ¢; used in the current version of the
Cheshire II system is 1.269.

X, =+/QL . This is square root of the query
length (i.e., the number of terms in the query
disregarding stopwords). The ¢y coefficient
used is -0.310.

X3 =17 E]Ail logDAF;; . This is is the log of
the absolute frequency of occurrence for term
t; in the document (or component) averaged
over the M common terms. The c¢3 coefli-
cient used is 0.679.

X, =+/DL . This is square root of the document
or component length. In Cheshire II the raw
size of the document or component in bytes
is used for the document length. The ¢4 co-
efficient used is -0.0674.

X5 =4 Z]Ail logIDFy; . Thisis is the log of the
inverse document frequency(IDF) for term ¢;
in the document averaged over the M com-
mon terms. IDF is calculated as the total
number of documents or components in the
database, divided by the number of docu-
ments or components that contain term t;
The c5 coefficient used is 0.223.

Xg =logM . This is the log of the number of
terms that are in both the query and in the
document, or component. The ¢g coefficient
used in Cheshire IT is 2.01.

These coefficients and elements of the ranking al-
gorithm have proven to be quite robust and useful
across a broad range of document and component
types.

The system, as noted above, supports searches
combining probabilistic and Boolean elements.
Although these are implemented within a single
process, they comprise two parallel logical search
engines. Each logical search engine produces a set
of retrieved documents. When a only one type of
search strategy is used then the result is either a
probabilistically ranked set or an unranked Bool-
ean result set (these can also be sorted). When
both are used in a single query, combined proba-
bilistic and Boolean search results are evaluated
using the assumption that the Boolean retrieved
set has an estimated P(R | Qpoor, D) = 1.0 for
each document in the set, and 0 for the rest of

the collection. The final estimate for the prob-
ability of relevance used for ranking the results
of a search combining Boolean and probabilistic
strategies is simply:

P(R | QaD) = P(R | Qboal;D)P(R | Q;Droba-D())
2

where P(R | Qprob, D) is the probability esti-
mate from the probabilistic portion of the search,
and P(R | Qpoot, D) the estimate from the Bool-
ean. This has the effect of restricting the results
to those items that match the Boolean portion,
with ordering based on the probabilistic portion.

Besides allowing users greater flexibility, the
motivation for having two search methods fol-
lows from the observation that no single retrie-
val algorithm has been consistently proven to be
better than any other algorithm for all types of
searches. By combining the retrieved sets from
these two search strategies, we hope to lever-
age the strengths and to reduce the limitations
of each type of retrieval system. In general, the
more evidence the system has about the relation-
ship between a query and a document (includ-
ing the sort of structural information about the
documents found in the INEX queries), the more
accurate it will be in predicting the probability
that the document will satisfy the user’s need.
Other researchers have shown that additional in-
formation about the location and proximity of
Boolean search terms can be used to provide a
ranking score for a set of documents[4]. The in-
ference net IR model has shown that the exact
match Boolean retrieval status can be used as ad-
ditional evidence of the probability of relevance
in the context of a larger network of probabilistic
evidence[9]. In the same way, we treat the set of
documents resulting from the exact match Bool-
ean query as a special case of a probabilistically
ranked set, with each retrieved document having
an equal rank.

In addition we have implemented a “Fusion
Search” facility in the Cheshire II system that
can be used to merge the result sets from mul-
tiple searches. These typically will be from dif-
ferent indexes and different elements of the col-
lection which are then merged into a single in-
tegrated result set. This facility was developed
originally to support combination of results from
distributed searches, but has proved to be quite
valuable when applied to the differing elements of
a single collection as well. We have exploited this
facility in our retrieval processing for INEX (as
discussed below). When the same documents, or
document components, have been retrieved in dif-

20

fering searches, their final ranking value is based
on combining the weights from each of the source
sets. It should be noted, however, that in the cur-
rent implementation this final ranking value is not
a an estimated probability but a combination of
probabilistic weights and weighted Boolean val-
ues.

Relevance feedback is available the Cheshire IT
system, as probabilistic retrieval based on extrac-
tion of content-bearing elements (such as titles,
subject headings, etc.) from items that have been
seen and selected by a user. However it was not
used in the INEX evaluation where the searches
were done as a batch process.

The following section describes the approach
taken using the Cheshire II system to construct
the INEX database and conduct to searches based
on the INEX structured and content queries.

3 INEX Approach

Our approach in INEX was to use all of the fea-
tures of the cheshire system required to support
the searches produced by the participants in the
evaluation. This section will describe the index-
ing process and the search processing along with
specific comments on particular searches and the
special approaches taken in some cases. In this
discussion we will described some additional fea-
tures of the Cheshire II system that were applied
in processing the INEX queries.

3.1 Indexing the INEX Database

All indexing in the Cheshire II system is con-
trolled by an SGML Configuration file which de-
scribes the database to be created. This configu-
ration file is subsequently used in search process-
ing to control the mapping of search command
index names (or Z39.50 numeric attributes repre-
senting particular types of bibliographic data) to
the physical index files used and also to associ-
ated component indexes with particular compo-
nents and documents.

As noted above, any element or attribute may
be indexed. In addition particular values for at-
tributes of elements can be used to control selec-
tion of the elements to be added to the index. The
configuration file entry for each index definition
includes three attributes governing how the child
text nodes of the (one or more) element paths
specified for the index will be treated. These at-
tributes are:

1. ACCESS: The index data structure used (all

of the indexes for INEX used B-TREE in-
dexes).

2. EXTRACT: The type of extraction of the
data to be performed, the most common are
KEYWORD, or EXACTKEY. EXACTKEY
takes the text nodes as a string with or-
der maintained for left-to-right key match-
ing. KEYWORD takes individual tokens
from the text node. There is also sup-
port for extraction of proximity information
as well (true proximity indexes where not
used for INEX). Some more specialized ex-
traction methods include DATE and DATE-
TIME extraction, INTEGER, FLOAT and
DECIMAL extraction, as well as extraction
methods for geographic coordinates.

3. NORMAL: The type of normalization ap-
plied to the data extracted from the text
nodes. The most commonly used are STEM
and NONE. STEM uses an enhanced version
of the Porter stemmer, and NONE (in spite
of the name) performs case-folding. Spe-
cialized normalization routines for different
date, datetime and geographic coordinate
formats can also be specified.

Each index can have its own specialized stop-
word list, so that, for example, corporate names
have a different set of stopwords from document
titles or personal names.

Most of the indexes used in INEX used KEY-
WORD extraction and STEMming of the key-
word tokens. Exceptions to this general rule were
date elements (which were extracted using DATE
extraction of the year only) and the names of au-
thors which were extracted without stemming or
stoplists to retain the full name.

Table 1 lists the document-level (//article) in-
dexes created for INEX and the document ele-
ments from which the contents of those indexes
were extracted. Naturally the indexes created for
the INEX collection were tailored to the needs
of the retrieval task. Because it is simple to add
a new index in the Cheshire system without re-
indexing the entire collection, indexes were added
incrementally to support all of the specified con-
tent elements from the 60 INEX topics (i.e., the
<ce> tags from the topic documents). Many
of the indexes were document-level indexes, but,
given the combination of target elements and con-
tent elements specified in some of the topics, a set
of defined components and indexes to those com-
ponents were created also.

As noted above the Cheshire system permits
parts of the document subtree to be treated as

21

Name Description | Contents | | Name | Description | Contents
docno Digital Object ID //doi COMP_SECTION | Sections / [sec
pauthor Author Names //fm/au/snm COMP_BIB Bib Entries | //bib/bibl/bb
//fm/au/fnm COMP_PARAS Paragraphs | //ilrj|//ipl|//ip2]|
title Article Title //fm/tig/atl //ip3|//ip4|/ /ip5|
topic Content Words //fm/tig/atl //item-none|//p|
/ /abs //011//2/ /03|
//bdy //tmath|//tf
//bibl/bb/atl COMP_FIG Figures //fig
//app
date Date of Publication //hdr2/yr Table 2: Cheshire Components for INEX
journal Journal Title //hdrl/ti
kwd Article Keywords //kwd
abstract Article Abstract //abs Component
author_seq | Author Seq. é@ /fm/an or Name Description Contents
sequence
bib_author | Bib Author Forename | //bb/au/fnm COMP_SECTION - -
nm sec_title Section Title //sec/st
bib_author | Bib Author Surname | //bb/au/snm sec_words Section Words [[sec
snm COMP_BIB
fig Figure Contents //fig bib_author Bib. Author //au
ack Acknowledgements //ack bib_title Bib. Title //at]
alltitles All Title Elements //atl, / /st bib_date Bib. Date //pdt/yr
affil Author Affiliations //fm/aff COMP_PARAS
fno IEEE Article ID //fno para-words Paragraph Words | *{
COMP_FIG
Table 1: Cheshire Article-Level Indexes for INEX fig_caption Figure Caption //fec

separated documents with their own separate in-
dexes. Tables 2 & 3 describe the XML compo-
nents created for INEX and the component-level
indexes that were created for them.

Table 2 shows the components and the path
used to define them. The COMP_SECTION com-
ponent consists of each identified section (<sec>

. </sec>) in all of the documents, permitting
each individual section of a article to be retrieved
separately. Similarly, each of the COMP_BIB,
COMP_PARAS, and COMP_FIG components,
respectively, treat each bibliographic reference
(<bb> ... </bb>), paragraph (with all of the al-
ternative paragraph elements shown in Table 2),
and figure (<fig> ... </fig>) as individual doc-
uments that can be retrieved separately from the
entire document.

Table 3 describes the XML component in-
dexes created for the components described in
Table 2. These indexes make individual sections
(COMP_SECTION) of the INEX documents re-
trievable by their titles, or by any terms occurring
in the section. Bibliographic references in the ar-
ticles (COMP_BIB) are made accessible by the
author names, titles, and publication date of the
individual bibliographic entry. Individual para-

Table 3: Cheshire Component Indexes for INEX

tIncludes all subelements of paragraph elements.

graphs (COMP_PARAS) are searchable by any
of the terms in the paragraph, and individual fig-
ures (COMP_FIG) are indexed by their captions.

All of these indexes and components were used
during Berkeley’s search evaluation runs of the 60
INEX topics. The runs and scripts used in INEX
are described in the next section.

3.2 The INEX Search Approach

Berkeley submitted three retrieval runs for INEX.
This section will describe the general approach
taken in creating the queries submitted against
the INEX database and the scripts used to do
the submission. Then the differences between
the three runs will be examined, including the
handling of some special cases where the default
query processing provided by the scripts did not
appear to provide effective results.

22

3.2.1 General Script structure and con-
tents

As noted in the overview of Cheshire II features,
all of the Cheshire client programs are scriptable
using Tcl or Python. For the INEX test runs
we created scripts in the Tcl language that, in
general, implemented the following sequence of
operations:

1. Read and parse topics

2. Extract search elements and generate queries

(a) Extract topic-id, query type , title (iden-
tifying content words (<cw>), content
elements (<ce>), and target elements
(<te>)), description, narrative, and key-
words, concatenating multi-line elements
and store for each topic.

(b) Duplicate British spellings in queries to in-
clude both British and U.S. spelling (e.g.
“colour” becomes “colour color”).

(c) Based on the query type (CO or CAS):

i. For CO-type queries, construct 7
queries (runl and run3) or 5 queries
(run2) that include:

A. Boolean search of topic index for
all terms from query title and key-
words (runl and run3).

B. Probabilistic search of topic index
for all terms from query title and
keywords (runl and run3).

C. Probabilistic search of kwd index
for all terms from query title and
keywords (all runs).

D. Probabilistic search of abstract
index for all terms from query ti-
tle and keywords (all runs).

E. Probabilistic search of title index
for all terms from query title and
keywords (all runs).

F. Probabilistic search of alltitles in-
dex for all terms from query title
and keywords (all runs).

G. Boolean search of alltitles index
for all terms from query title (all
runs).

ii. For CAS-type queries, construct all of
the CO queries as in A-G above, but
only for the keywords, then...

A. For each content element (<ce>)
specified in the title of query con-
struct both a probabilistic query
and a boolean query of the index
matching that content element,
using the content words (<cw>)
specified in the topic title for that
content element.

iii. Construct extra or alternate queries
for special cases (see below).

3. Submit queries and capture resultsets

(a) Each query constructed in the previous
step is submitted to the system, and the
resultsets with one or more matching doc-
uments are stored.

(b) All stored resultsets are combined using
the resultset SORT/MERGE facility (dis-
cussed above), resulting in a single ranked
list of the top-ranked 100 documents.

(c) The requested document elements (<te>)
are extracted from the top-ranked docu-
ments.

4. Convert resultsets to INEX result format. (E.g.,
extract matching element XPath’s, ranks, and
document file ids from top-ranked results and
output the INEX XML result format for each)

3.2.2 Fusion Search and INEX Retrieval

As noted above, our INEX runs used Cheshire’s
Fusion Search facility in merging the result sets
from multiple searches of different indexes. In
the case of Berkeley’s INEX runs, this typically
involved between 7 and 14 separate queries of the
system that were then combined using the fusion
search facility to determine the final ranking of
the documents or components.

The primary reason for this approach was
largely to take advantage of more precise search
matches (e.g. Boolean title searches) when they
are possible for a given query, yet to permit the
enhanced recall that probabilistic queries provide.
As described in the earlier section on Chesh-
ire search, when the same documents, or docu-
ment components, have been retrieved in differ-
ing searches, their final ranking value is based on
combining the weights from each of the source
resultsets. Therefore, a document that matches
multiple searches will typically end up with a
higher final rank than a document that matches
fewer of the individual searches.

Thus, the goal in the search approach used in
all of Berkeley’s entries for INEX has been to try
to achieve a good level of precision, without sac-
rificing too much recall.

3.2.3 Special Case handling

In reviewing the INEX topics, it was obvious
that some of them would require special han-
dling, because of unusual result requirements
(e.g. topic #14 specifies that figures are to be re-
trieval along with paragraphs describing the fig-
ure). Others required special handling because
of Boolean constraints on the requested results,

23

unfortunately with inconsistent syntax for spec-
ifying those constraints (e.g. Topic #9 specifies
that calendars are NOT to be retrieved by using
“<ew> -calendar </cw> <ce> tig/atl </ce>”
while Topic #17 uses “<cw>not(W. Bruce Croft)
<Jew> <ce> fm/au </ce>” for the same type
of constraint.

In these situations special handling of the
queries to apply the appropriate constraints was
carried out by the run scripts for the Berkeley
runs. The topics that were handled in this way
were numbers 02, 04, 07, 09, 12, 16, 17, 20, 26, 27
and 30. All other queries were handled without
special processing.

4 Evaluation

INEX involved assessments of the submitted re-
sults of each participating group on two (separate
though related) dimensions. The dimensions were
relevance (assessed on an integer scale of 0-3 with
0 being nonrelevant, 1 being passing mention of
the topic, 2 being partially relevant, and 3 be-
ing completely relevant) and coverage (with the
four possible values: E for exact desired coverage
by the retrieved element, L if a retrieved element
was too large or included too much extraneous
information, S if it was too small or incomplete
desired coverage, and N for no coverage. Obvi-
ously not all combinations of these were sensible
(or permitted).

For the calculation of the Recall and Precision
analogs used for INEX, two different quantiza-
tions of these two dimensions were used:

Fotriot(Tel, cov) = 1 if rel =3 and cov = E
strictiTEh "1 0 otherwise

and
1.00 if 3E
0.75 if 2E,3L,3S
foeneratizea(rel,cov) := < 050 if 1E,2L,2S
025 if 1S,1L
0.00 if ON

The “strict” quantization is intended to be sim-
ilar to the relevance assessments used in other
IR evaluations. (One could argue, however, that
a closer approximation to most relevance judge-
ments might be to consider any full document
containing a 3 as “relevant”, and possibly some
of the 2’s).

Figure 1 and Figure 2 show, respectively the
Recall/Precision curves for the CAS and CO re-
sults of the three submitted Berkeley runs, un-
der both quantizations. The only run appear-
ing among the top 10 (when compared to other

INEX 2002: Berkeley All Runs

quantization: both

01 CAS strict (av. precision 0.093) -
02 CAS strict (av. precision 0.107) ~ =~~~
0.8 [03 CAS strict (av. precision 0.193)
01 CAS gen (av. precision 0.060) - =-"
02 CAS gen (av. precision 0.077) ————===
03 CAS gen (av. precision 0.156) —————

0.6

Precision

Figure 1: Berkeley CAS Runs

INEX 2002: Berkeley CO Runs

quantization: both

01 CO gen. (av. precision 0.021)
02 CO gen. (av. precision 0.033) —— =~
08 03 CO gen. (av. precision 0.019) -~
01 CO strict (av. precision 0.012)

02 CO strict (av. precision 0.039)

0.6 03 CO strict (av. precision 0.011) -~~~

Precision

0.4

0.5 1
Recall

Figure 2: Berkeley CO Runs

participants) of the 4 quantization/type sets was
Berkeley03 CAS run under strict quantization.
The other runs seem to consistently fall near the
median point for all of the participant runs. Cu-
riously, and seemingly impossible from the defi-
nitions of “strict” and “generalized” quantization
used in the official evaluation, in all of our runs
the strict results were better than the generalized
results for the same runs.

Needless to say, we had hoped for a better re-
sult and conducted some analyses to attempt to
determine which factors of the current approach
might yield better results. One of the obvious
things to check was if errors had been made in
the processing of queries, and this did turn out
to be the case in some of queries. This bug was in
the script that converted the results to the INEX
submission format, not in retrieval itself, where
only the first occurrence of component retrieved

24

for some of the queries was converted to an en-
try for the submission (this was most signicant in
one query where all of the relevant components
were in a single article). It was also found that
Fusion Searches were apparently not correctly ac-
cumulating scores for each component search in
some cases (this is still being analyzed to deter-
mine exactly where it is failing). Another obvious
failure was to submit only article-level results for
CO searches, instead of a mixture of articles and
components.

In the analysis we have found that in the
CO queries (while maintaining article-level re-
sults only) any individual type of probabilistic
search, as described above for each of the compo-
nents of the Fusion Search, does not achieve the
effectiveness of the Fusion approach. It was also
found (probably due to the Fusion Search bug de-
scribed above) that Fusion Searches with fewer
searches than the submitted runs often could
achieve higher effectiveness.

5 Conclusion

The INEX evaluation has proven very interesting,
particularly as the first evaluation Cheshire’s Fu-
sion Search approach in a formal IR evaluation.
As the above discussion shows, there remains con-
siderable room for improvement of our results,
but there also seems to be a fairly clear path for
seeking those improvements. Specifically, we are
planning to fix the identified bugs, to conduct fur-
ther analyses to determine the optimal mixture of
search elements to employ in Fusion Search, and
to investigate some alternate approaches and im-
plementation strategies for this retrieval method.

In addition we are planning to conduct ex-
periments in adapting the regression approach
to multivalued relevance criteria using the INEX
test collection. The logistic regression equations
that we used in this INEX evaluation were pred-
icated on binary relevance judgements at the ar-
ticle level and not on component retrieval at the
with relevance and coverage scales.

6 Acknowledgments

This work was supported in part by the National
Science Foundation and Joint Information Sys-
tems Committee(U.K) under NSF International
Digital Libraries Program award #11S-9975164.

References

[10]

25

[1] W. S. Cooper, A. Chen, and F. C. Gey. Ex-
periments in the probabilistic retrieval of full
text documents. In D. K. Harman, editor,
Overview of the Third Text Retrieval Conference
(TREC-8): (NIST Special Publication 500-225),
Gaithersburg, MD, 1994. National Institute of
Standards and Technology.

[2] W. S. Cooper, F. C. Gey, and A. Chen. Full
text retrieval based on a probabilistic equation
with coefficients fitted by logistic regression. In
D. K. Harman, editor, The Second Text Retrieval
Conference (TREC-2) (NIST Special Publica-
tion 500-215), pages 5766, Gaithersburg, MD,
1994. National Institute of Standards and Tech-
nology.

[3] W. S. Cooper, F. C. Gey, and D. P. Dab-
ney. Probabilistic retrieval based on staged
logistic regression. In 15th Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, Copen-
hagen, Denmark, June 21-24, pages 198-210,
New York, 1992. ACM.

[4] M. A. Hearst. Improving full-text precision on
short queries using simple constraints. In Pro-
ceedings of SDAIR ’96, Las Vegas, NV, April
1996, pages 59-68, Las Vegas, 1996. University
of Nevada, Las Vegas.

[6] R. R. Larson and J. McDonough. Cheshire
II at TREC 6: Interactive probabilistic retrie-
val. In D. Harman and E. Voorhees, editors,
TREC 6 Proceedings (Notebook), pages 405—415,
Gaithersburg, MD, 1997. National Institute of
Standards and Technology.

[6] R. R. Larson, J. McDonough, P. O’Leary,
L. Kuntz, and R. Moon. Cheshire II: Design-
ing a next-generation online catalog. Journal of
the American Society for Information Science,
47(7):555-567, July 1996.

[7] J. K. Ousterhout. Tel and the Tk Toolkit.
Addison-Wesley, Reading, Mass., 1994.

[8] M. Porter and V. Galpin. Relevance feedback in
a public access catalogue for a research library:
Muscat at the scott polar research institute. Pro-
gram, 22:1-20, 1988.

[9] H. Turtle and W. B. Croft. Inference networks
for document retrieval. In J.-L. Vidick, editor,
Proceedings of the 13th International Conference
on Research and Development in Information
Retrieval, pages 1-24, New York, 1990. Associa-
tion for Computing Machinery, ACM.

A. 739.50-1995. Information Retrieval (289.50):
Application Service Definition and Protocol
Specification (ANSI/NISO Z39.50-1995). NISO,
Bethesda, MD, 1995.

Content-oriented XML retrieval with HYyREX

Mohammad Abolhassani
Norbert Fuhr Kai Gro3johann
University of Duisburg-Essen
Germany

Norbert Govert
University of Dortmund
Germany

goevert@Is6.cs.uni-dortmund.de
{mohasani, fuhr,kait@is.informatik.uni-duisburg.de

1 Introduction

The eXtensibleMarkupLanguage (XML[ﬂis the emerging standard for representing knowledge in almost arbitrary
applications. At least almost every kind of knowledge can be represented in XML. The major purpose of XML
markup is the explicit representation of the logical structure of a document. From an information retrieval (IR) point
of view, users should benefit from the structural information inherent in XML documentsXWhel nformation
RetrievalQuery Language (XIRQL)[[Fuhr & GroR3johann [01, Fuhr & Grof3johann 02] has been developed to serve
this purpose. XIRQL extends the XPath [Clark & DeRosé 99] part of the (proposed standard) query language
XQuery [Chamberlin et al. 01] by features important in IR style applications.

For instance, IR research has shown that document term weighting as well as query term weighting are crucial
concepts for effective information retrieval. XIRQL allows for term weighting with regard to the components
of the documents’ logical structure. This is used for implementing the retrieval paradigm suggested by the FERMI
multimedia model for IR/[Chiaramella et al. |96]: Instead of treating documents as atomic units, we aim at retrieving
those documentomponentgelements) which answer a given information need inriast specifiavay. This
strategy is used to process thentent-only (CO}opics provided within th@Nitiative for the Evaluation of XML
retrieval INEXP}, where no structural conditions are used within the queries.

Given the logical structure inherent to XML documents, users want to pose queries not only on content but also
on the structure of the documents. The INE&htent-and-structure (CA$pics reflect that. As an extension of
XPath, the XIRQL query language is capable of processing these queries.

The Hyper-mediaRetrieval Engine forXML (HyREX)E] [Abolhassani et al. 02] provides an implementation of
the XIRQL query language. In the following we describe its implementation with regard to processing the INEX
CO and CAS topics. In Secti¢n 2 we show how ranking of most specific document components is done in HyREX,
thus serving for processing the content-only topics. Seffion 3 details the algorithms used to produce such a ranking
of document components while Sectjdn 4 displays the evaluation results of our approach.

Section[shows how XIRQL concepts are used in order to process the CAS topics. In addition we give a
brief overview on the concepts of data types and vague predicates which can lead to high precision searches, in
combination with structural retrieval. A conclusion and an outlook on further research is given in $gction 6.

2 Weighting and ranking

Classical IR models treat documents as atomic units, whereas XML suggests a tree-like view on documents. Given
an information need without structural constraints, the FERMI multimedia model far IR [Chiaramella et al. 96]

Thttp://www.w3c.org/XML/
Zhttp://gmir.dcs.gmw.ac.uk/INEX/
Shttp://www.is.informatik.uni-duisburg.de/projects/hyrex/

26

goevert@ls6.cs.uni-dortmund.de
{mohasani,fuhr,kai}@is.informatik.uni-duisburg.de
http://www.w3c.org/XML/
http://qmir.dcs.qmw.ac.uk/INEX/
http://qmir.dcs.qmw.ac.uk/INEX/
http://www.is.informatik.uni-duisburg.de/projects/hyrex/
http://www.w3c.org/XML/
http://qmir.dcs.qmw.ac.uk/INEX/
http://www.is.informatik.uni-duisburg.de/projects/hyrex/

suggests that a system should always retrieve those document components (elements) which answer the information
need in themost specifiovay.

This retrieval strategy has been implemented in HyREX in order to process the INEX content-only topics. Here
we outline how classical weighting formulas (for plain document retrieval) can be generalised for structured docu-
ment retrieval. Further details can be found in [Fuhr & Grof3johann 01]/and [Fuhr & Grol3johann 02].

In analogy to the traditional plain documents, we first have to define the “atomic” units within structured docu-
ments. Such a definition serves two purposes:

e Forrelevance-oriented search, where no type of result element is specified, these units are the retrievable units.
They provide a context within a document which can serve as a meaningful answer to a user’s information
need.

e Given these units, we can apply for example some kind ofdf formula for term weighting.

We start from the observation that text is contained in the leaf nodes of the XML tree only. These leaves would be
an obvious choice as atomic units. However, this structure may be too fine-grained (e. g. markup of each itemin an
enumeration list, or markup of a single word in order to emphasise it). A more appropriate solution is based on the
concept ofindex nodesrom the FERMI multimedia model: Given a hierarchic document structure, only nodes of
specific types form the roots of index nodes. In the case of XML, this means that the database administrator has to
specify the names of the elements that are to be treated as index nodes.

From the weighting point of view, index nodes should be disjoint, such that each term occurrence is considered
only once. On the other hand, we should allow for retrieval of results of different granularity: For very specific
queries, a single paragraph may contain the right answer, whereas more general questions could be answered best
by returning a whole chapter of a book. Thus, nesting of index nodes should be possible. In order to combine these
two views, we first start with the most specific index nodes. For the higher-level index nodes comprising other index
nodes, only the text that is not contained within the other index nodes is indexed. Using this notion of index nodes
an index node tree structure is induced onto the documents. As an example, assume that we hawsediéfined
chapter andbookelements as index nodes; the corresponding disjoint text units are marked as dashed boxes in the
example document tree in Figyre 1.

John Smith

We describe |
syntax of XQL |i

XML Retrieval

=
m
x
QO
3
=3
@
12}
~—
—
(%]
<
=
)
3
~—

Figure 1: Example XML document tree with index nodes atttbet , chapter , andsection levels.

Thus we have a method for computing term weights and we can do relevance-oriented search. For this, we must
be able to retrieve index nodes at all levels. The indexing weights of terms within the most specific index nodes
are given directly. For retrieval of the higher-level objects, we have to consider that their content is made up by
the content of the index node under consideration plus the content of the descendent index nodes. Therefore, for a
given index node its term weights have to be combined with the term weights of the descendant index nodes. For
example, assume the following document structure, where we list the weighted terms instead of the original text:

<chapter> 0.3 XQL
<section> 0.5 example </section>
<section> 0.8 XQL 0.7 syntax </section>
</chapter>

27

A straightforward possibility would be the OR-combination of the different weights for a single term. However,
searching for the term ‘XQL' in this example would retrieve the whole chapter in the top rank, whereas the second
section would be given a lower weight. It can easily be shown that this strategy always assigns the highest weight
to the most general element. This result contradicts the structured document retrieval principle mentioned before.
Thus, we adopt the concept afigmentatiorfrom [Fuhr et al. 98]. For this purpose, index term weights are down
weighted (multiplied by an augmentation factor) when they are propagated upwards to the next index node. In our
example, using an augmentation factor of 0.6, the retrieval weight of the chapter w.r.t. to the query ‘XQL' would
be0.3+0.6-0.8—-0.3-0.6-0.8 = 0.596, thus ranking the section ahead of the chapter.

3 Retrieval algorithm

For doing relevance-oriented searches, the XIRQL query language defines the respective relevance selection opera-
tor ‘inode() ’and the relevance projection operatar * . However, in our INEX experiments we bypassed the
XIRQL logical layer and directly accessed HyREX’s physical layer in order to develop an efficient retrieval strategy
for processing the INEX content-only topics.

The parallel algorithm which is described in the following, uses direct access to the inverted lists of the query
terms in a given topic. As a prerequisite for the algorithm it is assumed that the inverted lists contain all the details
necessary to describe a term occurrence for our index node retrieval approach:

Index node identifier: Each index node is assigned an ID during indexing.

Index node description: An index node is described by a path, beginning from the document root to the index
node itself. The path contains the index node identifiers of all the index nodes of which borders are crossed,
together with their respective augmentation factor.

Weight: This is the indexing weight for the given term within the index node represented.

Furthermore it is assumed that the entries in the inverted lists are ordered by document identifiers on the first level,
and preordering of the index nodes (as they appear in the documents) on the second level.

Given that, the algorithm processes the occurrence descriptions within the various inverted lists until all of them
are read. Due to the ordering in which the occurrence descriptions are read from the inverted lists, we reach
that retrieval status value (RSV) computation for a given index node can be finished as early as possible. The
read_term method observes the inverted lists beginning at their head and delivers the occurrence description
from all of the inverted lists which is next according to the ordering scheme described above:

readterm() : inode_id, inode_path, augmentation, term, weight
Method that implements a priority queue for the candidate set of occurrence descriptions to be processed
next; these are read directly from the inverted lists of the query terms.

inode_path[] Array variable that lists the index node ids which make up the path from the document root towards
the index node considered.

augmentation[[] Array variable that lists the augmentation factors belonging to the index nodes represented by
theinode_path array.

term Identifier of the inverted list from which the current occurrence description is read.

weight Term weight within the index node referencedibgde_id

Within the outer loop of the algorithm occurrence descriptions for all of the query terms are read until all the
respective inverted lists are processed:

while (inode_id, inode_path, augmentation, term, weight) = readterm() do
level = length inode_path

od

28

Figure[2 displays the inner part of the loop. First, it is checked whether there are index nodes, for which all
information for computation of the RSV is available. Where this is the case, the RSV is computed and the index
node is pushed into the set of result candidates for the ranking. The following variables are needed for this:

gterm_weights[t] Array variable which lists the query term weights.
cumulated_weights[[, t] Matrix variable for cumulated index weights foquery terms at index node levels.
lastlevel Level of the index node which has been processed in the previous iterationvalfiee loop.

lastnodes[lastlevel] Array variable representing the path of index nodes leading to the index node which has
been processed in the previous iteration ofittnée loop.

add_result(inode_id, weight) Method to add an index node together with its respective RSV to the set of result
candidates.

Before applying the retrieval function to an index node the contribution of the descendent index objects within
the path represented tgstnodes to the term weights needs to be computed. The term weights are propagated
beginning from the leaf itastnodes ; at each index node border they are reduced by means of an augmentation
factor given for the specific index object. After an index object is processed this way the respective term weights in
thecumulated_weights matrix is reset.

When the RSVs for the index nodes finished have been processed this wagttioeles vector is set to the
path to the current index object under consideration. The weight of the term under consideration is stored within
thecumulated_weights matrix.

for j = 0 to min(level, lastlevel) do
I/l check if some index nodes are finished
if lastnodes|j] <> inodes]j] then
I/l compute RSVs for finished index nodes
for i = lastlevel downto j do
/I apply linear retrieval function (scalar value)
rsv = cumulated_weights[i] * gterm_weights
add_result(lastnode[i], rsv)
/I propagate term weights towards the root
if i > 1 then
cumulated_weights[i - 1] = cumulated_weights[i - 1]
| augmentation[i] & cumulated_weights]i]
fi
/I reset cumulated weights
cumulated_weights[i] = 0

od
last /I exit loop
fi
od
lastnodes = inodes
lastlevel = level

/I store weight of occurrence for current term
cumulated_weights[level, term] = weight

Figure 2: Parallel algorithm for processing content-only topics

After all occurrence descriptions are processed, the result can be delivered to the user. If there is a maximum
numbern of result items to be retrieved (for INEX this was 100), #uel_result method can use a heap structure
for selecting the: top ranking elements from the set of all index nodes processed.

The algorithm described here is efficient in terms of memory usage. By processing the inverted lists in parallel we
achieve that retrieval status values for an index node once touched can be computed as early as possible. It follows
that the number of accumulators for intermediary results is bounded by the maximum level an index node can have.

29

An alternative algorithm which processes the inverted lists sequentially would not be able to compute the final
retrieval status values until all inverted lists are read. Thus it would have to allocate accumulators for all index nodes
ever touched within the inverted lists of the query terms.

4 Evaluation of effectiveness

One of the results of the first INEX workshop 2002 has been the definition of a metrics for evaluation of the
effectiveness of content-oriented XML retrieval approaches [Gévert & Kazai 03]. This metrics, based on the notion
of recall and precision, has been used here for evaluation, together with the relevance assessments package version
1.7 (available from the INEX {down,up}load af8a

Our focus has been on experimenting with different augmentation factors when doing the relevance-oriented
retrieval described in Sectign) 2. Figure 3 show the recall/ precision curves for six different augmentation factors
from 0.0 to 1.0, step 0.2. For each plot the top 100 results from the rankings have been accounted for. From the

graphs one can see that small augmentation factors in the range from 0.2 to 0.4 should be used for most effective
content-oriented XML retrieval.

quantization: strict quantisation: generalised
factor 0.0 (av. precision 0.050) factor 0.0 (av. precision 0.053)
0.8 r factor 0.2 (av. precision 0.095) 0.8 r factor 0.2 (av. precision 0.072)
factor 0.4 (av. precision 0.076) - factor 0.4 (av. precision 0.069) -
factor 0.6 (av. precision 0.066) factor 0.6 (av. precision 0.066)
= 06 | factor 0.8 (av. precision 0.058) - = 0.6 k factor 0.8 (av. precision 0.060) -
g ’ “ factor 1.0 (av. precision 0.050) =--='===- g ’ ?‘ factor 1.0 (av. precision 0.055) =-====-
S ' S H
(9} [0) 5
— — \%
o o 04 %
0.2
aintryy, - O L5 ""'E'W:!‘.'!N ———
0 0.5 1 0 0.5 1
Recall Recall

Figure 3: Recall/ precision curves for different augmentation factors (content-only topics).

5 XIRQL: Processing content-and-structure topics

The XIRQL query language can be used to query on structured document collections using aodtnictural
conditions. Given a fine-grained markup of XML documents, a mapping of the elements to specific data types (e. g.
person names, dates, technical measurement values, names of geographic regions) can be done. For these data types
special search predicates are provided, most of which are vague (e. g. phonetic similarity of names, approximate
matching of dates, closeness of geographic locations). The concept of data types and vague search predicates [Fuhr
99] can thus be used to enhance the precision of a given information need.

These features have been used to process the INEX content-and-structure topics. For this, the CAS topics have
been converted to XIRQL in a fully automatic way and then have been processed with HYREX. As an example,
topic 24 is displayed in Figurg] 4. Figuré 5 shows the result of its conversion into XIRQL syntax. The topic is
about retrieval of articles, thus the respective XPath expregsitiole starts the query. The further constraints
are specified by filters which combine various conditions via weighted sum operators. The set of conditions in the
first weighted sum results from the structural conditions within the title section of the original topic. For different
elements specific search predicates are applied (phonetic similarity on author names and stemmed search for other
query terms). The second set of conditions results from the query terms in the description and keywords section of

4http://Is6-www.cs.uni-dortmund.de/ir/projects/inex/download/

30

http://ls6-www.cs.uni-dortmund.de/ir/projects/inex/download/
http://ls6-www.cs.uni-dortmund.de/ir/projects/inex/download/

<INEX-Topic topic-id="24" query-type="CAS">

<Title>
<te>article</te>
<cw>Smith Jones</cw> <ce>au</ce>
<cw>software engineering and process improvement</cw> <ce>bdy</ce>
</Title>

<Description>
Find articles about software process improvement by the programming industry
that are written by an author we believe is named either Smith or Jones.
</Description>
<Narrative>
Only documents about software engineering written by Capers Jones are relevant.
</Narrative>
<Keywords>
Smith Jones software engineering and process improvement programming
</Keywords>
</INEX-Topic>

Figure 4: CAS topic 24 in XML format

topic 24. We use relevance-oriented search for them, so that documents where all terms are in the same index node
are boosted. The figures in front of the various conditions denote the (hon-normalised) query term weights (the
weighted sum operator normalises these weights internally). Some CAS topics include phrases which are emulated
by requiring all terms to be in the same text node. For example, one component of the weighted sum could be as
follows:

Jlau//#PCDATA[. $soundex$ "John" and . $soundex$ "Smith"]

The “/#PCDATA " part in the structural conditions is required for implementation-related reasons.

6 Conclusion

We have shown how HyREX has been utilised to process the INEX tasks. For dealing with the content-only topics
an algorithm based on the notion of index nodes and augmentation of index term weights has been developed. The
XIRQL query language has been used to process the content-and-structure topics.

A first evaluation could show how index term weights can be augmented for effective content-oriented XML
retrieval. For further improvements alternative approaches for selecting appropriate augmentation factors are to
be tested. In principle, augmentation factors may need to be different for each index node. A good compromise
between these specific weights and a single global weight may be the definition of type-specific weights, i.e. de-
pending on the name of the index node root element. The optimum choice between these possibilities will be
subject to theoretical and empirical investigations. Another way to derive augmentation factors could be based on
information about the size of index nodes and the number of siblings and children. Finally, having relevance assess-
ments for structured document retrieval now, one could even think of relevance feedback methods for estimating
the augmentation factors. Further research will go into that direction.

Another issue is efficiency. In this article we describe an algorithm that uses all information from the inverted
lists in order to compute RSVs. In order to become more efficient one can think of variants which terminate earlier.
Here, the trade-off between efficiency and effectiveness has to be considered.

References

Abolhassani, M.; Fuhr, N.; Govert, N.; Gro3johann, K. (2002). HyREX: Hypermedia Retrieval Engine for
XML. Research report, University of Dortmund, Department of Computer Science, Dortmund, Germany.

Chamberlin, D.; Florescu, D.; Robie, J.; Siméon, J.; Stefanescu, M(2001). XQuery: A Query Language for
XML. Technical report, World Wide Web Consortium.

31

[article[
wsum(
1, ./lau//#PCDATA $soundex$ "Jones",

1, ./lau//#PCDATA $soundex$ "Smith",

1, ./Ibdy//#PCDATA $stemen$ “engineering",

1, ./Ibdy//#PCDATA $stemen$ "improvement",

1, .//bdy//#PCDATA $stemen$ "process”,

1, ./Ibdy//#PCDATA $stemen$ "software"
N/Fwsum(

1, $stemen$ "Find",

2, $stemen$ “"Jones",

2, $stemen$ "Smith",

1, $stemen$ “articles”,

1, $stemen$ “author”,

1, $stemen$ "believe",

1, . $stemen$ "engineering",

2, . $stemen$ “improvement”,

1, $stemen$ “industry”,

1, . $stemen$ "named",

2, $stemen$ “process”,

2, $stemen$ “programming”,

2, . $stemen$ “software”,

1, $stemen$ "written")]

Figure 5: CAS topic 24 in XIRQL syntax

Chiaramella, Y.; Mulhem, P.; Fourel, F. (1996).A Model for Multimedia Information Retrievalechnical report,
FERMI ESPRIT BRA 8134, University of Glasgow.

Clark, J.; DeRose, S. (1999). XML Path Language (XPath) Version 1.0echnical report, World Wide Web
Consortium.

Fuhr, N.; Gro3johann, K. (2001). XIRQL: A Query Language for Information Retrieval in XML Documents. In:
Croft, W.; Harper, D.; Kraft, D.; Zobel, J. (eds.Proceedings of the 24th Annual International Conference on
Research and development in Information Retrigpafies 172—-180. ACM, New York.

Fuhr, N.; Gro3johann, K. (2002). XIRQL: An XML Query Language Based on Information Retrieval Concepts
Submitted.

Fuhr, N. (1999). Towards Data Abstraction in Networked Information Retrieval Systerfamation Processing
and Management 35(2pages 101-119.

Fuhr, N.; Govert, N.; Rolleke, T. (1998). DOLORES: A System for Logic-Based Retrieval of Multimedia
Objects. In: Croft, W. B.; Moffat, A.; van Rijsbergen, C. J.; Wilkinson, R.; Zobel, J. (ed&9ceedings of
the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
pages 257-265. ACM, New York.

Govert, N.; Kazai, G. (2003). Overview of the Initiative for the Evaluation of XML retrieval (INEX) 2002.
In: Fuhr, N.; Govert, N.; Kazai, G.; Lalmas, M. (edsliitiative for the Evaluation of XML Retrieval (INEX).
Proceedings of the First INEX Workshop. Dagstuhl, Germany, December 8-11, 2R@IM Workshop Pro-
ceedings. ERCIM, Sophia Antipolis, France.

32

Language Models and Structured Document Retrieval

Paul Ogilvie, Jamie Callan
Carnegie Mellon University
Pittsburgh, PA USA

{pto,callan}@cs.cmu.edu

ABSTRACT

We discuss possibilities for the use of language
moddls in structured document retrieval. We use a
tree-based generative language mode for ranking
documents and components. Nodes in the tree
correspond to document components such as titles,
sections, and paragraphs. At each node in the
document tree, there is a language modd. The
language model for a leaf node is estimated directly
from the text present in the document component
associated with the node. Inner nodesin thetree are
estimated using a linear interpolation among the
children nodes. This paper also describes how some
common structural queries would be satisfied within
this model.

1. INTRODUCTION

With the growth of XML, there has been increasing
interest in studying structured document retrieval.
XML provides a standard for structured-document
markup, and is increasingly being used. With the
spread in the availability of structured documents, it
is increasingly unclear whether the standard
information retrieval algorithms are appropriate for
retrieval on structured documents.

In this paper, we discuss how the generative
language modd approach to information retrieval
could be extended to model and support queries on
structured documents. We propose a tree-based
language model to represent a structured document
and its components. This structure is similar to
many previous modds for structured document
retrieval [4][5][6][8][9][11], but differs in that
language modeling provides some guidance in
combining information from nodes in the tree and
estimating term weights. The approach presented in
this paper allows for structured queries and allows
ranking of document components. It also matches
some of our intuitions about coverage, which we
discussin Section 4.3.

The rest of the paper is structured as follows.
Section 2 provides background in language
modding in information retrieval. In Section 3 we
present our approach to modeing structured
documents. Section 4 describes querying the tree-
based language models presented in the previous
section. In Section 5 we briefly discuss parameter
training. We discuss rdationships to other

approaches to structured document retrieval in
Section 6, and Section 7 concludes the paper.

2. BACKGROUND IN LANGUAGE
MODELS FOR DOCUMENT
RETRIEVAL

Language modeling was developed by the speech
recognition community as a means of estimating the
probability of a word sequence (such as a sentence)
given a sequence of phonemes recognized from an
audio signal. The speech recognition community
has developed sophisticated methods for estimating
these probabilities. Their most important
contributions to the use of language models in
information retrieval are smoothing and methods for
combining language models.

In information retrieval, documents and sometimes
queries are represented using language models.
These are typically unigram language models, which
are much like bags-of-words, where word order is
ignored. The unigram language model specifically
estimates the probability of a word given a chunk of
text. It isa“unigram” language model because it
ignores word order. Document ranking is done one
of two ways. by measuring how much a query
language model diverges from document language
models [10][12], or by estimating the probability
that each document generated the query string
[13][7][14][15].

2.1 Kullback-Leibler Divergence
The first method ranks by the negative of the
Kullback-Leibler (KL) divergence of the query from
each document [10]:

Plwoo)

-clolts) =-3phpohoagiee
0 zW;P(MeQ)Imp(MGD)

where 6, isthe language mode estimated from the
document, 0, isthe language model estimated from
the query, and P(e) estimates the probability of the
word w given the language modd 6. The P(vvleQ)

within the log can be dropped in ranking because it
is a constant with respect to the query. Documents

33

where the query’'s model diverges less from the
document’s model are ranked higher.

2.2 The Generative Language M odel

The generative method ranks documents by directly
estimating the probability of the query using the
documents’ language models [13][7][14][15]:

P(QIGD) = |_| P(\/;46D)

WOI(Gy 10 -Gy

0 ZIog)P(w]GD)

WOI(l 0 -G

where Q = (qu,0,...,0n) iS the query string.
Documents more likdly to have produced the query
are ranked higher. Under the assumptions that
query terms are generated independently and that
the query language model used in KL-divergence is
the maximum-likelihood estimate, the generative
model and KL divergence produce the same
rankings [12].

2.3 The Maximum-Likelihood Estimate

of a Language M odel

The most direct way to estimate a language model
given some observed text is to use the maximum-
likedihood estimate, assuming an underlying
multinomial model. In this case, the maximum-
likelihood estimate is also the empirical distribution
or the histogram distribution. An advantage of this
estimate is that it is easy to compute. It is very good
at estimating the probability distribution for the
language model when the size of the observed text is
very large. Itisgiven by:

)= EbeT)

where T is the observed text, count(w;T) is the
number of times the word w occursin T, and [T] is
the length of the text. The maximum likelihood
estimate is not good at estimating low frequency
teems for short texts, as it will assign zero
probability to those words. This creates a serious
problem for estimating document language models
in both KL divergence and generative language
modd approaches to ranking documents, as the log
of zero is negative infinity. The solution to this
problem is smoothing.

2.4 Smoothing

Smoothing is the re-estimation of the probabilitiesin
a language moddl. Smoothing is motivated by the
fact that many of the language models we estimate
are based on a small sample of the “true’ probability
distribution. Smoothing improves the estimates by
leveraging known patterns of word usage in

language and other language models based on larger
samples. In information retrieval smoothing is very
important [15], because the language models tend to
be constructed from very small amounts of text.
How we estimate low probability words can have
large effects on the document scores. In both
approaches to ranking documents, the document
score is a sum of logarithms of the probability of a
word given the document’s moddl. In addition to
the problem of zero probabilities mentioned for
maximum-likelihood estimates, much care is
required if this probability is close to zero. Small
changes in the probability will have large effects on
the logarithm of the probability, in turn having large
effects on the document scores.

The smoothing technique most commonly used is
linear interpolation. Linear interpolation isasimple
approach to combining estimates from different
language models:

P(9) = iZ:/]i P(Wiei)

where k is the number of language models we are
combining, and A is the weight on the model ;.

To ensure that thisis avalid probability distribution,
we must place these constraints on the lambdas:

k
> A =1 andfori<is<k, A 20

i=1

One use of linear interpolation is to smooth a
document’s language modd with a collection
language model. This new mode would then be
used as the smoothed document language moddl in
either the generative or KL-divergence ranking
approach. A specific form of linearly interpolating a
document and a collection language mode is called
Bayesian smoothing using Dirichlet priors[15]. The
document is modeled using maximum likelihood
estimate. 9, is the document language modd, 0, is
the collection language mode, and the linear
interpolation parameters are:

where the parameter u is set according to the
collection and is typically close to the average
document length. This smoothing technique has
been found effective for ad-hoc document retrieval
on several collections[12] [14][15].

3. MODELING STRUCTURED

DOCUMENTS
The previous section described how language
modding is used in unstructured document retrieval.

34

With structured documents such as XML or HTML,
we bdieve that the information contained in the
structure of the document can be used to improve
document retrieval. In order to leverage this
information, we need to model document structurein
the language models.

The method we propose borrows from natura
language processing. Probabilistic context free
grammars (PCFGs) [1] are used to estimate the
probability of parse trees of sentences. A PCFG isa
context free grammar that has a probability
associated with each rule. The probability of a
specific parse tree is the product of the probabilities
of al rules applied in creating the tree. The analogy
we draw from PCFGs to structured documents is that
the structure contained in the document can be
represented as a context free grammar. The parse
tree for the document is given by the structure. For
example, if an XML schema gpecifies that a
document is a title, abstract, and body text, then a
corresponding rulein the grammar would be;

document — title abstract body

Similarly, a partial tree for a document might look
like:

document

_//\
N

sectionl section2 references

Certain nodes, such as title and abstract, would be
designated leaf nodes. In a traditional context-free
grammar, a leaf node would be a word. In this
modd of documents, a leaf node would be a unit of
text that does not have additional structure
embedded in it. A language model for the leaf node
would be estimated from the text.

An important distinction of the document tree
language modd from PCFGs used for parsing
sentences is that we know the tree of the document.
This is given directly by the document structure.
Since we know the structure, it does not make sense
to estimate the probability of arule. Instead, we fed
that we should view the rule as stating that the
language model for the parent node consists of the
language models of the children nodes.

However, in cases where the document structure is
not known, the PCFG analogy is useful. Given a
component recognizer and some training data, one
could estimate a tree for documents. For example,
one could use the existing INEX documents and
corresponding flat text versions of the documents as

a training set for an automatic tagger for computer
science articles.

The example rule given above states that a document
language model consists of a title, an abstract, and a
body language model. We next must specify how to
combine the children language models. We suggest
that linear interpolation is an appropriate method of
combining the children language models. We
believe that the optimal parameters for the linear
interpolations in the rules depend on the task at
hand and on the corpus. Training these parameters
is a difficult problem which we will discuss morein
Section 5.

This model as described assumes that all leaf nodes
contain textual data only. However, it is common to
have non-text data present in a document, such as
dates, numbers, and pictures. As a language model
is a probability distribution over a vocabulary, there
really isn’t anything stopping us from modeling non-
text data in a language mode. Appropriate
smoothing methods for dates and numbers may be
different than for text. For example, we may assume
that a number may be normally distributed and
taking the mean to be the observed value, using
some reasonable estimate of variance. Images may
also be modded in this setting, though the approach
may be more complex. Westerveld [13] proposes a
method modeling images using a Gaussian Mixture
Model, which he argues provides a framework for
combining image retrieval with text-based language
modding. Combining the language models of
mixed field types as prescribed by a rule may seem a
little odd. Here, it may make sense to think of the
interpolation weights as measures of reative
importance. Additionally, we do not have to
explicitly flatten the tree to a single language moddl;
we can preserve the structure in our system and
traverse thetree at query time.

The resulting tree for a given document would have
a language model associated with every node and
weight on the tree branches given by linear
interpolation parameters specified in therules. This
provides a rich description of the document, which
may be used for comparison to queries. The
following section will discuss methods for querying.

4. RANKING THE TREE MODELS

In aretrieval environment for structured documents,
it is desirable to provide support for both structured
queries and unstructured, free-text queries. It is
easier to adapt the generative language modd to
structured documents, so we only consider that
modd in this paper. We will sometimes refer to the
following toy document model:

35

document

V \05
title body
05/ \05

P(bird|title)=1
section 1 section 2
P(dog|sec1)=0.7 P(dog|sec2)=0.3
P(cat|sec1)=0.3 P(cat|sec2)=0.7

In this diagram, we specified the linear interpolation
parameters on the edges. To keep things simple, we
use equal parameters for the interpolation. We also
specified the language models for the leaf nodes. It
issimpler to support unstructured queries, so we will
describe retrieval for them first.

4.1 Unstructured Queries

To rank document components for unstructured
gueries, we can use either traditional language
modeling approach for IR described in Section 2.
For full document retrieval, we need only compute
the probability that the document language model
generated the query. If we wish to return arbitrary
document components, we need to compute the
probability that each component generated the query.

We would probably wish to remove document
components in the ranking where a parent or child
component is present higher in the ranking. This
would prevent returning the same component
multiple times. Other strategies for filtering the
ranking have been proposed. An empirical study
comparing techniques for filtering rankings is
needed.

4.2 Structured Queries

Processing structure queries requires some
adaptation of the language mode retrieval

approaches, as they do not currently alow for
structural constraints. We will work with the
generative language model here, as it is easier to
adapt to structured queries. Following [7], Boolean
style operators can be incorporated as follows:

aAND b: Multiply P(alf) and P(b|6). Thisis the
default operator in the generative
language moddl.

aORb: Add P(@p) and P(bje). This is

interpreted as the probability that the
language model 6 generated either a or
b (or both). This assumes
independence of a and b. Allowing
this only on individual query terms
would fit within the unigram
assumptions in the model. Alternatives

here would be P(al6) + P(b|0) — P(a and
bl6), and (1 - (1 - P(al6))(1 — P(b6))).
Take 1 — P(af). Thisisthe probability
that the model 6 did not generate a.

NOT a

Note that these Boolean operators enforce exact
matches only when the MLE is used and no
smoothing is applied to the leaf nodes. When
smoothing the leaf nodes, the Boolean operators are
soft matches.

There are many structural constraints that could be
supported within this mode, but we will only discuss
how we would support a few constraints. A more
thorough and complete description would be needed
to implement areal system. Some constraints could
be modeled as described below.

A simple constraint on which document components
could be returned would be interpreted literaly. For
instance, if a query specifies the user wishes titles
only to be returned, the system would only rank
document titles.

The next congraint is of the form “return
components of type x where it has component y that
contains the query term w.” We first consider the
constraint where y is a direct descendent of x. An
example is “return documents where the title is
contains the word bird.” This constraint can be
viewed as measuring the probability that the
document language model would generate the word
bird from its tittle model. We observe that the linear
interpolation weights can be viewed as probabilities.
These correspond to the probability that the model
was selected to produce a query term during
generation. Formally, this constraint is given by
P(Wy) - P(y), where P(y) is the linear interpolation
weight for the document component y. For our
example document and query, this would be

P(birdltitle)-P(title) = 1- 0.5
= 0.5.

Constraints that are nested more than one level deep
can be modeled in a similar manner. However,
instead of including only the linear interpolation
weight for the constraint component, we include
each weight in the path of the query constraint.
Consider ranking the query “return documents
where the body's first section contains the word
dog” on our example document. This query would
be ranked according to

P(dog|section 1) - P(section 1) - P(body)
=0.7-05-05
=0.175.

We now have the mechanism to remove the
constraint on which component to return in the

36

previous examples. For the example query “return
components where section 1 contains the word dog.”
A system would rank each component in the
document that had section 1 component somewhere
in its tree. A decision would need to be made
whether a section 1 component could be returned for
the query. In our example document, both the
document and body components would be ranked
(and possibly the section 1 component). For the
document component, the score would be

P(dogjsection 1) - P(section 1) - P(body),
and the body component would have a score of
P(dog|section 1) - P(section 1).

The body component’s score will be greater than or
equal to the document component’s score. It may
seem odd to have a query of this form, but when
combined with other query components, then the
document may be preferred. For instance, the
document component would be preferred over the
body component for the query such “bird and section
1 contains dog.”

A congraint that specifies a set of document
components would treated as an OR operation. An
example of this is “return body components where
any section contains dog.” For the example
document, this would be evaluated as

P(dog|section 1) - P(section 1)
+ P(dog|section 2) - P(section 2)
=0.7-05+03-05

=0.5.

The multiplication of weights along the path to a
node may seem like it places much more weight on
nodes higher in the tree. This is only true under
limited constraints. In general, as the modd is
multiplicative, the weights will factor out and be the
same across documents. However, if thereis an OR
operation of two constraints, then this problem will
happen. We do not expect this to be an issue for
most queries.

This provides a sample of query operations that can
be accommodated in the tree-based language model
of documents. Any of the above operations can be
combined into more complex queries, giving us the
ability to represent and rank rather intricate queries.

4.3 Discussion

One nice benefit of the language modeling approach
is that it implicitly deals with some of our intuitions
about coverage. Thisisaresult of how the language
models estimate probabilities. To illustrate this,
consider ranking the query Q = “dog cat” on our toy
document. We will use the generative language

modd approach for this example. The probabilities
for the leaf nodes are:

P(Qltitle) = 0

P(Q|section 1) =P(dogjsection 1)-P(cat|section 1)
=0.7-03
=021

P(Q|section 2) =P(dogjsection 2)-P(cat|section 2)
=03-07
=021

The language model for the body node is a linear
interpolation of the section 1 and section 2 nodes.
Similarly, the language modd for the document
node is a linear interpolation of the body and title
nodes. These probabilities associated with these
language models are:

P(doglbody) = 0.5
P(cat|body) = 0.5

P(dog|document) = 0.25
P(cat|[document) = 0.25
P(bird|document) = 0.5

Using these language models, we can now compute
the probabilities that the body and the document
generated the query:
P(Qlbody)= P(doglbody) - P(cat|body)
=05-05
=0.25

P(Q|document)
=P(dog|document)-P(cat|document)
=0.25-0.25

=0.125

We see that the highest ranking document
component for the query is the body component.
This follows our intuition that the body component
is probably better than ether of the section
components alone. Another favorable benefit is that
the body component is ranked above the document
component, which includes extra unreated
information.

Unfortunately, the model does not always behave as
desired. Reconsider the query “dog cat.” If thereis
a document node containing only “dog cat”, then
this leaf node will preferred over other nodes. This
is undesirable, as there no context, resulting in an
incoherent result. A way to deal with thisissueisto
rank by the probability of the document given the
query. Using Bayes rule, this would alow us
incorporate priors on the nodes. The prior for only the
node being ranked would be used, and the system would
multiply the probability that the node generated the query
by the prior:

37

PDQ) = P(QP,)P(D)/PQ)

0 P(Qe,) P(D)

Thiswould result in ranking by the probability of the
document given the query, rather than the other way
around. An example prior may be some function of
the number of words subsumed by that node in the
tree.

5. TRAINING THE MODEL

Training the linear interpolation parameters in the
grammar is a difficult problem. For a task where
there are often many relevant documents for a query,
such as ad-hoc retrieval, an Expectation-
Maximization approach may work well. Given a
training set of queries and relevance judgments, an
EM approach to training the parameters would be;

1) Initialize the linear interpolation parameters for
each rule to random values. These values must
satisfy the congtraints for correct linear
interpol ation.

2) For each rule, update the parameters using:

/][jr+1] — 1 /][it] P(V\'ie b)

Z (QDYIRW, G ...k Zk:/]gtl P(V\'iei b)

i=1

where z is the normalizing constant that makes
the new lambdas sum to one, the superscript t is
used to denote values at the t" iteration, and
(Q.D)OR represents the pairs of queries and

documents marked relevant in the training set.
For learning linear interpolation parameters, the
expectation and the maximization steps can be
combined.

3) Repeat step 2 until some convergence criterion is
met or for afixed number of iterations.

This strategy will not work for all tasks. For some
tasks, such as named-page or known-item finding,
there is only one relevant document per query.
Using EM to maximize the relevant documents for
the queries runs the risk of also maximizing the
probability of other non-relevant documents. While
it is true that thisis also a risk for ad-hoc retrieval,
the effects of this on the evaluation measures are
more pronounced for named-page and known-item
finding. This is in part due to the choice of
evaluation measures commonly used for named-page
finding (such as mean-reciprocal rank). Mean-
reciprocal rank is very sensitive to changes in rank
near the top of the ranking. For these other tasks, it
is desirable to have a learning technique that allows
the system to directly optimize the evaluation

function. Algorithms that may be easily adapted to
this without the calculation of difficult gradients
include genetic algorithms [16] and simulated
annealing.

The parameter training is not an intractable task, nor
may it be as difficult as we have suggested. Simple
techniques like hand-tuning the parameters may
work wel, and it is unclear just how sensitive the
model isto different parameters. We have had some
success with hand-chosen linear interpolation
coefficients for a simpler model [3].

6. RELATED WORK

Fuhr and Grofjohann proposed XIRQL [4], whichis
an extension of XQL. They modd queries as events
which are represented in a Boolean algebra. The
queries are converted into Boolean expressions in
disunctive normal form. The queries are evaluated
on documents using the inclusion-exclusion formula.
The event probabilities are estimated using weights
derived from the text. These event probabilities are
different from those in the language models, as they
do not have to sum to one across all terms.
Augmentation weights are used to allow inclusion of
the weights from children nodes. These weights are
in the range [0:1], which down-weight the children
nodes influence as the weights are propagated
upward. Augmentation is a generalization of linear
interpolation, where the constraint that the weights
sum to oneisrelaxed. Their mode does not assume
independence among events, while the modd
presented here does assume independence of query
terms.

Kazai et a [8][9] represent documents as graphs.
The document structure is represented using a tree,
but horizontal links are alowed among neighbor
nodes in the tree. They model nodes in the tree
using vectors of term weights. They call combining
information in the tree aggregation, and use ordered
weighted averaging (OWA) to combine node
vectors. OWA is essentially the same as linear
interpolation. While our model does not explicitly
modd links among neighbor nodes, this effect could
be achieved by smoothing a node's language model
with those of its neighbors.

Grabs and Schek [5] compute term vectors
dynamically and use idf values based on the node
type. Similarly, we smooth the nodes using
information from the nodes of the same type. Their
method of creating the term vectors dynamically
may prove useful when implementing our approach.
Structural constraints in query terms are supported
using augmentation weights similar to those used by
Fuhr [4].

38

In [2], the authors present the ELIXER query
language for XML document retrieval. They adapt
XML-QL and WHIRL to alow for similarity
matches on document components in the queries.
The similarity scores are computed using the cosine
similarity on tf-idf weighted vectors representing the
query and the document component. Scores for
multiple query components are combined by taking
the product of the scores.

Myaeng e a [11] represent documents using
Bayesian inference networks. The document
components act as different document
representations, and are combined in the network to
produce a structure sensitive score for documents.
Only document scores are computed; document
components are not ranked.

Hatano et a [6] match compute tf-idf vectors for
each node in the tree. They compute similarities of
text components using cosine similarity, and they
use the p-norm function to combine the similarities
of the children nodes. The document frequencies are
not dement specific, while our language mode
smoothing is element specific.

7. CLOSING REMARKS

We proposed a tree-based language model for the
modding of structured documents. We described
methods of querying structured documents using the
model we described, and gave examples of how this
is accomplished.

One benefit of the mode include guidance from
language modeling on how to edtimate the
probabilities used in ranking. Another benefit is that
the model captures some of our intuitions about
selecting which components are most appropriate to
return. The model also alows for including priors
on components that can be used to model additional
beliefs about coverage.

A disadvantage of the approach is that the linear
interpolation parameters should be trained for best
performance. These parameters may be corpus or
task specific. However, we also present methods for
training the parameters, such as EM or genetic
algorithms.

The next steps for this work are to implement and
test themodel. Additionally, we will need to address
concerns of efficiency and storage.

8. ACKNOWLEDGMENTS

We thank Yi Zhang and Victor Lavrenko for their
insight and thoughts on structured documents and
language modeling. Thiswork was sponsored by the
Advanced Research and Development Activity in
Information Technology (ARDA) under its

Statistical Language Modeling for Information
Retrieval Research Program. Any opinions, findings,
conclusions, or recommendations expressed in this
material are those of the authors, and do not
necessarily reflect those of the sponsor.

9. REFERENCES

[1] Allen, J. Natural Language Understanding
(1995), 2" edition, Benjamin/Cummings
Publishing.

[2] Chinenyanga, T.T. and N. Kushmerik.
Expressive retrieval from XML documents. In
Proceedings of the 24" Annual International
ACM S GIR Conference on Research and
Development in Information Retrieval (2001),
ACM Press, 163-171.

[3] CollinssThompson, K., P. Ogilvie, Y. Zhang,
and J. Callan. Information filtering, novelty
detection, and named-page finding. In
Proceedings of the Eleventh Text Retrieval
Conference, TREC 2002, notebook version,
338-349.

[4] Fuhr, N. and K. Grof§jchann. XIRQL: A query
language for information retrieval in XML
documents. In Proceedings of the 24™ Annual
International ACM SIGIR Conference on
Research and Development in Information
Retrieval (2001), ACM Press, 172-180.

[5] Grabs, T. and H.J. Schek. Generating vector
spaces on-the-fly for flexible XML retrieval. In
Proceedings of the 25" Annual International
ACM S GIR Workshop on XML Information
Retrieval (2002), ACM.

[6] Hatanao, K., H. Kinutani, M. Y oshikawa, and
S. Uemura. Information retrieval system for
XML documents. In Proceedings of Database
and Expert Systems Applications (DEXA 2002),
Springer, 758-767.

[7] Hiemstra, D. Using language models for
information retrieval, Ph.D. Thesis (2001),
University of Twente.

[8] Kazai, G., M. Lamas, and T. Rdlleke. A model
for the representation and focused retrieval of
structured documents based on fuzzy
aggregation. In The 8" Symposium on Sring
Processing and Information Retrieval (SPIRE
2001), |EEE, 123-135.

[9] Kazal, G., M. Lamas, and T. Rdlleke.
Focussed Structured Document Retrieval. In
Proceedings of the 9" Symposium on Sring
Processing and Information Retrieval (SPIRE
2002), Springer, 241-247.

39

[10] Lafferty, J., and C. Zhai. Document language Development in Information Retrieval (1998),
models, query models, and risk minimization ACM Press, 275-281.

for information retrieval. In Proceedings of the [14] Westerveld, T., W. Kraaij, and D. Hiemstra.

24" Annual International ACM SIGIR Retrieving web pages using content, links,
Conference on Research and Development in URLS, and anchors. In Proceedings of the

Information Retrieval (2001), ACM Press, 111- Tenth Text Retrieval Conference, TREC 2001,

119. NIST Special publication 500-250 (2002), 663-
[11] Myaeng, S.H., D.H. Jang, M.S. Kim, and Z.C. 672.

Zhoo. A flexible modd for retrieval of SGML [15] Zhai, C. and J. Lafferty. A study of smoothing

documents. In Proceedings of the 21% Annual methods for language models applied to ad hoc
International ACM SIGIR Conference on information retrieval. In Proceedings of the

Retrieval (1998), ACM Press, 138-145. Conference on Research and Development in

[12] Ogilvie, P. and J. Callan. Experimentsusing Information Retrieval (2001), ACM Press, 334-
the Lemur Toolkit. In Proceedings of the Tenth 342.
Text _Retrievgl Qonference, TREC 2001, NIST [16] Zhang, M., R. Song, C. Lin, L. Ma, Z. Jiang, Y.
Specia publication 500-250 (2002), 103-108. Jn Y. Liu L.Zhao, and S. Ma. THU at TREC

[13] Ponte, J., and W.B. Croft. A language 2002: novety, web and filtering (draft). In
modding approach to information retrieval. In Proceedings of the Eleventh Text Retrieval
Proceedings of the 21% Annual International Conference, TREC 2002, notebook version, 29-
ACM S GIR Conference on Research and 42.

40

The Importance of Morphological Normalization
for XML Retrieval

Jaap Kamps, Maarten Marx, Maarten de Rijkérlgir Sigurbprnsson
Language and Inference Technology Group, ILLC, U. of Amsterdam
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
{kamps,marx,mdr,borkur }@science.uva.nl

http://lit.science.uva.nl

Abstract

Current information retrieval systems typically ignore structural aspects of documents, solely focusing on the
textual content instead. But documents containing additional structure in the form of HTML, XML, or SGML
mark-up are pervasive on the Internet. The XML retrieval task presents a number of challenges for information
retrieval, for we can no longer rely on the appropriate unit of retrieval to be fixed, or to be known beforehand.
This implies that the effectiveness of standard IR techniques, such as morphological normalization methods, may
not carry over to this particular task. This paper describes the fully automatic runs for the INEX 2002 task
submitted by the Language and Inference Technology Group at the University of Amsterdam. We investigate
the effectiveness of two standard approaches to morphological normalization, both a linguistically motivated
stemming algorithm and a knowledge-poor character n-gramming technique. Our results show that morphological
normalization is an important issue for XML retrieval. For all measurements, the combined run and the n-gram
run perform better than the stemmed run.

1 Introduction

With recent advances in computer and Internet technology, people have access to more information than ever
before. Much of the information is available in free text with little or no metadata, and there is a tremendous need
for tools to help organize, classify, and store the information, and to allow better access to the stored information.
Current information retrieval systems allow us to locate documents that might contain the pertinent information,
but most of them leave it to the user to extract the useful information from a ranked list. This leaves the (often
unwilling) user with a relatively large amount of text to consume.

To address these issues, a humber of recent initiatives are aimed at providing highly focused information
‘pinpointing.’ For instance, in the TREC question-answering track [17] participants are given a large document set
and a set of questions; for each question, the system has to return an exact answer to the question and a document
that supports that answer. Another approach to providing highly focussed information access is to return only
new and relevant sentences (within context) rather than whole documents containing duplicate and extraneous
information, as is done within TREC's novelty track [5].

We view XML retrieval as yet another approach to providing more focused information access than traditionally
offered by search engines. An XML document collection differs from a traditional IR document collection: in the
latter, documents contain only plain text and they are the natural unit of retrieval. Documents in an XML collection
are divided into a hierarchy of text objects. These text objects provide restricted and, we hope, semantically
meaningful contexts for satisfying users’ information needs. It is natural, therefore, to take advantage of this
structural information and look below the document level for a suitable unit of retrieval. The main question then
becomes: To which extent can XML document structure help improve retrieval effectiveness? Obviously, the
creation of an XML test collection is a key resource for answering this question.

The INEX 2002 collection, 21 IEEE Computer Society journals from 1995-2002, consi$fs 15 docu-
ments with extensive XML-markup (when ignoring the volume.xml files). The test collection contains two types
of topics. Content-only topics (CO) ignore the structure of the documents and, hence, are nothing but traditional
IR topics. Content-and-structure (CAS) topics are aware of the structure of the documents. They can include
constraints on the type of elements that are to be retrieved as well as constraints on the context in which the search
terms should appear. The main difference with traditional IR tasks is that we may retrieve any XML component in
the collection.

41

The aim of our official runs was to experiment with the effectiveness of different types of morphological
normalization for structured corpora. The XML retrieval task departs from the strict boolean query matching
used in traditional database theory, allowing for various gradations of relevance. In particular, related words like
morphological variants (singular, plural, etc.) should share some of their relevance. Morphological nhormalization
proved successful for plain text collections([8] 12]. In order to study the impact of morphological normalization in
the setting of XML retrieval, we created stemmed and n-grammed indexes that preserve the XML-structure of the
original documents. This allows for both the CO and CAS topics to be evaluated against both indexes.

Our strategy at INEX 2002 was to create a baseline system based on a traditional document index. That is, our
index treats complete articles as the unit for retrieval. For the CO topics, the XML structure of the documents was
not used, and we retrieve entire articles. For the CAS topics, we used a two step strategy. We first treated the topic
as a CO topic and selected the 1000 highest ranking articles. Then we directly processed the (morphologically nor-
malized) representation of these documents. All experiments were carried out witlexhie system developed
at the University of Amsterdam [12].

The rest of this paper is organized as follows. We describe our experimental set-up in§ection 2, and our official
runs in Sectiof|3. In Secti¢n 4 we present evaluation measures for XML retrieval and present our resultd.|Section 5
provides a discussion of our results, and we end by drawing some conclusions.

2 Experimental Set-Up

2.1 TheFlexIR information retrieval system

All submitted runs useélexIR, an information retrieval system developed at the University of Amsterdam [12].
The main goal underlyinglexIR’s design is to facilitate flexible experimentation with a wide variety of retrieval
components and techniguédexIR is implemented in Perl; it is built around the standard UNIX pipeline architec-
ture, and supports many types of preprocessing, scoring, indexing, and retrieval tools, which proved to be a major
asset for the INEX task. The retrieval model underlyiigxIR is the standard vector space model. All our runs
used the Lnu.ltc weighting scheme [1] to compute the similarity between a query and a document; wieixed

at 0.2, while the pivot was set to the average number of unique words per document.

From both topics and documents we removed words occurring on a standard stop list with 391 words. Blind
feedback was applied to expand the original query with related terms. Term weights were recomputed by using
the standard Rocchio methadd [14], where we considered the top 10 documents to be relevant and the bottom 500
documents to be non-relevant. We allowed at most 20 terms to be added to the original query.

We experimented with two approaches to morphological normalization (discussed in $edtion 2.2 below). As
a side issue, we wanted to experiment with combinations of (what we believed to be) different kinds of runs in
an attempt to determine their impact on retrieval effectiveness. First, we normalized the retrieval status values
(RSVs), since different runs may have radically different RSVs. Following [10], we mapped the valle|to
using RSV, = (RSV; — min;)/(max; — min;). Next, we assigned new weights to the documents using a linear
interpolation factor representing the relative weight of a rinf[15SV,,c., = A - RSV{ + (1 —) - RSV4. For
A = 0.5 this is the combSUM function of [3].

2.2 Morphological normalization

As pointed out above, our overall aim was to study the effect of morphological normalization on the effectiveness
of XML retrieval. One approach to morphological normalization is to use linguistically informed methods; we
decided to use a stemming algorithm for the English language. Alternatively, there are knowledge-poor approaches
to morphological normalization which do not require any knowledge of the particular source language; here, we
decided to use an n-gramming method.

n-Grams Our n-gram-based approach was based on character n-grams, where the n-gram length was set to 5;
this setting was motivated by the results of experiments on the CLEF [2] data sets. For each word we stored both
the word itself and all possible character n-grams of length 5 that can be obtained from it without crossing word
boundaries. As an example, Figliie 1(a) shows the original Topic 31, and Figure 1(b) shows the (stopped and)
n-grammed version of the topic.

Stemming For the linguistically informed method with which we wanted to contrast the effect of the n-gram
method we used Porter stemmingl[13]. Figure 1(c) shows the (stopped and) stemmed version of Topic 31.

42

<INEX-Topic topic-id="31" query-type="CQO" ct-no="003">

<Title>
<cw>computational biology</cw>

<[Title>

<Description>
Challenges that arise, and approaches being explored, in the interdisciplinary
field of computational biology.

</Description>

</INEX-Topic>

(a) The original version of Topic 31.

i 31
computational compu omput mputa putat utati tatio ation tiona ional biology biolo iolog ology
challenges chall halle allen ... biology biolo iolog ology

(b) The n-grammed version of Topic 31.

i 31
comput biologi challeng aris approach explor interdisciplinari field comput biologi

(c) The stemmed version of Topic 31.

Figure 1: Topic 31.

3 Runs

We now describe how our runs were created. We built two base runs: one using the Porter stemmer and one in
which we used n-grams in the manner described above. We then combined these two runs in the manner described
in Sectior] 2, thus producing a total of three official runs for INEX 2002:

Stemmed run We use a stemmed index and stemmed topics, the Lnu.ltc weighting scheme, and blind feedback.

n-Grammed run We use an n-grammed index and n-grammed topics, the Lnu.ltc weighting scheme, and blind
feedback. We used n-gram-length 5, adding n-grams for words with lengthwhile also keeping the
originals words.

Combined run We combined the first two runs using an interpolation factaf 0.6 for the n-gram run. This
higher weight for the n-gram run was motivated by the outcomes of experiments on the(CLEF [2] data sets.

For both types of topics we wanted to use methods that were fully automatic and portable to other collections. In
our retrieval we only used words from the title and description fields. In particular, we did not use the keywords
provided with the topics: according to the topic development guidelines, keywords are supposed to be “good scan
words that are used in the collection exploration phase of the topic development process” [7, p.107]. Furthermore,
we did not use any information from the DTD either.

After the (document) pre-processing steps described in Sédtion 2 were carried out, indexing of the collection
was done at the article level, i.e., the indices were mappings from terms to articles in the collection. Since the
topic processing and retrieval steps differ for the CO topics on the one hand and the CAS topics on the other, we
describe them in separate subsections.

3.1 Content-only topics

For the CO topics, we automatically translated the topics intd-tbelR topic format, as illustrated in Figufé 1,
using only the words appearing in the title and description fields.

We ran the (stemmed or n-grammed) topics against the (stemmed or n-grammed) document index. The 100
documents with the highest RSVs were returned. The units of retrieval were articles. In other words, we always
returnedarticle[1] in the path tag of the results.

43

<INEX-Topic topic-id="01" query-type="CAS" ct-no="010">

<Title>
<te>article/fm/au</te>
<cw>description logics</cw><ce>abs, kwd</ce>

<[Title>

<Description>
Retrieve the names of authors of articles on description logic, in particular
articles in which the abstract or the list of keywords contains a reference
to description logic.

</Description>

</INEX-Topic>

(a) The original version of topic 01.

i 01
descript logic retriev author articl descript logic particular articl abstract list keyword
contain refer descript logic

(b) Stemmed version of the document retrieval translation.

i 01
article/fm/au
abs|kwd, descript logic

(c) Stemmed version of the document filtering translation.

Figure 2: Topic O1.

3.2 Content-and-structure topics

The CAS topics contain additional information in thee> and<te> tags; see Figuig] 2(a) for an example. For

the CAS topics we divided the retrieval process into two subtasks: document retrieval and document filtering. This
required two different topic translations, one for each subtask. For the document retrieval subtask, topics were
processed similar to the CO topics: only the words in the title and description fields were selected, and from the
title field we only selected the content of thew> field. For an example of this translation see Figyre 2(b).

For the document filtering subtask, tk@itle> field was processed to preserve the structural part of the
query. For an example of this translation, see Filire 2(c). The first line contains the topic number, the second
line gives the XML-field that is to be returned, the next line(s) give conditions for the document, consisting of
a field name, and the words that are sought. This should be read as: retrieve the elements found by the XPath
expression/article/fm/au in the documents whose elements found by the XPath expredéainss or
/lkwd contain the wordslescript or logic . If no target element is specified in the topic title, we treat it
as if the target element had beete>article</te> . A connection between a disjunction of target elements
and a disjunction of search criteria may lead to ambiguities. Hence we replaced disjunctions of target elements
<te>A,B,..</te> by <te>/article</te> . Further motivation for this translation can be foundin/[11].

For the document retrieval subtask we ran the (stemmed or n-grammed) topics against the (stemmed or n-
grammed) document index. The 1000 documents with the highest RSVs were returned. Our working assumption
was that all relevant document were in this top 1000.

For the document filtering subtask, we created a special XML-file for each topic, containing these top 1000
documents. On these so-called doc-piles, we ran an XML-parser based oXRér'Fwig that handles XPath
expressions. For each topic and for each context-elemsert>() in its doc-pile, the XML-parser calculates a
score for each context-element. This score is the count of how often a context<wars)(@ppears in the context-
element, divided by the number of words in the content-element. We sorted the documents in the doc-pile according
to their highest scoring element. For each document in the doc-pile we extracted the target-eletereriaising
the XML-parser. To each target-element we assign the score of the document that contains it. We select the 100
highest scoring target-elements. Those 100 elements are returned, sorted by RSV score of the document containing
the element.

44

Combined run Combined run
n-Grammed run -------- n-Grammed run -------
Stemmed run --------- Stemmed run ---------

0.8 0.8

0.6 0.6

Precision
Precision

0.4 |-X 0.4 H

0.2

0.2

0

o i
0 0.5 1 0 0.5 1

Recall Recall

(a) CAS topics using thg@eneralizedmeasure. (b O topics using thgeneralizedmeasure.

1 1
Combined run Combined run
n-Grammed run ----—---- n-Grammed run --------
Stemmed run - Stemmed run -
0.8 0.8
0.6 0.6

Precision
Precision

0.4 \\\
0.2 %

,,,,,,,,,,,, N
0 0

0 0.5 1 0 0.5 1
Recall Recall

(c) CAS topics using thestrict measure. (dTO topics using thestrict measure.

Figure 3: Precision recall graphs of our official runs for both topic types, using both evaluation measures.

4 Results

To evaluate our runs we used version 0.006 ofittex _eval program supplied by the organizers of INEX
2002. We used version 1.6 of the relevance assessments. The topics were assessed on a two dimensional graded
relevance scale, one for topical relevance, with values taken ffoiin 2, 3}, and another for document coverage,
with values taken frordexact too_large, too_small, no_coverage.

The evaluation software can create reports using two distinct measures, see [4] for detatsicTiaevance
measure considers only highly relevant items that have exact coverage. The strict relevance scores are calculated
by means of the functioifi; below.

e = (3, ezxact)

e = (2,exact) or

e = (3,too_large) or

e = (3,too_small)
0.5 if e=(1,exact)or

e =

e =

e =

e =

(

0.75 if (

(

(

(
= (2,too_large) or

(

(

(

S

|1 ife=(3,exact) .
fole) = { 0 otherwise Tole) =
= (2, too-small)
= (1,too-large) or
= (1, too_small)
0 otherwise

0.25 if

Thegeneralizedelevance measure considers all combinations of all values of relevance and coverage. The gener-

45

alized relevance scores are calculated by means of the furytigimen above.

The strict and generalized measures defined above differ from the standard mean average precision scores.
When ignoring the coverage dimension, the strict measure is similar to the work on judging by highly relevant
document|[[16]. This strict measure is still a dichotomous measure. When ignoring coverage, the generalized
measure is similar to the graded measures of relevance [9].

Generalized measure CAS Generalized measure CO
Run MAP Impr. | P.atO0O Impr. Run MAP Impr. | P.atO Impr.
Combinedrun | 0.185 +12% | 0.528 +36% Combined run | 0.0576 +19% | 0.578 +23%
n-Grammed run| 0.183 +11%| 0.544 +40% n-Grammed run| 0.0568 +17%| 0.556 +18%
Stemmed run 0.165 0% | 0.388 0% Stemmed run 0.0484 0%| 0.471 0%

Strict measure CAS Strict measure CO
Run MAP Impr. | P.at0O Impr. Run MAP Impr. | P.atO Impr.
Combinedrun | 0.234 +23% | 0.503 +55% Combined run | 0.0553 +34%| 0.415 +45%
n-Grammed run| 0.232 +21%| 0.475 +46% n-Grammed run| 0.0618 +55% | 0.411 +44%
Stemmed run 0.191 0% | 0.325 0% Stemmed run 0.0399 0%| 0.286 0%

Table 1:The mean average precision results for our official runs. The precision at zero is the interpolated precision over the
interval (0, 0.1]. Improvements are computed relative to the stemmed run.

The results for our official runs are displayed in Figufe 3 and Table 1. Some obvious remarks can be made.
First, compared to TREC-style document retrieval results, the mean average precision (MAP) scores are much
lower (at TREC where one would expect a MAP of at least twice the best score in the table). Also, the scores for
CO are much lower than for CAS topics. Second, we included the precision at 0 iff Table 1 as an indication of the
quality of the top ranked retrieved documents. These numbers are reassuring, and far less dramatic than the low
MAP scores for, especially, CO would suggest. In fact, both CAS and CO topics have comparable p@0 scores.
Third, the difference in performance of the three runs is a clear indication that morphological normalization is
an important issue for XML retrieval. The relative results are in favor of the knowledge-poor approach: the n-
grammed run is performing better than the stemmed run in all four cases. Fourth, the combined run is better than
the best underlying baserun in three cases (CAS and CO generalized), although the improvement is unimpressive.
This can be explained by the difference in score of the underlying baseruns: when the difference between stemmed
and n-grammed runs peaks at over 50% (CO strict), the combined run is not better than the n-gram run! Fifth,
when comparing the strict and generalized scores, the strict scores are almost always higher. This is somewhat
counterintuitive, because the generalized score is a more liberal score that regards more retrieved elements as
relevant.

5 Discussion and Conclusions

We entered the INEX initiative for the evaluation of XML retrieval with modest ambitions. We wanted to set up a
baseline system based on a traditional document index where the unit of retrieval is an article. Only for the CAS
topics did we attempt to retrieve the particular XML element requested by the target element field.

Our goal was to have a fully automatic XML retrieval system that can easily be ported to different topics,
collections, and DTDs. All our runs are fully automatic TD-runs that ignore the keywords and the narrative fields
of the topics (which are considered to be additional information for the relevance judgments). We did not correct
misspellings or other errors in the topics, resulting in the retrieval of no results for two CAS topics. We use no
manual query processing steps, nor human knowledge on the semantics of the tags.

We expected our system’s performance to be just a baseline for ‘proper’ XML retrieval systems, i.e., for systems
that return smaller XML components than articles. To our surprise, our runs turn out to be among the top scoring
submissions on both CAS and CO tasks, and on both generalized and strict evaluation measures; this is even more
surprising if we take into account that several teams submitted manual runs and runs using the narrative. How
should we interpret this? On the one hand, the results show that a system returning entire articles is competitive to
systems returning smaller units of text—our system, indeed, can function as the baseline performance we hoped
to obtain. On the other hand, the results suggest that we do not yet fully understand how users (and assessors)
perceive the coverage dimension of relevance. It is clear that more research is needed to better understand what
users (and assessors) regard as meaningful units of retrieval.

There are a few things one needs to keep in mind when looking at the outputioétheeval software. The
software’s definition of total recall does not take into account the graded relevance nor the limit on the number of

46

elements retrieved. The total recall of the strict measure is defined as the number of highly relevant elements in
the collection that have exact coverage. The total recall of the generalized measure is defined as the number of
relevant elements in the collection. This puts an upperbound on the mean average precision scores that systems
can achieve, as shown in Ta@]e 2; the upperbounds are calculated for ‘perfect’ run that return 100 rele\,ﬁnt items.

These upperbounds partly explain why the strict
evaluation measure gives a high_er_average p_reci_s_ion Topic type | Measure Possible MAP
than the generalized measure. This is co_unter-mtwtlve CAS generalized 0.596
aswe wguld expectto do worse on the strict scale, hav- co generalized 0.332
ing in mind that we do article retrieval for all the CO CAS strict 0.897
topics and approximately one-third of the CAS topics. co strict 0.931
Thus we would expectio_large coverage, giving o
score on the strict measure. When taking into account Taple 2: Upper bounds on the average precision.
the maximally obtainable scores in Taple 2, our gener-
alized scores do outperform the strict scores. Added to that, whole articles seem to have been quite frequently
judged highly relevant with exact coverage. This sheds some light on how exact coverage is perceived by users
and assessors.

The official runs of INEX 2002 had a maximum number of retrieved elements set at 100 elements. A problem
with this upperbound is that the number of relevant elements in the assessments can be much higher than 100,
even on average. We modified our runs by allowing 1000 results to be returned (as is customary for CLEF and
TREC ad-hoc retrieval experiments). A comparison of the MAP scores between runs with cut-off points at 100 and
1000 results is displayed in Taljle 3. Although the scores do improve, they remain low compared to MAP values

Generalized measure CAS Generalized measure CO
MAP MAP
Run 100 1000 Impr. Run 100 1000 Impr.

Combinedrun | 0.185 0.199 +7.6% Combinedrun | 0.0576 0.0677 +18%
n-Grammed run 0.183 0.196 +7.1% n-Grammed run 0.0568 0.0653 +159
Stemmedrun | 0.165 0.170 +3.0% Stemmed run | 0.0484 0.0551 +149

Strict measure CAS Strict measure CO
MAP MAP
Run 100 1000 Impr. Run 100 1000 Impr.

Combinedrun | 0.234 0.244 +4.3% Combined run | 0.0553 0.0609 +109
n-Grammed run 0.232 0.240 +3.4% n-Grammed run 0.0618 0.0657 +6.3%
Stemmed run 0.191 0.201 +5.2% Stemmed run 0.0399 0.0427 +7.09

S

Table 3: Comparison of MAP scores for 100 and 1000 retrieved elements.

for unstructured documents. The improvement is higher for the generalized measure than for the strict measure.
This may be due to the larger set of relevant items for the generalized measure. This may also explain why the
improvement is greater for CO topics than for CAS topics, although this is partly caused by the lower score of the
top-100 runs.

Our aim was to study the effect of morphological normalization for XML retrieval. We experimented with
two distinct approaches to morphological normalization: by using linguistically informed methods and by using
knowledge poor techniques. For the former we used the familiar Porter stemming algorithm for English. For the
latter, we used character n-grams of length 5. Our results show a clear difference between the two approaches,
which suggests that morphological normalization is an important issue for XML retrieval. Our results favor the
knowledge-poor approach of n-gramming. For all measurements, the combined run and the n-gram run perform
better than the stemmed run. This is consistent with results on plain text collections [6, 12]. We also experimented
with the combination of the two approaches to morphological normalization. The combined runs score best in three
out of four cases (CAS and CO generalized). Still, there is no remarkable difference between the combined run
and the n-gram run; n-gramming seems to be the dominant factor of the combination, which, again, is consistent
with the retrieval results for unstructured documents [8].

Using our INEX 2002 runs as a baseline, our future research focuses on how to retrieve smaller units of texts by

1For the strict measure, a perfect run without length restriction will score a MAROgfor the generalized measure, a perfect run cannot
obtain the perfect score @f0. This is due to the definition of generalized recall [9, p.1123]. For example, if there are two relevant documents
for a topic with relevance scordsand0.5, respectively, then the generalized precision at generalized recallllevehly 0.75.

47

treating each tag occurring in the collection as a document by itself. Next to this, we are experimenting with ways
of exploiting the collection’s structure for improving retrieval on the article level, by considering the keywords
assigned to documents, co-authors, citations, co-citations, etc. Finally, we are investigating efficient storage and
processing architectures tailored to structured document collections.

Acknowledgments We want to thank Willem van Hage for his technical support and for assessing the Enigma
topic 42. Jaap Kamps was supported by the Netherlands Organization for Scientific Research (NWO), grant 400-
20-036. Maarten Marx received support from NWO grant 612.000.106. Maarten de Rijke was supported by
grants from NWO, under project numbers 612-13-001, 365-20-005, 612.069.006, 612.000.106, 220-80-001, and
612.000.207.

References

[1] C.Buckley, A. Singhal, and M. Mitra. New retrieval approaches using SMART: TREC 4. In D. Harman, &didoeed-
ings of the Fourth Text REtrieval Conference (TRECp&ges 25-48. NIST Special Publication 500-236, 1995.

[2] CLEF. Cross language evaluation forum, 206&p://www.clef-campaign.org/

[3] E. A. Fox and J. A. Shaw. Combination of multiple searches. In D. K. Harman, editar,Second Text REtrieval
Conference (TREC-2pages 243-252. National Institute for Standards and Technology. NIST Special Publication 500-
215, 1994.

[4] N. Govert and G. Kazai. Overview of the Initiative for the Evaluation of XML retrieval (INEX) 2002. In N. Fuhr,
N. Goevert, G. Kazai, and M. Lalmas, editoPspceedings of the First Workshop of the Initiative for the Evaluation of
XML Retrieval(INEX), Dagstuhl 9-11 Dec. 2002, ERCIM Workshop Proceedings, March 2003.

[5] D.Harman. Overview of the TREC 2002 novelty track. In E. M. Voorhees and D. K. Harman, editer&leventh Text
REtrieval Conference (TREC 200Hational Institute for Standards and Technology, 2003.

[6] V. Hollink, J. Kamps, C. Monz, and M. de Rijke. Monolingual retrieval for European langudg&smation Retrieval
6, 2003.

[7] INEX guidelines for topic development. In N. Fuhr, No@ert, G. Kazai, and M. Lalmas, editoBjoceedings of the
First Workshop of the Initiative for the Evaluation of XML RetrieflAlEX), Dagstuhl 9-11 Dec. 2002, ERCIM Workshop
Proceedings, March 2003.

[8] J. Kamps, C. Monz, and M. de Rijke. Combining evidence for cross-language information retrieval. In C. Peters,
M. Braschler, J. Gonzalo, and M. Kluck, editoEyaluation of Cross-Language Information Retrieval Systems, CLEF
2002 Lecture Notes in Computer Science. Springer, 2003.

[9] J. Kekaldinen and K. @rvelin. Using graded relevance assessments in IR evaludtionnal of the American Society for
Information Science and TechnolodB:1120-1129, 2002.

[10] J. H. Lee. Combining multiple evidence from different properties of weighting schemes. In E. A. Fox, P. Ingwersen, and
R. Fidel, editorsProceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrievalpages 180-188. ACM Press, New York NY, USA, 1995.

[11] M. Marx, J. Kamps, and M. de Rijke. The University of Amsterdam at INEX-2002. In N. FuhrdNef@, G. Kazai, and
M. Lalmas, editorsINEX 2002 Workshop Proceedingsmges 24-28, 2002.

[12] C. Monz and M. de Rijke. Shallow morphological analysis in monolingual information retrieval for Dutch, German
and ltalian. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck, ediEraluation of Cross-Language Information
Retrieval Systems, CLEF 200blume 2406 of_ecture Notes in Computer Scienpages 262—277. Springer, 2002.

[13] M. Porter. An algorithm for suffix stripping?rogram 14(3):130-137, 1980.

[14] J. Rocchio. Relevance feedback in information retrieval. In G. Salton, €titeiSMART Retrieval System — Experiments
in Automatic Document Processir@grentice Hall, 1971.

[15] C. C. Vogt and G. W. Caottrell. Predicting the performance of linearly combined IR systems. In W. B. Croft, A. Moffat,
C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, edit®hgceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrigages 190-196. ACM Press, New York NY, USA,
1998.

[16] E. M. Voorhees. Evaluation by highly relevant documents. In D. H. Kraft, W. B. Croft, D. J. Harper, and J. Zobel, editors,
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval pages 74—82. ACM Press, New York NY, USA, 2001.

[17] E. M. Voorhees. Overview of the TREC 2002 question answering track. In E. M. Voorhees and D. K. Harman, editors,
The Eleventh Text REtrieval Conference (TREC 2083jional Institute for Standards and Technology, 2003.

48

http://www.clef-campaign.org/

A scalable architecture for XML retrieva

Gabriella Kazai, Thomas Rolleke

Department of Computer Science

Queen Mary University London
{gabs,thor}@dcs.qmul.ac.uk

Abstract

While in classical text collections documents are re-
garded as atomic units, in XML collections nested ele-
ments of varying granularity are considered. This aug-
mented view increases the number of potentially re-
trieved objects, e.g. documents, elements within doc-
uments, or aggregations of elements or of documents.
The increase in the number of objects to be indexed
and retrieved by XML retrieval systems leads, for XML
collections of comparably small size (several 100 MB),
already to the necessity to apply strategies for scalabil-
ity, such as paralell and distributed processing, term,
document and database pre-selection. We report in this
paper on our approach for dealing with XML collec-
tions in general, and with the INEX collection in par-
ticular, using a scalable indexing and retrieval architec-
ture.

1 Introduction

With the growth of the amount of available digital data,
aspects of efficiency, such as indexing speed, storage
requirements and query response time, have been con-
sidered with increasing importance within information
retrieval (IR) systems [2]. Although computer hard-
ware are becoming faster, data and approaches require
scalable strategies to support the increasing require-
ments on data processing. Issues related to efficiency
gain further significance in the case of structured doc-
ument retrieval (SDR) systems, which operate on large
collections of structured documents, such as XML.
These systems exploit both content and structure of
XML documents and return elements of varying gran-
ularity to the user. This augmented view leads to ad-
ditional resource requirements during the indexing and
retrieval of structured documents, influencing the sys-
tem’s overall efficiency.

Work towards more efficient SDR systems has roots

both in the IR and database (DB) communities. Sev-
eral approaches to index structures and query optimiza-
tion have been reported in the literature to improve
the efficiency of IR systems [6, 17, 16, 8]. IR-based
research into SDR focuses on the efficient extensions
of conventional inverted index structures and retrieval
functions to deal with XML documents. Methods in-
clude the use of specifically designed unique element
identifiers [13, 21], path expressions [20] and sepa-
rate text and structure indexes [14, 22]. On the other
hand, database approaches aim to take advantage of
existing database techniques and incorporate methods
for dealing with textual data, uncertainty and ranking
within database management systems [5]. Efforts have
been invested in database schema designs for the effi-
cient storage of XML data and query optimization tech-
niques [1, 11, 12].

In this paper we describe a retrieval system for struc-
tured documents that employs a scalable architecture
for collection indexing and retrieval based on strate-
gies for efficient augmentation, distributed and paralell
processing, term, document and database pre-selection.
The retrieval system is implemented using HySpirit
[19], a software development kit that provides a de-
scriptional approach for modelling complex informa-
tion retrieval tasks such as hypermedia and knowledge
retrieval by combining database models, probability
theory, logic and object oriented concepts. HySpirit
builds on a number of knowledge modelling languages
including a probabilistic object oriented logic and a
probabilistic relation algebra, and supports scalability
in both the indexing and retrieval processes.

The paper is structured as follows. In section 2, we
describe our general approach for increasing the index-
ing and retrieval efficiency of XML objects. We con-
centrate on the development of an architecture for the
distributed indexing of a collection (section 2.1) and a
strategy to “localise” the augmented representation of
XML elements (section 2.5). In section 3, we relate the
strategies to the INEX collection and experiments.

49

2 Scalability Approaches

In this section we describe several approaches that ad-
dress the problem of efficient processing of large, dis-
tributed collections for the task of structured document
retrieval. We focus mainly on distributed and parallel
collection indexing and retrieval, and optimized aug-
mentation for the representation of retrievable units.

2.1 Distributed and parallel processing

In a networked environment the documents of a text
collection are usually distributed over several databases
and processors, where a database and a processor itself
can have a distributed and parallel architecture. Tak-
ing advantage of the distributed nature of the source
data we can implement distributed and parallel index-
ing and retrieval mechanisms in order to increase a re-
trieval system’s efficiency.

To demonstrate the distribution of an XML collec-
tion, consider the following collection structure:

<col | ecti on>
<j our nal >
<year >
<vol une>
<article> ...
<article> ...

<larticle>

<larticle>
</ vol une>
<vol une>
</ vol ume>

</ year >
</j our nal >
<j our nal >

</ j ournal >
</ col |l ection>

A collection as such may be distributed according
to a flat (linear) or complex (nested) architecture. In
a complex architecture an XML element may contain
sub-elements that are maintained in external databases,
whereas in a flat structure the collection is divided at
a given level of the hierarchy into a set of neighbour
elements stored in different databases. Figures 1 and
2 illustrate the two architectures. Both architectures
allow for the distributed and parallel processing of the
source data.

As an example of the complex case, a journal in the
above XML collection may be stored in the following
databases:

tion

A

Figure 2: Flat (linear) distributed XML collection

:

(collection[1]/journal[1], db_1)
(collection[1]/journal[1]/year[1], db_2)
(collection[1]/journal[1]/year[5]/volume[1], db_3)

The relation above associates pathnames within the
XML collection with database identifiers. It shows that
while most sub-components of the journal are hosted
in db_1, one of the year elements within the same
journal (collection[1]/journal[1]/year[1]) is located in
db_2, and a volume of another year element (collec-
tion[1]/journal[1]/year[5]/volume[1]) is stored in db_3.
From a practical point of view, we will often restrict
ourselves to the flat architecture, where the design of
the distribution structure is simplified. The following
is an example of the linear case, where the data is dis-
tributed with respect to the sibling year elements.

(journal[1]/year[1],db_1)
(journal[1]/year[2], db_2)
(journal[2]/year[1], db_3)

In the realm of structured document retrieval, the
processing of a collection, during indexing, involves
the representation of both the content and structure of
the XML elements. Representation along these two di-
mensions is necessary in order to support the content-
oriented retrieval of XML documents, where elements
of varying granularity can be returned to the user.

In a distributed environment, parallel indexing pro-
cesses are employed to generate independent sub-
collection (database) representations, against which a
user query is evaluated, in parallel, at retrieval time.

During this indexing process, for each of the
databases, a space of document terms is computed.

50

This termspace provides the basis for the local and
global representation of the collection. The local repre-
sentation refers to the representation of a given element
within the collection (or sub-collection), whereas the
global representation describes the collection (or sub-
collection) as a whole. In IR, these are often associated
with the functions that are used to estimate their re-
spective probability weights within the representation,
e.g. tf and idf.

For structured documents, we adapt tf and idf to the
hierachical nature of the documents. In IR, tf is inter-
preted as the occurrence frequency of a given term in
a given document. In XML retrieval, tf can be calcu-
lated relative to different container units, e.g. either as
the number of term occurrences within the containing
XML element, or within any ascendant node of that el-
ement. As for idf, the calculation of a terms’ idf weight
in IR is based on the number of documents in the col-
lection that are indexed with that term. Again, since
the concept of a document as a discernible retrieval unit
is no longer valid in SDR, idf can be interpreted as a
measure of a term’s discriminative power among XML
elements at different levels in the collection’s hierar-
chy. Its value will depend on the chosen unit, and the
collection (sub-collection) that is being considered.

When determining the local and global representa-
tions of a sub-collection, we also need to take into ac-
count the following two issues:

1. The resulting termspaces should support the se-
lection of databases during retrieval.

2. Inorder to obtain an aggregated termspace for the
whole collection we must be able to combine the
local and global representations of the individual
sub-collections that are considered for a retrieval
run. Here, we could base our aggregation on the
termspaces of the databases or on the termspaces
of the atomic elements within the sub-collections
(e.g. the union of XML documents within the
databases).

For the first task we can use a probabilistic representa-
tion of the sub-collections’ termspaces, where the prob-
ability of a given term can be estimated using the stan-
dard tf and idf calculations. Based on the individual
termspaces of the different sub-collections we can then
employ cost-based strategies to support the selection
of sub-collections that are promising for retrieval (sec-
tion 2.2).

To address the second issue we maintain an occur-
rence value of the terms within the sub-collections.
This is needed to overcome problems of information
loss, which occurs when dealing with the probabilis-
tic representations of termspaces. This problem can be

demonstrated by the following simple example. Say
that we have a sub-collection of 10000 documents
and a term, “multimedia”, which occurs in 1000 of
these documents. The probabilistic representation of
this term in the sub-collection’s global termspace may
be given as 1og(10000/1000), when estimated using a
standard idf function. Similarly, in a sub-collection
of 10 documents where the same term occurs in 1
document, the term will be assigned the idf value
of log(10/1). Aggregating these two sub-collections
based on the probabilistic (frequency-based) represen-
tation of their termspaces will obviously lead to incor-
rect weighting and hence retrieval results.

However, by maintaining the occurrence values of
terms within the sub-collections, we can aggregate the
termspaces without any misrepresentation. For exam-
ple, the aggregated idf -value of the term “multimedia”
from the above two sub-collections can be computed as
follows:

10000 + 10
1000+ 1
From the idf-values (global for the whole collec-
tion and for each sub-collection), we estimate so-called

termspace probabilities. We base the estimation on the
maximal idf -value (idf

idf(multimedia) = log

ma:c)
idf(multimedia)
idf

max

P(multimedia) :=

Thus, terms that occur infrequently in the collection
have a high probability. The corresponding event in
the event space would be: “term multimedia is infor-
mative/discriminative”.

Aggregation based on the occurrence information,
therefore, allows for transparent aggregation across
heterogeneous collections with different local repre-
sentations. This ensures that the resulting global
termspace is indifferent whether we aggregate based
on the termspaces of the sub-collections or based on
the termspaces of the elements. With this approach we
achieve a scalable distributed index that bears the same
information and properties as an atomic index over the
whole collection.

2.2 Database selection

For increasing the efficiency of a retrieval run, we per-
form a pre-selection of the promising databases based
on a content-description of the sub-collections. Using a
cost function (for example, based on the expected num-
ber of retrieved documents), we access those databases
that allow us to stay within a given time and resource
limit. This approach could be extended using estima-
tions for the probability of relevance [9, 7], however,

51

often, retrieval quality data are not available, and there-
fore we apply content-based and quantity-based mea-
sures.

As an example for content-based measures, given
the following representations, we can base the selection
of promising databases on the idf values of the query
terms, where low values would indicate higher concen-
tration of relevant documents within a sub-collection.

db_1:
0.28 idf(multimedia)
0.34 idf(retrieval)

db_2:
0.78 idf(multimedia)
0.61 idf(retrieval)

In a collection of XML documents, each document
can be viewed as a collection of XML elements, where
each element can be regarded as a sub-collection in it-
self, the same way as we consider the hierarchy of a
distributed collection. Based on this augmented view
a hierarchy of representation layers, each with its own
termspace, could be derived for a collection consist-
ing of sub-collections, sub-sub-collections of XML el-
ements, etc. The computational costs associated with
the representations of the different layers, however,
have to be balanced against the utility of such informa-
tion. Depending on the size of the collection an appro-
priate hierarchy can support database selection strate-
gies to zoom in on promising sub-collections and sub-
sub-collections, etc.

2.3 Term and context selection

To further improve indexing and retrieval efficiency we
reduce the number of terms and retrievable contexts.
The removal of stopwords is the classical strategy in
IR, and in the same manner, we consider some contexts
(XML elements), for example those carrying only lay-
out information, as “stop-contexts”. Although layout
related tags should not be present in an XML source,
often authors mix semantic and layout information in
their documents. Other approaches that support a strat-
egy to identify certain contexts as non-retrievable ele-
ments are methods that rely on defining a smallest re-
trievable unit.

Our approach here aims at identifying layout con-
texts from the frequency information about the dis-
tribution of contexts within other contexts. A possi-
ble criteria for identifying stop-contexts (non-semantic
contexts) is to classify contexts according to their
occurrence within different super-context types and
within the same actual context object. For example,

we can detect a layout context-type, such as <bold>,
based on the assumption that it is more likely to oc-
cur within a wide range of context types, e.g. title,
paragraph, section, table, bibliography, etc., and hence
follow a distribution that is closer to random across
the different context-types, than the occurrence pattern
of a semantic context type, such as <section>, which
would usually occur only within a limited number of
context-types, e.g. within article elements.

In addition to stopword and stop-context removal,
we skip the indexing of further terms and contexts to re-
duce the use of resources. However, unlike stopwords
and stop-contexts we risk here a decrease in retrieval
quality in favour of efficiency. The challenge here is
to meet the best trade-off between quality and resource
usage. Since several methods already exists that tackle
this problem, including works on Latent Semantic In-
dexing, we do not address this issue in detail here.

We apply the term and context reduction strategies
both for document indexing, and query processing.
Given this strategy, we view “intelligent” indexing as
an indexing process that optimizes the retrieval qual-
ity for a given amount of resources (e.g. index what is
needed not what is possible).

2.4 Parallel query processing

In a retrieval experiment, unlike in real life ad-hoc re-
trieval, we deal with many queries. Under such cir-
cumstances we need to decide about the strategy for
combining the query and the database dimensions. We
distinguish two different batch retrieval strategies:

1. For each query, we retrieve from the set of
databases.

2. For each database, we run the set of queries.

The design depends on the possibilities in paralleli-
sation and the costs associated with a query evaluation
or a database access.

Often, the access (in particular, the re-initialisation
of a connection) to a database is very expensive. There-
fore, it is often worthwhile to optimize with respect to
database connectivity, e.g. we run the set of queries for
a database. This strategy is based on the assumption
that a query switch is less expensive than a database
switch. The use of this strategy is further supported by
the fact that parallel access to queries is usually less of
a bottleneck than a parallel access to (possibly large)
databases.

In addition to the parallelisation with respect to
databases and queries, each query can be parallelised
by processing each query term independently.

52

2.5 Augmentation

With augmentation we refer to the feature in XML re-
trieval that the content of a context is made up of the
contents of its sub-contexts. Augmentation is the un-
derlying concept of aggregation-based structured doc-
ument retrieval systems, which represent or estimate
the relevance of document parts based on the aggre-
gation of the representation or estimated relevance of
their structurally related parts [15, 18, 4]

Computing the augmented (aggregated) content of
each retrievable context is, however, an expensive com-
putation, in particular since for very few terms, very
few aggregated representations are actually retrieved
(normally, far less documents of a collection are re-
trieved than documents exist in the collection, and far
more terms occur in the collection than in queries).

In order to avoid this expensive use of resources,
we restrict the aggregation to the query terms and the
super-contexts of retrieved contexts only. Of course,
this means that the aggregation has to be performed
during retrieval time. We refer to this strategy as
“local” augmentation versus “global” augmentation,
where the latter would take place during indexing and
would involve the augmentation of all retrievable con-
texts in the collection. Local augmentation puts em-
phasis on scalable strategies that reduce indexing re-
source usage.

We describe the augmentation process in a
deductive database approach. Let the relation
“acc(parent,child)” contain the parent-child relation-
ships in an XML collection. The transitive closure over
the collection is then formulated as follows:

acc(Super Cont ext, SubContext) :-
acc(Super Context, Context) &
acc(Cont ext, SubContext).

For evaluating the rule, a loop over a relational program
is processed:

do {
acc_previous = acc;
acc =
UNI TE(
acc,
PRQJECT[$1, $4] (
JA N $2=%1] (acc, acc)));
} while (acc !'= acc_previous);

In each iteration, the “acc” relation is computed and
compared with its previous instance. If the instance
does not change anymore, then the transitive closure is
completely computed.

This operation is very expensive for large data
sources, even with the so-called semi-naive evaluation,

which considers only the increments of an iteration for
computing the next increment.

Our strategy for cost reduction is to exploit the strict
hierarchical nature of XML collections, which allows
for a stepwise computation of the transitive closure.

acc2 = PRQIECT[$1, $4] (

JA N $2=%1] (acc, acc))
acc3 = PRQIECT[$1, $4] (

JA N $2=%1] (acc2, acc))
acc4 = PRQIECT[$1, $4] (

JO N $2=%$1] (acc3, acc))

Here, the relation “acc2” contains the (super-context,
sub-context) relationships. Only these relationships are
then used for computing the relationships with distance
three in “acc3”. By exploiting the tree-structure of
XML documents, we achieve smaller acc(i)-relations
with increasing distance (i). Although the complex-
ity of the join remains the same, the processing of it
becomes faster for high distance acc-relations as the
number of tuples decreases. The repeated union and
the comparison of acc-relations needed in the stan-
dard evaluation of a deductive formulation of augmen-
tation is also omitted. We can further improve the effi-
ciency of the algorithm by restricting the augmentation
to a maximum distance. For example, for a document
structured in sections, subsections, paragraphs and sen-
tences, with a distance of 5 the content of the sentences
is aggregated to constitute the content of the document.

3 INEX Experiments

3.1 Collection indexing

The collection of documents within INEX is made up
of the IEEE Computer Society’s publications from 12
magazines and 6 transactions between 1995 and 2002,
containing a total of 12107 articles. The articles are
stored as XML files in a directory structure that cor-
responds to the tree in Figure 3. The root of the di-
rectory structure is “INEX”, which contains 18 “jour-
nal” directories and 125 “year” sub-directories where
the article files are stored. Using the flat (linear) distri-
bution architecture model, we can map the collection
to a number of “journal/year” databases and one global
augmented database. Given this structure, the task of
indexing the whole collection can be broken down to
the sub-tasks of indexing 125 sub-collections.

We used HySpirit as the platform on which we im-
plemented both the indexing and retrieval functions.
We employed a probabilistic aggregation-based ap-
proach, which views a document (or collection) as a

53

g1008
1995 <— g0024
Comuter Graphics 1996 .
. Sub-
INEX 2002 collection

Internet Computing

Figure 3: Collection tree

tree and defines the representation of a document com-
ponent (or sub-collection) as the aggregated represen-
tation of its sub-components. The representation of a
component includes aspects regarding both content and
structure.

During the indexing process we derive a representa-
tion of the document’s structure via the transitive clo-
sure of the document tree, and a representation of the
content for each leaf node within the document tree.
The content is then propagated up along the tree at re-
trieval time. The indexing process includes the mod-
elling of the XML elements’ contents as propositions
in probabilistic object-oriented logic (POOL), which
are then translated into tuples in probabilistic relational
algebra (PRA). Finally, these are stored in relational
databases. For example the XML fragment in Figure 4
is transformed to the POOL fragment shown in Fig-
ure 5 and then to the PRA code shown in Figure 6.

<article>
<sec>
Miultinedia retrieva
</ sec>
</article>

Figure 4: XML

article(articlell)
articlel[sec [nultinedia]]
articlel[sec 1[retrieval]]

Figure 5: POOL

In PRA, a document is represented using a number
of relations, including “tf” and “acc”. The “tf” relation
stores the occurrence of a term in a given context with
a given probability, where the probability assigned to
a term-context tuple can be estimated using standard

tf(term path)
i nstance_of (article[1],
article, cg/1995/g1008)
0.7 tf(multinedia,
cg/ 1995/ 91008/ articl e[1]/sec[1])
0.8 tf(retrieval,
cg/ 1995/ 91008/ articl e[1]/sec[1])
acc(cg/ 1995/ g1008/ article[1],
cg/ 1995/ 91008/ articl e[1]/sec[1])

0.5

Figure 6: PRA

tf calculations applied within the container XML ele-
ment. The *“acc” relation represents the edges in the
document tree. The probability assigned to an edge is
the accessibility weight reflecting the strength of the
structural relationship between a parent and child node.
The global termspace of the collection is computed
by aggregating the occurrence values of terms within
the sub-collections using the augmentation method de-
scribed in section 2. The following example shows
the representation of the term “multimedia” in the
termspace of the collection and a sub-collection.

0.2 idf (multimedia,
0.5 idf (nultinedia,

| NEX)
cg/ 1995)

As a result of our indexing process we created 125
relational databases, where each database contains the
index of a sub-collection (the articles within a year
of a journal). Each sub-collection maintains a local
termspace and structure information, and an additional
database contains the global termspace and information
on the collection’s overall structure.

During indexing we made use of distributed and par-
allel processing, although due to hardware limitations
(we had the use of a non-dedicated dual AMD 800
MHz server with 256MB RAM), we only processed
clusters of sub-collections in parallel (journals). Ta-
ble 1 lists the indexing times for the 18 journals, cal-
culated as the sum of the processing times of their re-
spective journal/year subcollections. We indexed 4-6
journals in parallel, while other processes were also
running on the server, which explains the big differ-
ence between the reported user and real times. Given
a true parallel architecture of 18 processors, the total
CPU time to index the INEX collection is 29.3 min-
utes. Parallel indexing of the whole collection at the
sub-collection level (journal/year) would take 4.4 CPU
minutes. Note that these times inlcude the creation of
the different representations (e.g. POOL, PRA, MDS
tuples, FREQ files etc.), the calculations of the differ-

54

ent termspaces, and the generation of the SQL com-
mands but not the actual population of the relational
databases.

Journal Size Real User CPU
id (MB) (min) (min) (min)
an 13.2 186 8.0 6.1
cg 19.1 413 129 9.6
co 404 1255 277 21.0
cs 146 37.6 9.4 6.8
dt 136 323 9.2 6.8
ex 203 438 134 101
ic 122 178 8.3 6.3
it 4.7 8.0 3.2 2.4
mi 158 378 105 8.0
mu 11.3 30.1 7.6 5.7
pd 10.7 236 6.9 5.1
S0 209 614 139 104
tc 66.1 921 433 293
td 588 712 395 26.8
tg 152 195 9.9 6.9
tk 481 559 316 2151
tp 629 100.8 418 288
ts 46.1 540 291 202
Max. 1255 433 293
Avg. 488 181 129
Per MB 1.7 0.6 0.4

Table 1: Indexing times

3.2 Query processing and retrieval

We used HySpirit and an additional perl script to au-
tomatically parse and process the title and keywords
components of the INEX topics. The resulting PRA
representation of a query contained the query terms
with associated term weights and a PRA program im-
plementing a retrieval strategy. For content-only topics
the retrieval strategy was based on a simple content-
retrieval approach, where the relevance status value of
leaf elements were calculated using tf and idf estima-
tions (section 2.1). For content-and-structure queries
the retrieval strategy combined content-retrieval func-
tions and context-filters. We viewed the target elements
of a query as a post-retrieval filtering task, which we
did not implement.

Using HySpirit we evaluated a query against the
distributed collection and applied our local augmen-
tation strategy (section 2.5) to the retrieval results.
Within our approach content-retrieval based on the lo-
cal and global representations (tf and idf) supports the
relevance-oriented ranking and the augmentation pro-
cess (acc) supports the coverage-oriented ranking of

the retrieved objects.

To implement parallel query processing we opti-
mized with respect to database connectivity and for
each database we evaluated the set of queries.

4 Conclusion

We identified in this paper an approach for scalable
experiments with XML collections. The strategies
(1) distributed and parallel indexing, (2) database se-
lection, (3) term and retrievable context reduction and
(4) distributed and parallel query processing are not
specific to XML, whereas the strategy regarding the
augmentation is particular to the aggregated nature of
XML collections.

In INEX we made most use of distributed and par-
allel indexing and retrieval. We also implemented a
local augmentation strategy, simply because a global
augmentation would have led to huge resource require-
ments.

Our further steps will make greater use of database
selection and “intelligent” reduction of indexing terms,
both on the collection and query side. In addition, we
see potential in the parallel processing of query terms.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J.L. Wiener. The lorel query language for
semistructured data. International Journal on
Digital Libraries, 1(1):68-88, 1997.

[2] W. B. Croft. What do people want from informa-
tion retrieval? D-Lib Magazine, 1(5), 1995.

[3] W. B. Croft, A. Moffat, C. J. van Rijsbergen,
R. Wilkinson, and J. Zobel, editors. Proceed-
ings of the 21st Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, New York, 1998. ACM.

[4] Hang Cui, Ji-Rong Wen, and Tat-Seng Chua.
Hierarchical indexing and flexible element re-
trieval for structured documents. In 25th Eu-
ropean Conference on Information Retrieval Re-
search (ECIR’03), 2003.

[5] D. Florescu, D. Kossmann, and I. Manolescu. In-
tegrating keyword search into XML query pro-
cessing. Proceedings of the Ninth World Wide
Web Conference, 33(1-6):119-135, 2000.

[6] W.B. Frakes and R. Baeza-Yates. Information Re-
trieval. Data Structures & Algorithms. Prentice
Hall, Englewood Cliffs, 1992.

55

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J.C. French, A.L. Powell, C.L. Viles, T. Emmitt,
and K.J. Prey. Evaluating database selection tech-
niques: A testbed and experiment. In Croft et al.
[3], pages 121-129.

O. Frieder, D. A. Grossman, A. Chowdhury, and
G. Frieder. Efficiency considerations for scalable
information retrieval servers. Journal of Digital
information, 1(5), 2000.

N. Fuhr. Optimum database selection in net-
worked IR. In J. Callan and N. Fuhr, editors,
NIR’96. Proceedings of the SIGIR’96 Workshop
on Networked Information Retrieval, 1996.

N. Govert and G. Kazai. Overview of the Initia-
tive for the Evaluation of XML retrieval (INEX)
2002. In N. Fuhr, N. Govert, G. Kazai, and
M. Lalmas, editors, Initiative for the Evalua-
tion of XML Retrieval (INEX). Proceedings of
the First INEX Workshop. Dagstuhl, Germany,
December 8-11, 2002, ERCIM Workshop Pro-
ceedings, Sophia Antipolis, France, March 2003.
ERCIM.

T. Grabs, K. Béhm, and H-J. Schek. Scalable
distributed query and update service implemen-
tations for XML document elements. In Karl
Aberer and Ling Liu, editors, Eleventh Inter-
national Workshop on Research Issues in Data
Engineering: Document Management for Data
Intensive Business and Scientific Applications
(RIDE-01), pages 142-152. IEEE Computer So-
ciety, 2001.

T. Grabs, K. Bohm, and H-J. Schek. XMLTM:
Efficient transaction management for XML docu-
ments. In Proceedings of the International Con-
ference on Information and Knowledge Manage-
ment (CIKM-02), pages 142-152, 2002.

Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon,
and P. Bruce Berra. Index structures for structured

documents. In Digital Libraries, pages 91-99,
1996.
H. Meuss and C. Strohmaier. Improving index

structures for structured document retrieval. In
21st BCS IRSG Annual Colloquium on IR Re-
search (IRSG’99), 1999.

S.H. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-C.
Zhoo. A flexible model for retrieval of SGML
documents. In Croft et al. [3], pages 138-145.

B. Ribeiro-Neto, E. S. Moura, M. S. Neubert,
and N. Ziviani. Efficient distributed algorithms to

[17]

[18]

[19]

[20]

[21]

[22]

56

build inverted files. In SIGIR, editor, SIGIR 99,
Proceedings of the 22nd International Confer-
ence on Research and Development in Informa-
tion Retrieval, pages 105-112, New York, 1999.
ACM.

W. Rogers, G. Candela, and D. Harman. Space
and time improvements for indexing in informa-
tion retrieval. In Proceedings of 4th Annual Sym-
posium on Document Analysis and Information
Retrieval, 1995.

T. Rolleke, M. Lalmas, G. Kazai, |. Ruthven, and
S. Quicker. The accessibility dimension for struc-
tured document retrieval. In Proceedings of the
BCS-IRSG, Glasgow, March 2002.

T. Rolleke, R. Libeck, and G. Kazai. The
HySpirit retrieval platform. In W. B. Croft, D. J.
Harper, D. H. Kraft, and J. Zobel, editors, Pro-
ceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, New Orleans, USA,
New York, August 2001. ACM.

R. Sacks-Davis, T. Dao, J. A. Thom, and J. Zo-
bel. Indexing documents for queries on struc-
ture, content and attributes. In M. Yoshikawa and
S Uernura, editors, Proceedings of the Interna-
tional Symposium on Digital Media Information
Base, pages 236-245, 1997.

D. Shin, H. Jang, and H. Jin. BUS: an effective
indexing and retrieval scheme in structured doc-
uments. In Proceedings of the third ACM Con-
ference on Digital libraries, pages 235-243, New
York, 1998. ACM.

J. E. Wolff, H. Florke, and A. B. Cremers. Search-
ing and browsing collections of structural infor-
mation. In Advances in Digital Libraries, pages
141-150, 2000.

Determining the Unit of Retrieval Results for XML Documents

Kenji Hatand, Hiroko Kinutanf¥, Masahiro Watanalie Masatoshi Yoshikawd, and Shunsuke Uemdra
TGraduate School of Science and Technology, Nara Institute of Science and Technology, Japan
fCREST Program, Japan Science and Technology Corporation, Japan
*Department of Educational and Information Technology, National Institute of Special Education, Japan
*Information Technology Center, Nagoya Univeristy, Japan

Abstract In order to develop a keyword-based XML document

In the research field of document retrieval using seveFS!”evarltiS%]SteT’XXMNII_L ddocunr?enrlts n;(ul\jtl_ﬁirst b;d|r\|/(|ded
keywords as a query, retrieval results returned by inf [ro portions O't : octu N " S ticall Sd".’l 'da Xlli/FI)L
mation retrieval systems are whole documents or d nguage, so 1t 1s easy 1o automatically divide .
ument fragments. However, these are not suitable geuments into portions of XML documents using their

XML document retrieval since they do not correspon@arkUp [9]. However, if the XML documents are di-

to the information which users are searching for. Ther\é'ged as far as possible using their markup, the number

gresulting portions of XML documents will become

fore, we believe that retrieval results should be portio . . X
of XML documents, such as document chapters, s 1ge. In other words, it takes a very long time to retrieve

tions, or subsections. That is, the most important cdportions of XML documents refated to a keyword-based

cern in XML document retrieval is defining units for reJuery using our current XML document retrieval sys-

trieval results. In this paper, we propose a method (grm [8]'. For this reason, we have to deFermlne meaning-
determining a unit for retrieval results to be used in d Ul portions of XML documents as rgtrleval results and

velopment of a keyword-based XML document retrievé?duce the number of targeted portions of XML docu-

system. Using our method, we can reduce the num (Fnts.

of targeted portions of XML documents so that we can In this paper, we propose a method for determining a
speed up searching retrieval results and enhance ovaralt of retrieval results in order to reduce the number of

performance of XML document retrieval system. targeted portions of XML documents. If we reduce the
_ number of targeted portions of XML documents, we can
1 Introduction speed up searching retrieval results and enhance overall

XML (Extensible Markup Language) [3] is becomm{grformance of XML document retrieval system. We
widely used as a standard document format in many B'—,nk targgted portlons of XML dOC‘ﬂme”tS can be clas-
plication domains. In the near future, we believe thﬁlf'ed as elther_meanlngfL_JI or meaningless for USErs. we
a great variety of documents will be produced in XML(.:aII the meaningful F’O”!OUQPDS (Cohere_.nt Partial
Therefore, in a similar way to Web search engines, XMrouments) It we can eliminate the meaningless por-

document retrieval systems will become very importa\]”ﬂ?ns of XML documents, the number of targeted por-

tools for users wishing to explore XML documents tions of XML documents will be reduced, with the result
In spite of the big demand for XML document. rethat we will be able to perform XML document retrieval

trieval systems, they are not yet available. It is true th pre quickly a_nd giciently than W'th. our current XML
cument retrieval system. For this purpose, it is im-

XML | h . .
many query languages have been proposed [rtant to decide how to define the CPDs of XML doc-

however, the XML query languages represent only o i .
kind of retrieval method for XML documents. We beyments. This approach has also been adopted in other
L document retrieval systems. Kazai et. al. said that

lieve that XML document retrieval systems should ado . - .
jwas important to eliminate stop-contexts in order to

a much simpler form of a query consisting of sever . .
keywords. This is because XML documents have Vaﬁphance scalability of an XML document retrieval sys-
[10]. Here “stop-contexts” has the same meaning as

ous kinds of document structure, so itis hard for users

enter both keywords and document structures as a qu&gzanlngless portions of XML documents” in our own

into XML document retrieval systems. Therefore, spe%‘p roach. Moreover, in research topics of Web informa-

ifying both keywords and document structures of XM;'O” retrieval, some researchers have proposed a method

documents, as is done with XML query languages, g defining tili meart;lnl_gful ?re]t totfh_Neb pageﬁ t[4' .12’ ﬁ)]
clearly not suitable for a query to XML document re: onsequently, we believe that this research topic will be

trieval systems. To cope with this problem, we ha\}@portant for XML document retrieval in the near fu-
chosen development of a keyword-based XML doc re.

ment retrieval system as a research theme. The remainder of this paper is organized as follows.

57

First, we describe our data model of XML documentr&@ Coherent Partial Document

trieval in Section 2. Then, we explain how to determige der t i tial XML d ts based
meaningful portions of XML documents in Section n order fo retrieve partia ocuments based on

and report experimental results using information eg_keyword—based query, XML documents stored in an

tracted from XML documents in Section 4. Finally, w .Z/Ide.O(;umeT rle%\(;\ll_aldsystem ?re rlequweg to bte di-
conclude our paper in Section 5. vided into partia ocuments. In such a situa-

tion, however, the number of divided partial XML docu-
2 Our Data Model ments may beqome hutjeAs a result, it may be dicult
to perform dficient XML document retrieval. To cope

In this section, we describe our data model following theith such problem, it is important to determine CPDs
notations and data model defined in XPath 1.0 [5]. of XML documents in order to reduce the number of

In our data model, an XML document is modeled aargeted partial XML documents.
a hierarchical tree. Figure 1 shows the logical struc-
ture of a sample XML document. The numbering .1 Concept of CPD

the nodes represent document IDs, which are deriviedyr approach, we have to determine CPDs of XML
using the document order defined in XPath 1.0. Alocyments. As mentioned previously, the CPD means
though there are seven types of nodes in the XPath d&§@ierent and meaningful portions of XML documents.

model, for simplicity, we limit our attention to the root For example, let us consider the case when a user is-

node, element nodes, attribute nodes and text ﬁOd%ﬁes a single keyword query “Hatano.” Which partial

In an XML tree, leaf nodes are text nodes or attribulgy) g0 ments are relevant as retrieval resuilts to this
nodes, and intermediate nodes are element nodes. Ery? The minimum portion of XML document con-

child element node of the root node is called tux- taining a character string “Hatano” is the partial XML

ument_node The e_xpanded-namef an element ”0‘_’3 document #25. A text representation of this partial XML
(or attribute node) is the element type name (or attr'b%gcument is shown asauthor>Hatano</authors.

However, we do not consider this partial XML docu-

name) of the node. Thstring-valueof a text node is
the text itself, thestring-valueof an attribute node is thement informative enough for the user, because the user

value.of the attribute, apd thﬂarmg-vglueof an element cannot know what “Hatano” has authored. On the other
node is the concatenation of the string-values of all teqﬁt-

and, returning the whole document is not adequate ei-
node descendants of the element node. In the XPath 9 q

del hat st hild relationship b . This is because the XML document in Figure 1 has
model, a somewhat strange paehild relationship be- two chapters, and “Hatano” is the author of the second

tween the element nodes and attribute nodes is used'cﬁapter For this reason, we believe that partial XML
el_ement nodg ISa parer}t of an attribute node, but the(‘,'i'tg'cument #20 will be the most relevant as a retrieval re-
tribute node is not a child of the element node. In oWl i+ of the query. That is, we regard partial XML docu-

da_ta model, however, we regafd fche attribute _node Bnt#20asa semantically consolidated granule of doc-
child of the element node. This is the onlfdrence uments

between the XPath data model and our data model. In XML document retrieval, we believe that such se-

Until now, two kinds of XML document retrieval mantically consolidated partial XML documents should
model based on the XPath data model have been pro- y b

) .) e retrieved as retrieval results. We call this type of
posed [1]: one is the non-overlapping match [6] and t artial XML documents a€oherent Partial Document
other is the proximal nodes [13]. Our retrieval model

similar to the model based on the proximal nodes. PD). If we can determine CPDs as targeted partial

: . L documents, the number of targeted partial XML
other words, our logical model of portions of XML doc-d . L
:) cuments will be reduced. This is because the CPDs
uments is a sub tree whose root node is an element noa(\f%'not exactly conaruent with partial XML documents
Therefore, we can identify a portion of an XML docu- Y 9 P

divided as far as possible using their markup; in short,
meqt by the reference numbeif the root node of th.e there may be some partial XML documents smaller or
portion of XML document. We refer to such a portion

- bigger than the CPDs. In order to determine the CPDs,
of the XML document as *partial XML document# we have already proposed context search approach in

We believe that retrieval results of XML documeniur previous paper [7[Context searchs used for repre-

retrieval systems should be partial XML documents fo enting a retrieval method which can return the CPDs as

Iovlvllngt_thr?e >|(:Pairr1]_data model if (\;\{e_;d(;g\;tl_hg INEX teﬁ%trieval results of a keyword-based XML document re-
cofectiorr. or [nis reason, we divide OCUMENtG g system. It can automatically identify the CPDs
of the INEX test collection into partial XML documentsWithout DTD (Document Type Definitions) of XML

and identify them by using their reference number in OYbcuments. The reason for not using DTD is that XML
proposed system. documents on the Net may have no DTD or have a great

1The remaining three types of nodes are namespace nodes, patiety of DTDs.
cessing instruction nodes and comment nodes.

2The INEX test collection is constructed by INEX Project orga- 3The number of divided partial XML documents is the same as that
nized by the DELOS Network of Excellence for Digital Libraries. of intermediate nodes.

58

root node

A
@ document node
O
0

1 V element node
book attribute node
4 [J textnode

O/ O O string-value
P

chapter

~
label 5 1 m
9 3
Sy § o O
titlepage section section

titlepage section

O
toc

5

L1000 TWX

23 25 28430 35

D 19 O O
7 C)g title author title subsec subsec
Y146
title author mleo Opara
l para para
3¢ 8 10 13 15& 17& 19 24 26 29
0 DhOLoD DDD
| | | | | |
fad = =
= cl E] |2 HNE
2 olgl B | |5
g S g g
2l |z g
g g g
N\ y,

Figure 1: A Tree Representation of an XML Document.

3.2 Context Search Approach formal definition of context nodes follows:

In our context search approach, we are required to fiRgfinition 1 (Context node) For a text node or an at-
context nodes. The context node of a node in an XMlibute nodenin an XML documenb, the context node
document is an element node which is an ancestor of ffd1 in D is denoted bycontex(n), and defined as fol-
text node. Intuitively, the context node gives the bountWws:

ary of the context of a text node or an attribute node. Thel. For an attribute noden, contextn) is the parent
context node is defined to be an ascendant node which glement node of.

does not have sibling nodes with same expanded-name.
Thus, the element node plays a unique role in the partia:f-
XML document defined by the context node.

For example, in Figure 1, the context node of the text
node #26 is the element node #20. This is because every
node between the paths (#22, #25, #26) does not have a
sibling node with same expanded-name, but the node
#20 has (i.e. the node #4). This implies that the role
of the text node #26 is unique within the partial XMLThe definition of context node is based on the topol-
document #20, but not unique within the partial XMlogy of document trees, especially on the number of sib-
document #1. In fact, we can observe the text node ##s with same expanded-name. Identification of con-
represents the author of the second chapter (partial XNExt nodes is easily done by scanning the XML docu-
document #20), while the node #10 represents the awent instances.
thor of the first chapter (partial XML document #4). As If we use the context search approach to determine
another example, let us consider the text node #32. TBEDs of the example XML document in Figure 1, we
parent node #31 has the sibling node #33 with the sanan get partial XML document #4, #20, #27, #30, #35,
expanded-name. If we apply the rule explained in tlend #38. However, we also want to get other partial
above example, the context node of #32 would becod®IL documents as CPDs like partial XML document
#31. However, we consider the element node #31 da&lsl in Figure 1. As the formal definition of context
not give a proper boundary of the context of #32. Twode shows, this type of partial XML documents cannot
avoid such cases, we ignore the sibling nodes of the plag-derived as a CPD using the context search approach.
ent node. To find the context node of the nageve As a result, we can use the context search approach to
start from the grandparent aof and go up until we find reduce the number of targeted partial XML documents,
a node having a sibling with the same expanded-narbat cannot use it to strictly determine CPDs of XML
Hence, the context node of #32 is defined to be #30. Téhecuments.

For a text noden, contex{n) is defined as fol-
lows: Letg(n) be the grandparent node of Then,
contextn) is the lowest nodmon the path between
g(n) and the document nodg such thatm has a
sibling node having the same expanded-name with
m. If such a noden does not existgcontextn) is
defined to bag.

59

3.3 Statistical Approach

In context search approach, we utilize only structural
information of XML documents to determine CPDs.

However, as it was shown, we cannot exactly determine
the CPDs which we defined in Section 3.1 using only
structural information of XML documents. Therefore,

we have to consider not only structural information but
also other information of XML documents for determin: o
ing CPDs. Eventually, we utilize these two analyses extracted by

T : L both structural analyzer and content analyzer of our
We distinguish three type§ of qurmann n XMLXML document retrieval system, and generate a com-
documents, such agructural information content in-

¢ i dstatistical inf tion Th N fpound index file for #icient retrieval of partial XML
ormation andstatistical Information The€se types ot y, ., mants using a keyword-based query. Needless to

osré(y, the partial XML documents contained in the com-
pound index file are CPDs determined by analyzing the
statistical information.

on the vector space model because we can generate
an inverted file for partial XML document retrieval.
Moreover, we can find the number of tokens which
are included in partial XML documents from the
content information. We think the number of to-
kens is also statistical information, so that we can
utilize it to determine CPDs of XML documents.

tent analyzer in our XML document retrieval system.

e structure analyzer
Using the structure analyzer, we can analyze struA:-
tural information, such as element names, their
path expressions, and element relationships A we described in the previous section, the most im-
XML documents. The structure analyzer is conportant concern of XML document retrieval is to deter-
posed of an XML parser, so it is easy to extragnine CPDs of XML documents using the statistical in-
the structural information. Moreover, if we extractormation. However, the size of partial XML documents
only structural information, we reconstruct origidiffer, so that we cannot define an appropriate size of
nal XML documents. Thus, the structure analyz&iPDs easily. Therefore, we perform many kinds of ex-
generates an index file based on structural inform@eriments and report the experimental results in order to
tion. determine threshold values of the statistical information.

Experimental Evaluation

Table 1 shows the result of analyzing the XMI4.1 Experimental Setup

document shown in Figure 1 using the structure agyr prototype system for determining threshold values

alyzer. From this figure, we can appreciate maRy the statistical information performs the following pro-
kinds of information, such as names of root nodgesses:

their path expressions, IDs of targeted partial XML

documents, and the number of words in the partiall. Our system analyzes XML documents using an
XML documents. Using this analysis, it becomes XML parser called Apache Xercgsand constructs
possible to derive CPDs statistically. For example, DOM trees of the XML documents. We use the

we can get 24 partial XML documents from the
XML document shown in Figure 1, because the
number of intermediate nodes of the XML docu-
ment is 24. However, the size of some partial XML
documents is too small, so that we believe that they
are not adequate as CPDs, because they are not in-
formative enough. Therefore, we utilize the num- 2
ber of words of targeted partial XML documents

in order to eliminate small partial XML documents
from targeted partial XML documents.

content analyzer

The content analyzer counts frequencies of words
which are included in partial XML documents and
calculates weights of words as feature vectors 013 :
each partial XML documents. The weights of
words are calculated by using a keyword weight-
ing strategy of having specialized in partial XML
document retrieval.

Table 2 shows a result of analyzing the XML docu

XML documents included in the INEX test col-
lection which consists of a set of journals of IEEE
Computer Society. The size of the INEX test col-
lection is about 500 MBytes and it contains 12,107
articles.

Our system divides the XML documents into par-
tial XML documents as far as possible. The num-
ber of divided partial XML documents is about
seven million, and the number of element types of
partial XML documents is 181 Moreover, it also
carries out stemming and stopword removal to de-
vided partial XML documents.

In order to determine CPDs of the XML docu-
ments, we investigate several statistical informa-
tion, such as the number of word® and the
number of tokens, which were derived prior to
and after stemming and stopword removal, respec-
tively. Moreover, we also investigate the ratio of

ment shown in Figure 1 using the content analyzer.

4http ://xml.apache.org/xerces-j/index.html
5In DTD of the INEX test collection, 192 element types of partial

If we use this analysis, we can retrieve partial XMlyocuments are defined. We think some element types of partial XML
documents related to a keyword-based query baseeuments have no word in themselves.

60

Table 1: Structural analysis of an XML document shown in Figure 1.

partial doc. ID | element type[path expression [# of words
1 | book /book[1] 324

2 | toc /book[1]/toc[1] 47

4 | chapter /book[1]/chapter[1] 92

6 | titlepage /book[1]/chapter[1]/titlepage[1] 9

7 | title /book[1]/chapter[1]/titlepage[1l]/title[1] 8

38 | section /book[1]/chapter[2]/section[2] 18

39 | para /book[1]/chapter[1]/section[2]/para[1] 18

Table 2: Content analysis of an XML document shown in Figure 1.

partial word # of
doc. ID data | hatano| information | --- | xml | tokens
1| 0.435 0.123 0231 | --- 0.645 245

2 | 0.241 0 0.728 | --- 0.824 5

4 | 0.781 0 0.765 | --- 0.645 183

39 | 0.303 0 0.116 | --- 0.183 2

tokensR defined as follows:

nk R aye (%)
R = _w (1) mo-10
n 010-20
[B20-30
4. Using three types of statistical information of each 2o
B50-60

partial XML document, we discuss which partial
XML document is meaningful or not. If the XML
document is meaningful portion of the XML docu-
ments, it is called CPD.

E60-70
B70-80
E80-90
[90-100
100

5. We also utilize the number of partial XML docu-
mentsN as the Sta_t'St'Cal information, becausés Figure 2: The number of element types of partial XML
useful for evalgatlng overall performance of XMLyocuments based Rue.
document retrieval system. XML document re-
trieval system has to enhance overall performance
for retrieving partial XML documents. found thatR,. of the partial XML documents which
. . . _C?ntain many number of words and tokens in themselves
6. Finally, we determine the adquatg size of pa_rug smaller than those of others. Moreover, the number
XM!‘ docum_ents as CPDs considering the Statistly ejement types of the partial XML documents which
cal information. have one hundred tokens or more is at most 20. In short,
4.2 Experimental Results we can forecast that the size of almost all partial XML
gocuments is small, so that they are not informative for
users. Therefore, the partial XML documents whose
Rae is large may be not suitable for CPDs.
At the same time, we focus on the number of par-
tial XML documentsN (see Table 4)Ry. of the partial
> ”ik XML documents whosey, . is small is approximately
Reve = G) 100%, so that the partial XML documents may not be
! suitable for CPDs. From the above-discussed points,
The elements in the table are sorted in descending orderthink it is hard to determine CPDs based on element
of average number of wordg .. As Table 3 shows, thetypes of partial XML documents, because the number
elements located at higher levels of the document stra-words,n”, (or the number of tokensK) of each par-
ture of the INEX test collection, e.@ooks, journals, tial XML documents vary widely. Therefore, we need
articles, were ranked higher, because the size of theanalyze the statistical information in more detail.
partial XML documents whose root node is a higher- Figure 2 shows the classification of partial XML doc-
level-element of the XML document are larger. We alaaments based on average ratio of tokRgs. The values

Table 3 shows the number of partial XML documen
N, the number of words®, the number of tokensK,
and average ratio of tokefy, in the partial XML doc-
uments. HereR,e is defined as follows:

61

Table 3: Statistical Analysis of Partial XML Documents (Top 20 in descending ord&j of

| # of partial # of wordsn®” # of tokensn® o
elementtype| jocumentsn [Ave. (e [Max. (o) [Min. (N2) | Ave. (M,e) [Max. (M) | Min (K, Rave (%)
books 125 337,099 894,853 42,734 28,897 64,181 6,341 857
journal 860 48,997 129,417 17,192 7,342 14,903 3,982 14.99
article 12,107 3,478 28,824 32 974 4,727 29 28.02
bdy 12,107 2,884 28,276 13 765 3,943 11 26.55
index 117 2,585 10,728 381 623 1,593 230 24.13
bm 10,060 604 10,074 2 310 2,863 2 51.40
sec 69,733 501 16,089 1 201 2,613 1 40.24
dialog 194 458 2,424 21 212 906 19 46.45
bib 8,543 350 5,690 8 194 1,959 8 55.48
bibl 8,551 350 5,690 8 194 1,959 8 55.48
tgroup 5,822 318 3,961 2 62 401 2 19.58
ssl 61,490 280 11,857 1 127 2,109 1 45.61
app 5,863 262 7,698 2 138 1,353 2 52.72
tbody 5,820 233 3,851 2 49 390 2 21.23
ss3 127 213 1,361 9 91 325 9 42.88
ss2 16,288 189 11,640 1 92 1,261 1 48.90
tbl 12,740 159 3,965 6 41 414 6 26.17
proof 3,765 122 3,815 5 60 801 5 49.71
dl 353 120 1,562 11 52 745 5 43.90
14 117 92 794 6 37 231 6 40.83

6,802,061 2,222 894,853 1 234 64,181 1 38.85

Table 4: Statistical Analysis of Partial XML Documents (Top 20 in descending ordg) of

of partial # of wordsn®”

of tokensnk

elementtype| gocymentsu [Ave. (e [Max. (o) [Min. (n2.) | Ave. (M§,e) [Max. (M) | Min (K, Rave (%)
p 762,223 35 3,272 4 27 313 4 78.43
tmath 574,395 2 288 1 2 60 1 96.09
ref 395,933 5 15 3 5 15 3 100.00
it 394,549 2 149 1 2 96 1 97.21
au 317,457 2 28 1 2 26 1 99.96
entry 317,384 4 167 2 4 50 2 99.19
snm 311,257 1 15 1 1 15 1 100.00
ipl 178,788 32 1,529 1 24 400 1 74.69
obi 164,908 3 226 1 3 142 1 98.52
ti 159,565 4 65 1 4 48 1 99.13
pdt 154,978 4 7 1 1 7 1 100.00
yr 154,943 1 7 1 1 7 1 100.00
sub 154,324 1 18 1 1 15 1 99.82
bb 149,168 20 237 2 19 164 2 97.33
st 136,935 1 36 1 2 27 1 99.56
fnm 135,192 1 9 1 1 9 1 100.00
atl 134,247 5 70 1 5 54 1 99.35
b 123,463 2 273 1 2 86 1 98.54
pp 108,134 1 10 1 1 10 1 99.99
scp 107,544 1 18 1 1 14 1 99.99

6,802,061 2,222 894,853 1 234 64,181 T 38.85

in the circle graph mean the number of element typean roughly determine CPDs of XML documents if we
of partial XML documents in eacR, classified into utilize the number of words”, the number of tokens
eleven diferent classes. As in the figure, average re, and the ratio of tokenB. If we would like to strictly

tio of tokensRye Of 62 element types of partial XML determine CPDs of XML documents, we may be able
documents is 100%, and that of 36 element types lte-utilize queryanswer sets of a test collection. At the
tween 90% and 100%. Almost all partial XML docupresent stage, we summarize the definition of CPDs of
ments classified into 9& R, < 100% lie at the end XML documents as follows:

of XML tree which expresses an XML document of the

INEX test collectiofi, and have small number of words

and tokens.

At the same time, we draw correlation between aver-
age ratio of tokenf,,e and average number of tokens
nk . as Figure 3. As in Figure 3, average number of to-
kens of partial XML documents whose ratio of tokens is
more than 90% is less than 80, so that we can find that

the size of partial XML document is smalli,, of the
partial XML document is large.

From the above-mentioned points, we believe that we

6XML documents of the INEX test collection can be expressed as

one XML document.

62

In these experiments, we carried out stemming and
stopword removal as pre-processing before analyz-
ing the statistical information. On the other hand,
we also analyzed the statistical information with-
out pre-processing. Comparing these analyses, we
cannot find any dierence, so that we think that the
statistical information is mostly ufi@cted by pre-
processing.

Almost all partial XML documents whose ratio of
tokensR are less than 90% contain less than one
thousand tokens. Therefore, we believe that the
number of tokens of a CPD may be at most one
thousand.

nk mation of the partial XML documents which par-
100,000 ticipants of INEX project evaluated as answer doc-
o books uments to a quefy As in Table 5, average ratios
10000 | of tokens of answer documents are less than 70%,
so that we may be able to assume that the partial
XML documents whose ratios of tokem,e are

1000 o e more than 70% are not CPDs. If we assume, the
N . number of partial XML documents which should
o | e be CPDs will be reduced to about one-tenth (see
. . s e Figure 4).

o % o
.
. o ..00'.2 * e .,

‘s
o @ 370 o0

0 R At 5 Conclusion
In this paper, we proposed a method for determining
k.. CPDs of XML documents in order to reduce the number
0 20 40 60 80 100 of targeted partial XML documents. We only discussed

a brief statement on thefiziency of our statistical ap-

Figure 3: Correlation betwedRye andnk,.. proach, because we could not utilize qyanswer sets
of the INEX test collection, but then we could forecast
that we will be able to reduce the number of targeted

partial XML documents and perfornficient keyword-

based XML document retrieval, so that overall perfor-
mance of XML document retrieval system may be en-

Rave (%)

mon hanced.

oo However, we cannot carry out in-depth experiments
o for verification of our statistical approach using the

25040 INEX test collection in this paper. Therefore, we have
o0 to verify the dfectiveness of our approach as soon as
B0 possible. Moreover, if we can determine CPDs of XML

100

documents, we have another problem about a similar-
Figure 4: The number of partial XML documents basdl calculation method of betwee_n CPDs and a users’
0N Raye. query. _Thg _curreljt document retrieval systems calculate
the similarities using only contents of whole documents;
by contrast, the XML document retrieval system should
¢ As we described in Section 3.2, meaningful partiablculate the similarities using both contents and struc-
XML documents appear repeatedly in XML docuture of partial XML documents, we believe. Lalmas and
ments. Consequently, the partial XML documentse have already studied solving this problem for semi-
whose frequenci is large and whose ratio of to-structured documents such as SGML and XML docu-
kensRis small are suitable for CPDs. ments [8, 11], so that we will adopt these approaches
to our XML document retrieval system. Furthermore,
 We think that the partial XML documents whosey, this paper, we assumed that a query of XML docu-
ratios of tokensR are 100% must not be suitablenent retrieval consists of several keywords in this pa-
for CPDs. Moreover, the partial XML documentger; however, we have to consider queries specifying
whose ratio of tokenR is between 90% and 100%qoth contents and document structures as is done with
may be not suitable for CPDs. If we assume that\iL query languages. Therefore, our next step will be

the partial XML documents whose ratios of tokengeveloping an XML document retrieval system which
Rae are more than 90% are not CPDs of XMlean deal with such queries.

document of the INEX test collection, the num-

ber of. partial XML dpcuments which are i”dexe‘ACknOWIedgments

as a inverted list will be reduced to about one-

third (see Figure 4). Furthermore, if we can utilhis work was partly supported by the Ministry of Edu-
lize queryanswer sets of the INEX test collectioncation, Culture, Sports, Science and Technology, Japan,
we believe that we may be able to Strict'y deteklnder grantS #11480088, #14019064, and #14780325,
mine CPDs of XML documents. We could utilizeand by CREST Program “Advanced Media Technology
some quergnswer sets of the INEX test collecfor Everyday Living” of Japan Science and Technology
tion’, so that we also analyze the statistical infofcOrporation, Japan.

7In the INEX test collection, the quefgnswer sets are referred to 8Answer documents are evaluated as “3E” based on the INEX rel-
as INEX relevance assessment. evance judgement by participants of INEX project.

63

Table 5: Statistical Analysis of Answer Partial XML Documents.

topic ID | # of answer doc.] sum ofn”] nbe | sumofn® | e | Rae(%)
31 4 5,333 | 1333.25 2,178 544.50 40.84
32 35 34,660 | 990.29 11,363 | 324.66 32.78
33 2 227 113.50 139 69.50 61.23
34 66 224,817 | 3406.32 50,624 | 767.03 22.52
36 31 5,868 189.29 3,065 98.87 52.23
37 138 35,051 | 253.99 14,833 | 107.49 42.32
38 111 102,736 | 925.55 29,932 | 269.66 29.13
39 48 90,561 | 1886.69 26,045 | 542.60 28.76
40 123 455,587 | 3703.96| 120,760 | 981.79 26.51
41 57 3,526 61.86 2,216 38.88 62.85
42 91 25,043 | 275.20 11,778 | 129.43 47.03
43 15 58,971 | 3931.40 13,673 | 911.53 23.19
45 57 145,362 | 2550.21 47,449 | 832.44 32.64
46 26 15,674 | 602.85 5,591 215.04 35.67
a7 22 177,377 | 8062.59 32,356 | 1470.73 18.24
48 65 117,851 | 1813.09 26,750 | 411.54 22.70
49 9 32,703 | 3633.67 7,149 | 794.33 21.86
51 26 36,592 | 1407.38 11,449 | 440.35 31.29
52 15 37,402 | 2493.47 11,551 | 770.07 30.88
53 34 73,217 | 2153.44 22,187 | 652.56 30.30
58 210 441,319 | 2101.52 125,981 | 599.91 28.55
60 174 46,235 | 265.72 20,957 | 120.44 45.33
Ave. 62 98,460 1916 2,7183 504 35

References

[1]

2]

(3]

5]

[6]

[8]

R. Baeza-Yates and B. Ribeiro-Neto, editdviad-
ern Information RetrievalACM Press, 1999.

A. Bonifati and S. Ceri. Comparative Analysis []

of Five XML Query LanguagesACM SIGMOD
Record 29(1):68—79, Mar. 2000.

T. Bray, J. Paoli, C.M. Sperberg-McQueen, and
E. Maler. Extensible Markup Language (XML)
1.0 (Second Edition).
http://www.w3.0org/TR/REC-xml, Oct. 2000.
W3C Recommendation 6 October 2000.

S. Chakrabarti. Text Search for Fine-grained Senﬂ-ll

structured Data. Ifutorial Notes of the 28th In-
ternational Conference on Very Large Data Bgses
pages 115-135, Aug. 2002.

J. Clark and S. DeRose.
(XPath) Version 1.0.

http://www.w3.0org/TR/xpath, Nov. 1999.
W3C Recommendation 16 November 1999.

XML Path Language

R. Daniel, S. DeRose, and S. Maler. XML Pointer
language (XPointer) Version 1.0.
http://www.w3.0org/TR/xptr, June 2000.

W3C Candidate Recommendation 7 June 2000.

[13]

K. Hatano, H. Kinutani, M. Yoshikawa, and S. Ue-
mura. Extraction of Partial XML Documents Us-
ing IR-based Structure and Contents Analysis. In

Conceptual Modeling for New Information Sys[-14]

tems Technologievolume 2465 ofLNCS pages
334-347. Springer-Verlag, 2002.

K. Hatano, H. Kinutani, M. Yoshikawa, and S. Ue-
mura. Information Retrieval System for XML
Documents. InProc. of the 13th International

64

[10]

[12]

Conference on Database and Expert Systems Ap-
plications volume 2453 of NCS pages 758-767.
Springer-Verlag, Sep. 2002.

M. Kaszkiel and J. Zobel. Passage Retrieval Re-
visited. InProc. of the 20th Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrievapages 178-185.
ACM, July 1997.

G. Kazai and T. Rolleke. A Scalable Architecture
for XML Retrieval. In Proc. of the First Work-
shop of the Initiative for the Evaluation of XML
Retrieval ERCIM, Mar. 2003. (to appear).

M. Lalmas. Dempster-Shafer's Theory of Ev-
idence applied to Structured Documents: mod-
elling Uncertainty. InProc. of the 20th Annual In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieyalages
110-118. ACM, July 1997.

W.-S. Li, K.S. Candan, Q. Vu, and D. Agrawal.
Retrieving and Organizing Web Pages by “Infor-
mation Unit". InProc. of the 10th International

World Wide Web Conferenggages 230-244, May
2001.

G. Navarro and R. Baeza-Yates. Proximal Nodes:
A Model to Query Document Databases by Con-
tent and StructuréACM Transactions on Informa-
tion Systemsl5(4):400—435, 1997.

K. Tajima, K. Hatano, T. Matsukura, R. Sano,
and K. Tanaka. Discovery and Retrieval of Log-
ical Information Units in Web. InProc. of the
1999 ACM Digital Library Workshop on Organiz-
ing Web Spacepages 13-23, Aug. 1999.

CSIRO INEX experiments: XML search using PADRE

Anne-Marie Vercoustre® James A. Thom?

Peter Wilkins'

Mingfang Wu'l

1

Alexander Krumpholz' Ian Mathieson

Nick Craswell®

David Hawking?

LCSIRO Mathematical and Information Sciences
Private Bag 10, South Clayton MDC, VIC 3169, Australia

2School of Computer Science and Information Technology, RMIT University
GPO Box 2476V, Melbourne 3001, Australia

3CSIRO Mathematical and Information Sciences
GPO Box 664, Canberra, ACT 2601, Australia

Email for correspondence: Anne-Marie. Vercoustre@csiro.au

Abstract

This paper reports on the CSIRO group’s partici-
pation in INEX. We indexed documents and docu-
ment fragments using PADRE the core of CSIRO’s
Panoptic Enterprise Search Engine. A query trans-
lator converts the INEX topics into queries con-
taining selection and projection contraints for the
results. Answers are extracted from ranked docu-
ments and document fragments based on the pro-
jection contraints in the query.

1 Introduction

Broadly speaking there are two main approaches to
XML retrieval: a database approach as exemplified
by query languages such as XQuery and a text
retrieval approach as exemplified by search engines
ranking documents or document fragments. The
database and information retrieval communities
have different approaches to query evaluation.
The database community focuses on the expressive
power of query languages that retrieve exact
answers. The information retrieval community
focuses on the effectiveness of ranked retrieval.
Our approach at CSIRO to the INEX experiment
was to add database techniques to an underlying
text retrieval technology. Thus we combine
selection and ranking of candidate documents and
document fragments using information retrieval
with a database style projection to extract the
final answers. Further discussion of the motivation
for our approach is described elsewhere [1].

We discuss issues with topic formulation in Sec-
tion 2. In Section 3 we describe the overall archi-
tecture of our approach using PADRE, the core of
CSIRO’s Panoptic Enterprise Search Engine [2]. In

Section 4 we outline the INEX runs we made and
present our results.

2 Topics

Figure 1 shows topic 14, which is based on one of
the topics proposed by our group to find figures
that describe the Corba architecture and the para-
graphs that refer to those figures. We are using
this query in the rest of the paper as an example
to describe our system.

As well as an obvious typographic error in the
keywords, the topic finally used in INEX has sev-
eral limitations. First, we did not correctly for-
mulate the topic due to inadvertently overlooking
some aspects of the complex DTD; there are other
elements such as <figw> that should have logically
been included in the topic. This raises a question
for semi-structured retrieval — how much informa-
tion about the structure is it reasonable to expect
the average user to know? Second, due to the
INEX requirement that answers could only be a
single element it was not possible to capture the
semantics as described in the narrative, that is an
answer “would ideally contain both the figure and
the paragraph referring to it”. This could only
happen in section elements which would have larger
coverage than the specific information need. In
defining the syntax and semantics for INEX topics
it would have been desirable for different semantics
to be given to

<te>fig,p</te>

meaning an answer would both be a <fig> element
and a <p> element, whereas

<te>fig|p</te>

65

<?7xml version="1.0"
encoding="IS0-8859-1"7>
<!DOCTYPE INEX-Topic SYSTEM "inex-topics.dtd">
<INEX-Topic topic-id="14"
query-type="CAS" ct-no="075">
<Title>
<te>fig,p,ipl</te>
<cw>Corba architecture</cw>
<ce>fgc</ce>
<cw>Figure Corba Architecture</cw>
<ce>p, ipi</ce>
</Title>
<Description>

Find figures that describe the Corba architecture
and the paragraphs that refer to those figures.

</Description>

<Narrative>
To be relevant a figure must describe the
standard Corba architecture or a system
architecture that relies heavily on Corba.
A figure describing a particular aspect of a
system will not be regarded as relevant even

though the system may rely on Corba otherwise.
Retrieved components would ideally contain both

the figure and the paragraph referring to it.
</Narrative>
<Keywords>
CORBA ORB Object Request Brocker Architecture
interface invocation interoperability
communication protocols IDL
</Keywords>
</INEX-Topic>

Figure 1: INEX topic 14

would mean an answer is either element. It is the
former that the narrative of this topic implies.

3 System overview
3.1 System Architecture

Figure 2 shows the overall architecture of our
system. We translate INEX topics into queries
comprising a selection component and a projection
component; a simplified query is shown in the
architecture diagram. The selection component of
the query is sent to our search engine, PADRE,
which ranks the more similar matching documents
and document fragments meeting the selection
criteria. The projection component, that is mostly
based on the target element component of the
topic, is sent to an extractor that extracts the
desired answers from the ranked documents and
document fragments returned by PADRE.

3.2 PADRE indexing

We extended CSIRO’s document indexing and re-
trieval system, PADRE [3], to handle XML docu-
ments. PADRE is the indexing core of the Panoptic
Enterprise Search Engine [2] and combines full-text

Query

. Padre
selection o o
S
i:Corba /
c.Figure
+c:Corba
projection answers =
ranked list of
/ffig[contains full docs/
(" Corba")] | doc fragments
/Ip[contains
(.,"Corba")]
\> extractor

Figure 2: System architecture

and metadata indexing and retrieval. PADRE en-
ables us to rank documents primarily on how many
of the query terms appear in each document or doc-
ument fragment and secondarily on the relevance
score, using a slightly modified form of the Okapi
BM25 function [4].

We were able to adapt PADRE’s capability for
indexing metadata fields to enable us to index se-
lected XML elements. For example, given the map-
ping rule

//figec = i
the index terms for the element

<figc>Corba Architecture</figc>

wan

would be mapped to the field “i
i:Architecture.

As each element is processed, the first match-
ing rule determines what metadata field is used to
index the content of the element. In processing
the content of sub-elements the rules are reapplied.
Thus given the mapping rules

as i:Corba and

//p—c
//figec — i

<fige><p>Corba Architecture</p></figc>
would be mapped to c:Corba and c:Architecture.

66

article author

bibliography entry

paragraph text (but not within abstract,
keywords, acknowledgements etc)

publication date

o'
1

figure text

figure caption
journal title
abstract, NOT including ’s’ keywords

(SN
|

B
|

acknowledgements

- publisher

- affiliation

- table text

- keywords

article title

- url

- fragment subset(s)
- title of a section
- ISSN

- volume, issue, pp

N< & < g ¢ n R o'
I

Figure 3: Fields

This illustrates a weakness in our approach that
higher structural elements are ignored.

The mappings are also used in queries. For
example, the query “give me documents containing
figures with Corba architecture in the caption”
can be expressed as i:Corba i:Architecture.
This query will first return matching documents
that contain both “Corba” and “Architecture”
in a figure caption, followed by partial matching
documents that contain either “Corba” or
“Architecture” in a figure caption. Mandatory
constraints are supported, so this query could be
expressed as +i:Corba i:Architecture so all
matching documents must contain “Corba” in a
figure caption. Phrase querying is also supported,
in which case this query could be expressed as
i:"Corba Architecture" and only documents
containing the phrase “Corba Architecture” in the
caption of a figure would be returned as answers.

A complete list of the fields is shown in Figure 3
together with the actual mappings in Figure 4

We only defined mappings for concepts that we
considered useful for querying the INEX collection.
The “v” field is used to allow queries on particular
types of documents fragments.

3.3 Splitting

As shown in Figure 2 the system uses PADRE
to select and rank documents. We wanted
to make good use of PADRE’s initial ranking
and, since Wilkinson [5] shows that simply
extracting elements from ranked documents is a

/books/journal/title — j
/books/journal/issue — z
/books/journal/publisher — p
/books/PANOPTIC-from — v
/books/PANOPTIC-genericXPath — v

/article/fm/hdr/hdri/ti — j
/article/fm/hdr/hdri/crt/issn — y
/article/fm/hdr/hdr2/obi — z
/article/fm/hdr/hdr2/pdt — d
/article/fm/hdr/hdr2/pp — z
/article/fm/tig/atl — t
/article/fm/tig/pn — z
/article/fm/au — a
/article/bdy/sec — c
/article/fm/abs — 1
/article/fm/abs/p — 1
/article/PANOPTIC-from — v
/article/PANOPTIC-genericXPath — v

//ack = n
//ack/p = n
//kud — s
//kwd/p =+ s
//aff — q
//url — u
//st > w
//bb = b

//lp—c
//pl = ¢
//p2 = ¢
//p3 = ¢
//ipl — ¢
//ip2 = ¢
//ip3 = ¢
//ip4 — ¢
//ips — ¢
//ilrj = ¢
//item—none — ¢
//fig — £
//figu — £
//fge — i
//tbl = r

Figure 4: Actual mappings

poor strategy, we decided to investigate ranking
document, fragments as well as whole documents.
Thus before indexing by PADRE we split the
documents into various fragments and indexed the
fragments as well as the whole documents. For
the content only queries we expected that ranking
document fragments as well as whole documents
will improve performance by finding the relevant
portions of documents, especially where the
coverage of whole documents was too broad. For
the content and structure queries we expected the
splitting to improve the ranking but also envisaged
that for queries involving a specific target element

67

/article/
/article/bdy//fig/
/article/bdy//figu/
/article/bdy//ilrj/
/article/bdy//ipl/
/article/bdy//ip2/
/article/bdy//ip3/
/article/bdy//ip4/
/article/bdy//ip5/
/article/bdy//item-none/
/article/bdy//p/
/article/bdy//pl/
/article/bdy//p2/
/article/bdy//p3/
/article/bdy/sec/
/article/bdy/tbl/
/article/fm/
/article/fm/abs/
/books/

Figure 5: Document fragments

further extracting would be required. We describe
this further in the next section.

We analysed the collection and identified ele-
ments to use as fragments based on:

e 3 reasonable granularity that is not too small,
and

e the expected elements for results.

Thus we split document fragments based on the
paths shown in Figure 5 We also included some
additional context to the fragments such as the file-
name of the original document and the path within
the document to the fragment. This context allows
subsequent processing of the document fragment.

We were able to use our existing indexing and
retrieval engine to index both the documents and
the fragments as one collection although this in-
creased the number of “documents” by a factor of
100, and the size in bytes by a factor of 10.

If the query does not contain a projection,
then the result of query is simply the ranked list
produced by PADRE. Otherwise the extractor
described in the next section is applied to the
ranked list of documents and document fragments.

3.4 Extractor

Many of the content and structure queries contain
a projection. We automatically generate the pro-
jection when there is a target element in the topic.
Example of a projection in a query corresponding
to topic 14 is shown in Figure 6. The projection is
an XPath specifying the target element or elements
to be extracted from the ranked list of documents
and document fragments. The algorithm is as fol-
lows, for each returned fragment f:

</query>
<query topic-id="14">
<selection>
i:Corba
i:architecture
c:Figure
c:Corba
c:Architecture
[CORBA ORB Object Request Brocker
Architecture interface invocation
interoperability communication
protocols IDL]
</selection>
<projection>
//fig |
//plcontains(.,"Figure") or
contains(.,"figure") or
contains(.,"Corba") or
contains(.,"corba") or
contains(.,"Architecture") or
contains(.,"architecture")] |
//ipllcontains(.,"Figure") or
contains(.,"figure") or
contains(.,"Corba") or
contains(.,"corba") or
contains(.,"Architecture") or
contains(.,"architecture")]
</projection>
</query>

Figure 6: Query for topic 14

1. load the fragment, get the name of the embed-
ding article, load the full article A.

2. apply the XPath projection to the article A;
this returns ey, es, .. . e, elements.

3.9=f

4. while g! = nil do
if (9 ==e; for any e;)
then return the XPath of g and exit
else calculate g = parent(g)

5. if (there are e; that are descendants of f)
then return all of those and exit
else return the e; (if any)

After our inital submission, we looked at im-
proving the order of our final answers. We iden-
tified key terms in the projection, in the example
of topic 14 “Corba”, “Figure”, and “Architecture”.
By globally ranking the extracted fragments into
tiers based on how many of the key terms appear
in the projected elements, irrespective of how many
times they appear and ignoring upper and lower-
case differences.

3.5 Query Translator

The query translator constructed queries that we
could process with our search engine and extractor.

68

Figure 6 shows the query that was automatically
generated for topic 14.

The following process was developed by
analysing the structure of the topics in order
to deduce the semantics of the various possible
constructs in a topic, particularly the <Title> of
a topic.

The <cw> and <ce> elements in the title of the
topic are used to generate the selection component
of the query. Mappings, similar to those described
in Section 3.2 for the indexing, are used to map
paths within <ce> elements to PADRE fields.

If there is more than one field specified by the
paths within a <ce> element, then all possible
combinations of the field mappings from the <ce>
with terms from the <cw> must be generated in
the query.

When content element involves dates, we use
the metadata field “d” and convert the <cw> ele-
ment into constraints on numerical dates. Similarly
we attempt to identify phrases using location of
commas in topic, so as to take advantage of the
phrase feature of PADRE.

The <te> target element if present is translated
into the projection component of the query. When
the path in the projection maps to a field also used
in the selection component additional contraints
should be added to the projection.

4 Experiments and Results
We submitted three official runs to INEX:

e queries on full articles (run 1)
e queries on split articles (run 2)

e manually contructed queries on split articles
(run 3)

Subsequently we also explored:

e queries on split articles with post-projection
fragment reranking (run 4)

and corrected a bug with run 1:
e queries on full articles — revised (run 5)

Results for runs 2, 3, and 5 on both the content-
and-structure (CAS) and content-only (CO) top-
ics are shown in Figures 8, 9, and 10 respectively.
These figures show results for our runs (wide red
line) with a comparison to other systems.

We also analysed results on topic 14 in more
depth. Results for runs 2, 3, 4 and 5 on topic 14
are shown in Figures 11, 12, 13 and 14 respectively.
These graphs show relevance judgements for the
100 highest ranked answers for each run. Each
answer corresponds to a vertical bar of about 2mm

INEX 2002: with reranking

guantization: strict; topics: CAS
average precision: 0.176
(empty topic results ignored)

0.8

0.6

0.4 ‘ML

0 0.5 1
Recall

Precision

INEX 2002: without reranking

guantization: strict; topics: CAS
average precision: 0.143
(empty topic results ignored)

0.8

0.6

0.4 \AH
0.2

kf-s-___\—_

Precision

—\—\"‘——___

0 0.5 1
Recall

Figure 7: Nine queries on split articles (run 4) with
and without post-projection reranking

width. The highest ranked answer appears on the
left. The height of the vertical bars represents the
degree of relevance, and the greylevel the coverage.
For comparison we have also included the optimal
ranking in Figure 15 which shows there is still con-
siderable room for further improvement in XML
retrieval.

Results for run 4 on a limited set of topics is
shown in Figure 7. The reranking could only be
applied to nine queries where the target elements
also appear within the content word constraints.
For such queries the post-projection reranking of
fragments is effective as many unjudged elements
were returned. This is very clearly borne out with
topic 14, as can be seen from comparing Figure 14
with Figure 12. Overall the performance of the
nine queries with reranking (top graph in Figure 7)
is better than without reranking (bottom graph in
Figure 7).

In topic 14 the manually constructed query
performed worse than the automatically generated
query using the query translator. However as
shown in Figures 9 and 10 generally the manually

69

constructed queries performed much better than
the automatically generated queries for the CAS
topics. But this was not the case for the CO topics
as shown in Figures 9 and 10, perhaps because less
effort was spent on improving these queries.

Our draft version of this paper presented at the
INEX workshop as well as another of our papers [1]
has a claim, based on the erroneous run 1, that
using the collection containing documents and doc-
ument fragments (run 2) was more effective than
using just the full documents. However the new run
for the full documents (run 5) invalidates this claim
as shown by comparing Figure 10 and Figure §, in
fact the split performed worse.

A key question that the INEX experiments has
not addressed is do users want to get back doc-
uments fragments or are they more interested in
pointers to relevant parts within actual documents.
This raises questions about what constitutes an
answer and how answers should be organised when
presented to the user.

References

[1] N. Craswell, D. Hawking, A. Krumpholz, I. Math-
ieson, J. A. Thom, A.-M. Vercoustre, P. Wilking
and M. Wu. XML document retrieval with PADRE.
In Proceedings of the Tth Australasian Document
Computing Symposium, Sydney, Australia, 16 De-
cember 2002.

[2] CSIRO and Australian National University. Panop-
tic enterprise search engine. http://www.
panopticsearch.com/.

[3] David Hawking, Peter Bailey and Nick Craswell. Ef-
ficient and flexible search using text and metadata.
Technical Report TR2000-83, CSIRO Mathemati-
cal and Information Sciences, 2000. http://www.
ted.cmis.csiro.au/~dave/TR2000-83.ps.gz.

[4] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu and M. Gatford. Okapi at
TREC-3. In D. K. Harman (editor), Proceedings
of TREC-3, Gaithersburg MD, November 1994.
NIST special publication 500-225. http://trec.
nist.gov/pubs/trec3/papers/city.ps.gz.

[5] R. Wilkinson. Effective retrieval of structured
documents. In W. B. Croft and C.J. van Rijsbergen
(editors), Proceedings of the 17th Annual Interna-
tional Conference on Research and Development
in Information Retrieval, pages 311-317, Dublin,
Ireland, July 3-6 1994. Springer-Verlag.

70

INEX 2002: Split

quantization: strict; topics: CAS
average precision: 0.167
rank: 14 (42 official submissions)

INEX 2002: Split

quantization: strict; topics: CO
average precision: 0.037
rank: 24 (49 official submissions)

Figure 8: Queries on split articles (run 2)

INEX 2002: manual INEX 2002: fullC3

quantization: strict; topics: CAS quantization: strict; topics: CAS
average precision: 0.355 average precision: 0.173
rank: 1 (42 official submissions) rank: 13 (42 official submissions)

INEX 2002: manual INEX 2002: fullC3
guantization: strict; topics: CO quantization: strict; topics: CO
average precision: 0.041 average precision: 0.054
rank: 19 (49 official submissions) rank: 9 (49 official submissions)

Figure 9: Manually improved queries (run 3) Figure 10: Queries on full articles (run 5)

71

INE EEiIE I IEEmiiiEiEmE el n l 1

Figure 11: Results for Topic 14 — query on full articles (run 5)

I |] LI Il 1IN T i)

Figure 12: Results for Topic 14 — query on split articles (run 2)

Figure 13: Results for Topic 14 — manual queries (run 3)

Figure 14: Results for Topic 14 - query on split articles with further reranking of final answers (run 4)

Figure 15: Results for Topic 14 - optimal ranking (relevance only) with first version of relevance
judgements

In the above figures, the results are shown from left (highest ranked) to right. The height of the bar
represents the relevance and the colour of the bar indicates the coverage as shown below:

|E - exact coverage

|.|S - too small cd{rérage

iL — too large coverage|

N = no coverage
| | %

]in@ value

©Copyright 2002, CSIRO Australia. The authors assign to the European Research Consortium for
Informatics and Mathematics (ERCIM) and other educational and non-profit institutions a non-exclusive
licence to use this document for personal use and in courses of instruction provided that the article is
used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to
ERCIM to publish this document in full on the World Wide Web and on CD-ROM and in printed form
with the conference papers and for the document to be published on mirrors on the World Wide Web.
No Rights to Research Data is given. CSIRO and the Author/s remain free to use their own research
data including tables, formulae, diagrams and the outputs of scientific instruments.

72

JuruXML — an XML retrieval system at INEX’02

Yosi Mass, Matan Mandelbrod, Einat Amitay, David Carmel, Yoelle Maarek, Aya Soffer
IBM Research Lab
Haifa 31905, Israel
+972-3-6401627
{yosimass, matan, einat, carmel, yoelle, ayas}@il.ibm.com

ABSTRACT

XML documents represent a middle range between
unstructured data such as textual documents and fully
structured data encoded in databases. Typically,
information retrieval techniques are used to support search
on the “unstructured” end of this scale, while database
techniques are used for the other end. To date, most of the
work on XML query and search has stemmed from the
structured side and is strongly inspired by database
techniques. We describe here an approach that originates
from the “unstructured” end and is based on augmentation
of information retrieval techniques. It is specifically
targeted to support the information needs of end-users,
more specifically a generic querying mechanism, and
ranking of results for approximate needs. We describe our
query format and ranking mechanism and demonstrate how
it was used to run the INEX topics.

Keywords
XML Search, Information Retrieval, Vector Space Model.

1. INTRODUCTION

To date, most of the work on XML query and search has
stemmed from the document management and database
communities and from the information needs of business
applications, as evidenced by existing XML query
languages such as W3C's XPath[9] or XQuery [10], which
are strongly inspired by SQL. We propose here to extend
the realm of XML by supporting the information needs of
users wishing to query XML collections in a flexible way
without knowing much about the documents structure.
Rather than inventing a new query language, we suggest to
query XML documents via pieces of XML documents or
“XML fragments” of the same nature as the documents that
are queried. We then present an extension of the vector
space model for ranking XML results by relevance.

We have extended Juru [3], a full-text information retrieval
system developed at the IBM Research Lab in Haifa, to
handle XML documents. INEX provided a useful
framework to evaluate the capabilities of our query format
and ranking methods. The rest of the paper is organized as
follows, Section 2 introduces our query format and
mechanism. Section 3 shows how the INEX topics were
translated to this format. Section 4 proposes various ranking

73

approaches and Section 5 provides some implementation
details of our system. We conclude in Section 6 by
describing our three INEX runs.

2. THE QUERY FORMAT

As stated above, we propose to tackle the XML search issue
from an information retrieval (IR) perspective, and thus
support the information needs of users wishing to query
XML collections in a flexible way. In a classical IR
system, the document collection consists of “free-text’
documents and the query is expressed in free text. We claim
that the same can hold for XML collections and we suggest
to query XML documents via pieces of XML documents or
“XML fragments” of the same nature as the documents that
are queried. Returned results should be not only perfect
matches but also “close enough” ones ranked according to
some measure of relevance.

One key element of this work is to avoid defining yet
another sophisticated XML query language but rather to
allow users to express their needs as fragments of XML
documents, or XML fragments for short. Users should not
need to reformulate their queries as they may become too
specific. The ranking mechanism should be responsible for
giving priority to the closest form. This approach of using a
very simple “fragment-based” language rather than SQL-
like query languages (e.g., XQuery [10]) is somewhat
analogous to using free-text rather than Boolean queries in
IR: less control is given to the user, and most of the logic is
put in the ranking mechanism so as to best match the user’s
needs.

2.1 Query syntax
XML fragments are portions of XML, possib]y combined
with free text, which can be viewed as a tree™. Documents
that contain the query or part of it as a subtree are returned
as results. XML attributes are (ﬁeried using the same
syntax used in the XML documents ™

' We add an artificial root node that encloses the whole
query so as to make it a valid XML data

* As an alternative, attributes can be queried as if they were
children node of their containing node.

The default semantic of a query 1is that a
document/component is considered a wvalid result if it
contains at least one path of the query tree from the root to
a leaf (see examples below), or to follow the vector space
model, if it has a non-null similarity with the query profile.
In order to allow for more control on the XML fragments
and yet still keep their simple intuitive syntax, we augment
the XML fragments with the following symbols:

e “+/-*:a+/-prefix can be added to elements, attributes
or content. Prefixing an element with a “+” operator in
the XML fragment means that the subtree below the
node associated with this element should be fully
contained in any retrieved document. Prefixing an
element with “~” means that the sub tree below the
node associated with the element, should not exist in
any retrieved document. For example:

O <Book><Title>-Graph Theory</Title></Book>
as a query, will return all books whose title
contains the word “theory” but not the word
“graph”.

o <Book><-Abstract></Abstract></Book>

will return all books that do not contain
abstracts.

e “..” (phrase) : Users can enclose any free text part of
the XML fragment between quotes (“””) to support
phrase match.

e At least one: An exception to the regular + operator
behavior occurs when it is applied to two or more
sibling elements of exactly the same type (i.e., having
the same name). In this case, the semantics of + is that
at least one of the subtrees below one of those sibling
nodes must hold even if they have some internal +
nodes (see example in Section 2.2.3)

2.1.1 Target elements

The user can accompany the query with an optional list of
target elements (fe) to be returned. If there are no defined
te’s then the search engine is left the freedom to decide
whether it should return the entire document and/or the
most relevant components. The decision is based on the
ranking requirements and depends on the granularity level
at which statistics (e.g. term frequency) are stored. We
discuss our implementation in section 5.1.1 below.

2.2 Query examples
2.2.1 Task: Find books written by John.

Users with no knowledge of the documents DTD or
schema, may simply issue a query in pure free text of the
form “books written by John”. However, if they have some
basic knowledge of the DTD, their query can become:

74

<book>
<author>John</author>
</book>

One key contribution of our technique is that the structured
query does not need to express a “perfect” need, rather we
allow for approximate matching. Thus for the above query,
the system would also assign a non-null score to documents
containing a fragment of the form below.

<book>
<fm><author><first>John</first></author></fm>
</book>

2.2.2 Task: Find books written by John Doe

<+book>
<author>John Doe</author>

</book>

In this example, <+book> imposes the constraint that there
be an instance of <author> that contains both John and Doe
under the same <author> instance. Thus the + avoids results
in which there are two different authors one with
<fnm>John and the second with <snm>Doe. The above
syntax is similar to

<book><+author>John Doe</author></book>
and to
<book><author>+John +Doe</author></book>

2.2.3 Task: Retrieve all articles from the years 1999-2000
that deal with works on nonmonotonic reasoning. Do not
retrieve articles that are calendar/call for papers

<bdy> <sec>+"nonmonotonic reasoning"</sec> </bdy>
<hdr>
<yr>+1999</yr>
<yr>+2000</yr>
</hdr>
<tig> <atl>-calendar —“call for papers”</atl> </tig>

In this example, we have two sibling <yr> nodes labeled
with +. This means that a valid result should contain at
least one of the years 1999 or 2000.

3. INEX QUERY TRANSLATION

We describe below how we translated the INEX topics into
our query format. Note that the translation rules specified
here are systematically applied to all queries. Their purpose
is to capture the semantics of the INEX topics format (See
its DTD in Figure 1) so as to best express it in our
formalism.

<!ELEMENT INEX-Topic
<Title,Description,Narrative, Keywords) >
<!ATTLIST INEX-Topic

topic-id CDATA #REQUIRED
query-type CDATA #REQUIRED
ct-no CDATA #REQUIRED

>

<!ELEMENT Title (te?, (cw, ce?)+)>
<!ELEMENT te (#PCDATA) >

< !ELEMENT cw (#PCDATA) >
<!ELEMENT ce (#PCDATA) >
<!ELEMENT Description (#PCDATA) >
<!ELEMENT Narrative (#PCDATA) >
< !ELEMENT Keywords (#PCDATA) >

For example, lets consider the INEX topic 5, as expressed
in Figure 2 below:

Figure 1: INEX topics format

We decided to consider only the <Title> and <Keywords>
tags of the topic and ignore the <Description> and the
<Narrative> ones.

3.1 CO topics translation
For CO topics we systematically applied the following
translation rules:

e If there is only one word under the <cw> tag, we add it
to the query with an implicit +, together with the words
under the <Keywords> tag.

e Ifthere are only two words under the <cw> tag, we add
them to the query with an implicit phrase augmented
with a + operator, together with the words under the
<Keywords> tag.

e [f there are more than 2 words under <cw> we simply
add them to the query and ignore the <Keywords> part.

In the first two cases, we are guaranteed that result
candidates will contain the words under <cw> (via the +
operator) and adding the words under the <Keywords> part
simply improves ranking. In the last case, we do not add the
keywords, since the query is long enough to be expressive
in itself and since we want to gurantee that the results
contain at least some of the <cw> decorated words. The
words under the <Keywords> tag may add noise, therefore
we ignore them.

3.2 CAS topics translation

For CAS topics we applied similar rules as for the CO
topics as follows:

e For each <cw><ce> pair:

o If there is only one word under <cw>, we add
it to the query with an implicit + under all
nodes that appear in the <ce> tag

o If there are only two words under <cw>, we
add them to the query with an implicit phrase
augmented with a + operator under all nodes
that appear in the <ce> tag

o If there are more than two words under <cw>
we add them to the query under all nodes that
appear in the <ce> tag

e For <cw> without a <ce> tag we apply the CO rules as
described above.

e We add the words under the <Keywords> part to the
query as free text

<Title>
<te>tig</te>
<cw>QBIC</cw><ce>bibl</ce>
<cw>image retrieval</cw>
</Title>
<Keywords>
QOBIC, IBM, image, video, content query, retrieval
system
</Keywords>

Figure 2: INEX topic 5

According to the above rules, it is translated into:

<bibI>+QBIC</bibl>

+"image retrieval"

QBIC. IBM. image. video. "content query" .
system"

"retrieval

We assume some knowledge of the semantics of the INEX
documents DTD and systematically apply the “at least one”
rule for “years” and “authors” elements, as illustrated in
topic 15 (see Figure 3).

<Title>
<te>article/bm/bib/bibl/bb</te>
<CW>
hypercube, mesh, torus, toroidal,
non-numerical, database
</cw>
<cesarticle/bm/bib/bibl/bb</ce>
<cw>1996 or 1997</cw>
<ce>article/fm/hdr/hdr2/pdt</ce>
</Title>
<Keywords>
1996 1997 hypercube mesh torus toridal
non-numerical database
</Keywords>

Figure 3: INEX topic 15

This topic is translated into the following fragment form:

<article>
<bm><bib><bibl><bb>
hypercube. mesh. torus. toroidal. non-numerical.
database.
</bb></bibl></bib></bm>
<fm><hdr><hdr2>
<pdt>+1996</pdt>
<pdt>+1997</pdt>
</hdr2></hdr> </fm>
</article>
1996 1997 hypercube mesh torus toridal non-numerical
database

Note that according to our syntax, result candidates need to
contain at least one of the years 1996 or 1997.

3.3 Limitations of our format
The proposed XML Fragments format is clearly not as
expressive as a full-fledged SQL-like query language.
However, our conjecture is that it covers most of users
needs in querying XML collections and reduces
significantly the complexity of the language. This is similar
to free-text queries that provide less expressive power than
complex Boolean queries, but provide sufficient
expressiveness for most users’ needs. We verified this
hypothesis in the INEX evaluation, as we could easily
express 58 out of the total 60 INEX topics.
We could not express Topic 14, which states “Find figures
that describe the Corba architecture and the paragraphs
that refer to those figures”. This type of query requires a
kind of “join” operation between two elements (or tables in
database terms) “figures” and “paragraphs” which should
be joined through a common “figure-id” field.
Another Topic that we could not express using our XML
fragments was Topic 28, which states “Retrieve the title of
articles published in the Special Feature section of the
journal 'IEEE Micro'”. This topic depends on the order of
sibling nodes (journals are built from <secl> nodes
followed by <article> nodes that belong to that section).
Our query format is expressed as an XML tree and thus
cannot express relations that depend on node ordering. We
could express topic 28 if the <journal> was organized such
that <article> nodes are children of <secl> nodes, as
specified below:
<journal>
<title>...</title>
<secl>
<title>...</title>
<article>...</article>
<article>...</article>
</sec1>
</journal>

4. RANKING APPROACHES

In this section we discuss two possible approaches for
combining the structured and unstructured portions of the
query in terms of ranking Let us remind here that a typical
ranking model for IR is the vector space model where
documents and queries are both represented as vectors in a
space where each dimension represents a distinct indexing
unit #. The coordinate of a given document D on dimension
t;, is denoted as Wp(#:) and stands for the “weight” of # in

document D within a given collection. It is typically
computed using a score of the #f x idf family that takes into
account both document and collection statistics. The
relevance of the document D to the query Q, denoted below

as p(Q, D), is then usually evaluated by using a measure

76

of similarity between vectors such as the cosine measure
(Formula 1).

ZtieQﬂD wo(ti) * wo(t:)
o] [

Formula (1)

p(0,D) =

We describe now two ranking methods for XML
documents: one that weights each individual context and
one that merges all contexts that match a query term. We
have tested the two ranking methods in two different INEX
runs and will use the INEX assessment results to verify
which method is better.

4.1 Assigning weights to individual contexts

The first approach, which extends the vector space model,
is described in details in [4]. The idea is to use as indexing
units not single terms but pairs of terms of the form (,c;),
where ¢; is the textual part or term and ¢; is the path leading
to it from the document root (the context). We allow
“approximate matching” so that a term (#,c;) in the query
can match several actual terms of the form (#,c;) in the
documents. For example, a query term (John, /author) can
match (John, /fm/author/fnm) and (John, /bm/author/fnm).
For each query term (%, ¢;), we denote its weight in the query

aswo(ti,ci), the weight of each resembling context in the

documents as Wn(ti,ck), and the resemblance measure

between the contexts as cr(c;,,c;) (see an example cr
function in Section 6.1).

Thus, in order to measure the similarity between XML
fragments and XML documents we extend (Formula 1) to
(Formula 2) below:

~ z(n,,a,)e o z e wol(ti, ¢i) *wo(ti, ck) * cr(ci, ck)

p(Qa D) -
o«

Formula (2)

We impose that cr() values range between 0 and 1, where 1
is achieved only for a pair of perfectly identical contexts.
Thus, we see that (2) is identical to (1), in the special case
of free-text where there is only one unique default context.

4.2 Merging contexts

Recall that for each query term (7,¢;), we can find a set of
document terms (%, c;) such that each ¢, resembles the given
context ¢;. As an alternative approach, instead of weighting
the resemblance between ¢; and all its ¢,’s, we consider
merging all occurrences of #; under all such ¢;’s and treating
them as equally good from the user’s perspective. The
merged context is assigned a weight as a function of the
details the user gave in her query, which is independent of

the distance between the query context and the document
contexts. Denoting W(ci) as the weight of the context c;

(see an example function in 6.2), our ranking formula
becomes:

Z(ti,ci)eQ wo(ti) * wo(ti) * w(ci)
o] D]

Formula (3)

5. IMPLEMENTATION - THE JuruXML
SYSTEM

We have extended a full-text information retrieval system
Juru [3], developed at the IBM Research Lab in Haifa so as
to support the XML fragment query format and the above
ranking mechanisms. We describe now the modifications
we applied, for this purpose, to the indexing and to the
retrieval processes.

5.1 Indexing stage

At indexing time, XML documents are parsed using an
XML parser. A vector of (#c) pairs is extracted to create
the document profile where ¢ is the textual part or term and
c is the path leading to it from the document root (i.e., the
context). In addition we store for each XML tag <fag> a
pair (_s_.tag, c) for the tag start and (e _.tag, c) for the tag
end with ¢ the path leading to the fag. By storing terms with
their contexts, the posting-list of term # that encapsulates all
occurrences of ¢ in all documents, is split into separate
posting lists, one posting list for each of the contexts in
which ¢ occurs. This splitting allows the system to
efficiently handle retrieval of occurrences of a term ¢ under
a specific context c. For efficiency we map each context to
a contextld, which can be stored as an integer.

p(0,D) =

We use a scheme first introduced in [1], for navigating
XML collections and implemented in the XMLFS system
that allows to store such pairs (z,c) in the lexicon of a
regular full-text information retrieval system via only minor
modifications: each pair (7,¢) is presented to the indexer as
a unique key #c. At retrieval time, the system can identify
the precise occurrences of the term ¢ under a given context ¢
in the collection, by fetching the posting list of the key t#c.
Juru [3] stores all index terms (that form the lexicon of the
system) in a Trie data structure (see for example [8]) and
therefore all contexts under which the term ¢ has been
stored can easily be retrieved by suffix matching of “##”

5.1.1 Component statistics

As described in the previous section, the terms we store in
the index are of the form ##c where ¢ is a word and c is the
context leading to the term from the document root. This
allows us to query for content under a specific context and
to return a specific component as a result. However, Juru[3]
tracks statistics (e.g., term frequency) at the document level,

77

therefore relevance can be evaluated only at the document
level. This means that all components in a retrieved
document will be assigned the same relevance score and
thus the same ranking (namely the document’s ranking).

In order to allow ranking at a granularity level other than
the full document level, it is possible to define at indexing
time a list of elements whose associated fragments will be
indexed as separate entities. This allows for statistics to be
tracked at the indicated level of granularity, and to score
results at the same granularity. While this approach works
well for CO like queries, it does not perform as well for
queries that specify a combination of contexts since these
contexts may reside in different indexing entities.

In future work we investigate how to support various levels
of granularity in one index based on ideas taken form [5, 6].
In the meantime, for the INEX collection, we used a fixed
granularity of <sec> for CO topics.

5.2 Retrieval stage

As described above, the query is expressed as a
combination of XML fragments and possibly free text. In
order for queries to be expressed as valid XML, we
encapsulate the query within a pair of <root></root> tags,
which have no semantic meaning and are removed at a later
stage. We parse queries with a standard XML parser in
order to obtain a set of terms in context of the form t#c, in
the same way as we parsed the original XML documents.
The retrieval algorithm is described below:

1. Parse the query and create a list of terms of the form
t,‘#C,‘

2. Expand each term (##c;) to relevant terms (##c;) that
resemble it from the index (see Section 5.2.1)

3. Issue a regular Juru query formed by the expanded
terms

4. Rank results according to one of the methods
described in Section 4.

5. Filter results based on the query tree structure (see
section 5.2.2)

Figure 4: Retrieval algorithm

We detail each of the key steps of the algorithm in the
following sections.

5.2.1 Query expansion
Let us illustrate the expansion with the example below.
Consider the query:

<bibI>QBIC</bibl>

It is parsed into “qbic#/bibl”. We execute suffix matching
(thanks to the trie structure) on “qbic#” and get all the
contexts under which the word gbic was indexed. An
example of such a context is ‘/article/bm/bib/bibl/bb”. We
now have to check which of them is relevant to the query.

In our current implementation, we consider only the
contexts for which the query context is a subsequence.
Therefore, ‘/article/bm/bib/bibl/bb” is a relevant context
since it includes “/article/bibl” as a subsequence. Note that
we allow for gaps in the inclusion. At the end of this step
we have a set of terms of the form f#c, which are now sent
to Juru as a free text query.

5.2.2 Result filtering

The retrieval process could potentially assign a non-zero
score to any document containing parts of the query based
on the selected scoring function. While we want such
matches to contribute to the score, we also wish to assure
that the documents conform to the well-specified parts of
the query. This is achieved by post-filtering

This filtering is handled as follows. A “tree” representing
the XML fragments associated with the query is created to
represent the logical structure of the query. Each node in
the tree corresponds to a single query term (either a content
or context term). For each document that was assigned a
non-zero score by our scoring model, we extract the query
term’s instances together with their offsets in the document
(as stored in the index). We then confirm that the
constraints imposed by the query tree hold in the specific
document. This includes constraints imposed by +/-
operators as well as instance level constraints. (For example
for the query <+author>John Doe</author> the filtering
verifies that only documents that contain both John and Doe
under the same <author> instance are returned).

The filtering process is also responsible for filtering the
required target elements (fe) as defined by the user (see
section 2.1.1 above). If there are no target element defined
then the whole document is returned. Otherwise we return
all ze’s instances that satisfy the query constraints (or all fe
instances if there are no query constraints on the fe — e.g.
return all <author> of articles with <title>databases</title>
from <yr>2002</yr>)

6. INEX RUNS

We conducted three INEX runs. For the first two runs, we
applied the automatic query translation rules specified in
section 3 above, while in the 3™ run we performed some
manual editing of the query attempting to better fit the
topic’s <Description>.

6.1 First run — assigning weights to individual

contexts
In the first run we employed the ranking method of formula
(2) using the following context resemblance function

— ¢, subsequence of ¢
cr(c,¢) =41+ ¢, | ' 7 /<

0 otherwise

where |c;| is the number of tags in the given query context
and |c| is number of tags in the expanded context. Thus,
for example,

cr(“/article/bibl”, /article/bm/bib/bibl/bb”) = 3/6 = 0.5
It is easy to see that 0 < ¢r < 1 and it is equal to 1 if and
only if the query context is identical to the expanded
context. For CAS topics this run was ranked 4™ with Av.
Precision 0.320 (see figure 5 below).

INEX 2002 NoMerge

quantization: strict; fopics: CAS
average pracision: 0.320
rank: 4 (42 official submissions)

Figure 5 — individual weights

6.2 Second run — merging contexts
In the second run, we employed the ranking method of
formula (3) where the weight function for context ¢ was

wie) = (e, | +1)

For example, the weight of the context in the query term
“gbic#/bibl” is 2. For CAS topics this run was ranked 2™
with Av. Precision 0.352 (see figure 6 below)

INEX 2002 Merge

quantization: strict; fopics: GAS
average pracision: 0.354
rmank: 2 (42 official submissions)

Figure 6 — CAS topics merge contexts

This result shows that merging contexts yields better results
then the approach tested in the first run. In section 6.4 we
analyze the reasons for this behavior.

For CO topics this run was ranked 10 with Av. Precision
0.053. As described above we didn’t have dynamic
component level statistics and for the CO topics we
returned either the whole article or a sec. We expect that
with dynamic component statistics we will achieve much
better results.

6.3 Third run — manual editing

In this run we tried to exploit our query format capabilities
by manual editing some of the queries based on their
description. Let us consider for instance topic 18 as given in
Figure 7.

<Title>
<tesarticle</te>
<cw>Hypertext Information Retrieval</cw>
<ce>article</ce>
<cw>Hypertext Information Retrieval</cw>
<ce>bib/bibl/bb/atl</ce>

</Title>
<Description>
Retrieve articles on hypertext information

retrieval where the bibliography contains works
with the words "hypertext", "information" and
"retrieval" in at least one of the citatioms.
</Description>

Figure 7: INEX topic 18

This topic was translated for the first two runs into:

<article>

Hypertext Information Retrieval
</article>
<bib><bib]><bb><atl>

Hypertext Information Retrieval
</at]></bb></bib]></bib>

While it was expressed, in the third manual run as

<article>
Hypertext Information Retrieval
</article>
<+bib><bibl><bb><atl>
Hypertext Information Retrieval
</at]></bb></bib]></bib>

The only difference between these expressions is that in the
latter form, a <+bib> is added in order to force all three
words Hypertext Information Retrieval to appear under
some same instance of a <bb> tag. The manual run
returned only 5 such results, while the first 2 runs returned
100 results most of them containing only some of the
required words under the same <bb> item. This run was
ranked 3" in the CAS topics.

6.4 Comparing the Runs

We compare here the first 2 runs ignoring the manual run.
We achieved quite good results for the CAS topics and
average results for the CO topics. Since for the INEX runs
we didn’t have dynamic component level statistics we
didn’t expect good results for CO topics. Instead we focus
on the CAS topics and by looking at the first 2 runs it
turned out that the approach that merges context gave better
results then the approach that weights contexts by their
resemblance to the user query context. This can be
explained by looking at formula 2 where Wx(t,¢) is defined
as -

Wi(t,c) = tfx(t,c) * idf(t,c)
where x stands for either D or Q and
e {fy(tc) is a monotonic function of the number of
occurrences of (z,¢) in x.
e Idfftc) = log (IN|/|N4l) with [N| = total number
of documents in the collection and [N | = number
of documents containing (t,c)
Since in formula 2 each term ¢ is split into different contexts
(t,ci) it might happen that a given (7,¢;) would receive a very
high idf value because (t,c;) is very rare in spite of ¢ being
very common. In future work we investigate how to
compensate for this behavior.

6.5 Generating the submission format

An INEX submission consists of a number of topics, each
identified by a topic ID. A topic’s result consist of a number
of result elements as in the example below (we omit full
format due to space limitation. It can be obtained from [7])

<result>
<file>tc/2001/t01l11l</file>
<path>/article[1] /bm[1] /ack[1] </path>
<rsv>0.67</rsv>

</result>

79

In JuruXML a match is identified by its offset in the
document. To generate the above format we parse again
the XML document that contains the match and while
counting offsets until the match’s offset we build the
requested <path> info.

7. CONCLUSION AND FUTURE WORK

The INEX framework allowed us to experiment with the
expressiveness of the XML fragments query format. We
showed that using, this rather simplistic query format, we
could express 58 out of the 60 INEX topics. We then
presented two ranking methods that combine IR ranking for
free text with XML structure ranking. One approach assigns
different weights to term occurrences under different
contexts and the other merges all occurrences of document
terms that match a query term. We achieved very good
results on the CAS topics where the first run was ranked 4™

and the second run was ranked 2™ among all INEX
submissions.

In a following work we further investigate more models of
structure ranking by introducing different Context
Resemblance functions. We also investigate different levels
of context merging that cover the scale between no context
merging at all to the full context merging models that were
presented in this paper. For CO type topics we investigate a
dynamic component level statistics that should allow to
select the most relevant component when target elements
are not defined.

8. REFERENCES

[1] A. Azagury, M.Factor, Y. Maarek, B. Mandler “A
Novel Navigation Paradigm for XML Repositories”,

pp 515-525 in ACM SIGIR’2000 workshop on XML
and IR, SIGIR Forum, 2000.

R. Baeza-Yates, N. Fuhr and Y. Maarek, Second
Edition of the XML and IR Workshop, In SIGIR
Forum, Volume 36 Number 2, Fall 2002

D. Carmel, E. Amitay, M. Herscovici, Y. Maarek, Y.
Petruschka and A. Soffer, "Juru at TREC 10 -
Experiments with Index Pruning", In [2].

[3]

80

[4] D. Carmel, N. Efraty, G. Landau, Y. Maarek, Y. Mass,
“An Extension of the Vector Space Model for
Querying XML Documents via XML Fragments” In
XML and Information Retrieval workshop of SIGIR
2002, Aug 2002, Tampere, Finland.

[5] N. Fuhr and K. GrossJohann, “XIRQL: A Query
Language for Information Retrieval in XML
Documents”. In Proceedings of SIGIR’2001, New
Orleans, LA, 2001

T. Grabs and H. J. Schek, “Generating Vector Spaces
On-the-fly for Flexible XML Retrieval”, in [2].

Initiative for the evaluation of XML retrieval

http://gmir.dcs.gmul.ac.uk/INEX/|

[8] Donald E Knuth, The art of computer programming:
sorting and searching (vol 3), Addison Wesley, 1973.

[9] XPath — XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20/

[10] XQuery — The XML Query language,

http://www.w3.org/TR/2002/WD-xquery-20020430

(6]

(7]

http://qmir.dcs.qmul.ac.uk/INEX/

Naive clustering of a large XML document collection

Antoine Doucet

Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
00014 University of Helsinki
Finland

GREYC CNRS-UMR 6072
University of Caen, France

antoine.doucet@cs.helsinki.fi

ABSTRACT

In this paper, we address the problem of cluster-
ing a homogenous collection of text-centric XML
documents. We present some experiments we have
led on clustering the INEX! structured document
collection. QOur claim is that element tags provide
additional information that must help improve the
quality of clustering. We have implemented and ex-
perimented various ways to account for document
structure, and used the well-known k-means algo-
rithm to validate these principles.

Keywords

Document Clustering, XML, Information Retrieval

1. INTRODUCTION

Document clustering has been applied to informa-
tion retrieval following the cluster hypothesis,
which states that relevant documents tend to be
highly similar to each other, and subsequently they
tend to belong to the same clusters[3]. The theory
behind this is that document clustering should per-
mit to improve the effectiveness of an IRS by per-
mitting to recall more of the relevant documents;
Notably, in a best-match approach, some very rel-
evant documents might receive a low rank simply
because they miss one of the keywords of the query.
Based on the cluster hypothesis however, these doc-
uments are to be clustered together with the best-
ranked documents and can be found this way [1].
Document clustering can be performed prior to the
query, in which case it is used to form a document
taxonomy similar to that of the well-known “Ya-
hoo” search engine. An alternative application of

*This work is supported by the Academy of Finland
(project 50959; DoReMi - Document Management, In-
formation Retrieval and Text Mining)

Tnitiative for the evaluation of XML Retrieval
(http://qmir.dcs.qmw.ac.uk/inex/)

81

*

Helena Ahonen-Myka

Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
00014 University of Helsinki
Finland

helena.ahonen-myka@cs.helsinki.fi

document clustering to IR is post-retrieval clus-
tering [11], which is not performed on the whole
document collection, but solely on the candidate
subcollection retrieved in answer to a query. In this
case, the clustering is used to ameliorate the quality
of the final answer.

Nowadays, Internet is a repository for huge amounts
of data. The quantity of XML data shared over the
World Wide Web is increasing drastically. A large
majority of this XML data is data-centric, but text-
centric XML document collections are now getting
more and more frequent. As a consequence, it be-
came necessary to provide means to manage these
collections. This can be done by automatically or-
ganizing very large collections into smaller subcol-
lections, using document clustering techniques. Un-
fortunately, most of the research on structured doc-
ument processing is still focused on data-centric XML
(see for example [2] and [13]).

In this paper, based on the conjecture that “As
structure is supplementary information to raw text,
there must exist a way to use it, that improves the
clustering quality”, we present various naive ap-
proaches to represent text-centric XML documents
(section 2) and experiment with them using a well-
known partitional clustering algorithm. The results
presented in section 3 are emphasizing the difficulty
of this task and calling for discussion of the results
and a description of the eventual directions of our
future work (section 4).

2. PROCEDURE OF THE EXPERIMENTS
2.1 Document representation

As a representation of the documents, we have used
the vector space model. In this representation, each
document is represented by an N-dimensional vec-
tor, with N being the number of document fea-
tures in the collection. In most approaches, the

features have been the most significant words of
the collection. All the words are not selected as
features, as the number of dimensions of the vector
would easily place the computational efficiency at
stake. For this reason, in the case of very large doc-
ument collections, feature selection techniques are
applied. We have used three different feature sets
along our experiments: text features (i.e., words),
tag features, and finally a combination of both.

o “Text features only”: For the text feature set,
as the size of the document collection is very
large, we have used a few feature selection
techniques. First, we have ignored words of
less than three characters, and used a sto-
plist to delete longer words with a weak dis-
criminative power (such as articles, pronouns,
conjunctions and auxiliary verbs). We also
pruned all words containing a numerical char-
acter. This simple heuristic diminished the
feature set of about 50,000 word terms! The
last step has been to stem the words, that
is, to reduce them to a canonical form (for ex-
ample, ‘brought’ ‘bring’ and ‘brings’ can be re-

duced to ‘bring’), using the Porter algorithm][8].

The resulting set contained 188,417 features.

o “Tag features only”: The clustering method
we are willing to develop for clustering struc-
tured documents aims to be general. There-
fore, we have made the choice to not manually
group any tag labels. In practice, this means
that all tag labels are distinct (e.g., 'ss1’ and
’ss2’ for sub-section of level 1 and 2 are dis-
tinct). The only preprocessing we made was
to prune the closing tags, as we decided to ac-
count as much for ’complete’ tags (with both
a starting and an ending tag) as for the non-
closed ones (e.g., ’art’, ’entity’, ’colspec’). Fi-
nally, we found 183 different tag features.

o “Text+tags”: This last method combines both
feature sets, by simply merging them. The
total number of features is then 188,600.

The document vectors were then filled in with nor-
malized tf-idf measures. Tf-idf combines term fre-
quency (tf) [6] and inverted document frequency
(idf) [4]. Term frequency is simply the number of
occurrences of the feature words in a document. Its
weakness is that it does not take the specificity of
the terms into account. A term which is common to
many documents is less useful than a term common
to only a few documents. This is the motive for
combining a term’s frequency with its inverse doc-
ument frequency, which is the division of the total
number of documents in the collection by the total
number of documents where this term occurs. In

82

short, term frequency is a measure of the impor-
tance of a term in a document and inverted docu-
ment frequency is a measure of its specificity within
the collection.

2.2 Similarity measure

Clustering techniques group items based on their
pairwise similarity. Thus, the first task is to find the
right similarity measure. Following the vector space
model, two measures are commonly used. The first
one is the Euclidean distance, which has the advan-
tage of being easily understandable. The other fre-
quent measure is the cosine similarity. Its strength
is very efficient computation for normalized vectors,

since in that case cosine(d, d2) simplifies to the dot
product (d; -d2). Because their results are very sim-
ilar in nature, cosine similarity can be prefered to
Euclidean distance (see for example [14]).

2.3 Clustering technique

There are two main families of clustering algorithms.
Given n documents, hierarchical clustering produces
a nested sequence of partitions, with a single cluster
containing all documents at the top, and n singleton
clusters at the bottom. This result can be displayed
as a dendrogram (a subclass of the tree family). In
partitional clustering, where k-means is the most
common technique, the number k of desired clus-
ters is either given as input, or determined as part
of the process. The collection is initially partitioned
into clusters whose quality is repeatedly optimized,
until a stable solution is found.

In general, hierarchical clustering has been consid-
ered as the best quality clustering approach, and
its quadratic complexity seen as its main weakness.
For large documents, the linear time complexity
(w.r.t. the number of documents) of partitional
techniques has made them more popular. This is
especially true for IR systems where the clustering
is often aimed to improve the system’s efficiency.
Furthermore, Steinbach et al. [10] have made large
scale experiments with numerous datasets and eval-
uation metrics which finally pointed out as a result
that the cluster-quality of the bisecting k-means
technique was at least as good as that of the hi-
erachical approaches they tested. In these exper-
iments, we have decided to use the k-means algo-
rithm, both for its linear time complexity and the
simplicity of its algorithm.

Given a number k of desired clusters, k-means tech-
niques provide a one-level partitioning of the dataset
in linear time (O(n) or O(n(log n)) where n stands
for the number of documents[12]). The base algo-
rithm presented in figure 1 assumes the number of
desired clusters be given and relies on the idea that
documents are seen as data points.

1. Initialisation:

e k points are chosen as initial centroids

o Assign each point to the closest centroid
2. Iterate:

e Compute the centroid of each cluster

o Assign each point to the closest centroid
3. Stop condition:

e As soon as the centroids are stable

Figure 1: Base k-means algorithm

2.4 Discussion on evaluation

2.4.1 Internal and External Quality.

There are two main families of quality measures.
The external quality measures use an (external)
manual classification of the document classification,
whereas the internal quality measures do not. The
principle of an external quality measure is to com-
pare the clustering to existing testified classes. The
better the clustering and the classification “match”,
the better the external quality measure evaluates
the clustering.

In this work, we have used entropy and purity, two
frequent external quality measures.

e The entropy is an information theoretic mea-
sure presented by Shannon [9]. It measures

how the classes (manually tagged) are distributed

within each cluster. This provides a quality
evaluation for un-nested clusters (for hierar-
chical clustering, this means an entropy value
can be computed only per level of the den-
drogram). Note from the nature of entropy
that its optimal score is obtained with single-
ton clusters and therefore entropy can hardly
be used to compare clustering solutions of dif-
ferent sizes.

The technique consists of first calculating the
class distribution of the document collection,
that is the number of documents in each class.
The entropy of each cluster C is based on the
probability that a document of C belongs to
each class. The overall entropy is the average
per cluster entropy weighted by the size of each
cluster.

e The purity of a cluster measures how much
that cluster is “specialised” in a class. It is
simply its largest class divided by its size. The
overall purity of a clustering solution is then
a weighted average of the purity of each of its
individual clusters.

83

o There exist many more measures. For exam-
ple, the well-known IR F-measure has been
adapted to clustering [5]. We did not use it,
however, as it is by definition adapted for the
case where the evaluation classes are query an-
swers (this evaluation method was used with
various TREC collections and their assessment
results).

Internal quality measures are used when no manual
classification is provided. They are computed by
calculating average inter- and intra-cluster similar-
ities. An example of an internal quality measure is
cohesiveness (a.k.a. “overall similarity”), which
is defined for each cluster as the average similarity
between each two documents of that cluster.

2.4.2 The INEX case

Our experiments compare the use of different fea-
ture sets. As such, they result in different pairwise
document similarity values. Thus, it is clear that es-
timating the feature sets based on inherent internal
quality measures would not make any sense. There-
fore, we must use external quality measures. Nev-
ertheless, any external quality measure relies on an
existing manual classification, and at the time of the
experiments, the only classification existing for the
INEX collection were the year and journal volume
in which an article was published. For more con-
sistency, we have used the journals as our classes.
We have also made another class of the 125 volume
descriptions, which contain a listing of the articles
published in the corresponding volume.

Unfortunately, this classification has a number of
problems. The main issue is that these classes form
a partition of the document collection, that is, the
classes are disjoint. This property is rather inap-
propriate for document collections, as there exist
no such strict border between two articles as there
may be with other data types. The fact that an ar-
ticle was published in a given journal rarely means
that it could not have been published in another
one. Hence, the journal title classification is proba-
bly too strict.

In fact, a good classification for evaluating docu-
ment clustering is typically a manual assessment
of the answers to a set of queries. By using the
topics of an IR evaluation initiative (e.g., TREC
or INEX) as classes, and the corresponding docu-
ments as the elements of the class, researchers have
often found a satisfying way to evaluate the quality
of clustering methods. These classes offer a more
trustable human-expert classification, that further-
more allows a document to belong to many classes
or none. Therefore, we plan in further work to use
the manual assessments of the INEX evaluation,

originally aimed at information retrieval systems,
so as to evaluate the relevance consistency of docu-
ments clusters.

Finally, the clusterings have been evaluated accord-
ing to the 18 journals where the documents were
published, plus the additional volume class. The
12,232 documents of the INEX collection have thus
been mapped to 19 classes.

Of course, in order to keep the experiments fair, we
pruned all document elements containing the name
of the journal where the document was published.
In practice, this means the elements <doi>, <fno>
and <hdr> and their content were ignored.

3. RESULTS

We have implemented and experimented the tech-
niques described above on the INEX collection, us-
ing the publicly available clustering tool implemented
by George Karypis, University of Minnesota?.

We have run k-means with k € {5, 10, 15, 20, 25,
35} for text-only, tags-only and tags&text. We have
then computed entropy and purity using the journal
titles as classes.

The results of our experiments for 5, 15, 20 and 35
clusters are shown respectively in tables 1,2,3, and
4. The runs were computed on a 1333 Mhz desktop
with 1 gigabyte of memory.

Table 1: Results of k-way clustering for k=5

| Features | Text | Tags | Text + Tags |
Entropy 0.711]0.836 | 0.812
Purity 0.301 | 0.211 0.216
Clustering Time | 150s. | 4s. 160s.

Table 2: Results of k-way clustering for k=15

| Features | Text | Tags | Text + Tags |
Entropy 0.633 | 0.798 0.678
Purity 0.379 | 0.228 0.372
Clustering Time | 754s. | 1ls. 837s.

Table 3: Results of k-way clustering for k=20

| Features | Text | Tags | Text + Tags |
Entropy 0.598 | 0.775 0.677
Purity 0.413 | 0.237 0.332
Clustering Time | 1101s. | 15s. 1191s.

3.1 Including all tags decreases quality!
A clear observation is that, for any desired number
of clusters k, the best quality is obtained with the

*CLUTO,
http://www-users.cs.umn.edu/~karypis/cluto/

84

Table 4: Results of k-way clustering for k=35

| Features | Text | Tags | Text + Tags |
Entropy 0.568 | 0.758 0.612
Purity 0.454 | 0.254 0.385
Clustering Time | 2016s. | 25s. 2215s.

text features. Tag features as a stand-alone perform
much worse, and when they are combined to the
text features, the worsening is just averaged.

However, one may expect that adding an extra piece
of information about documents would improve their
description, and subsequently their pairwise simi-
larity measures, and should finally result in a better
clustering quality.

There are various reasons for this quality worsen-
ing following the inclusion of tag features. First,
the quality evaluation issue must be recalled; For
example, using the tag features, a few clusters have
terms like ‘tmath’ or ‘math’ as their most descrip-
tive features. They mainly gather articles from the
journals “Transactions on Computers” and “Trans-
actions on Parallel & Distributed Systems”. This
predominance of two different classes implies low
external quality measures. It is however impossi-
ble to claim as a consequence that those clusters
are not valuable. On the other hand, some clusters
are doubtlessly negatively affected by the addition
of the tag features. Document clusters dominated
by style features (e.g., ‘b’ or ‘tt’) are rather group-
ing documents based on their authors’ writing style.
As an illustration, those clusters are almost equally
distributed amid the classes.

3.2 “Tags only” permits very fast cluster-

ing
The clustering based solely on tag features is com-
puted much faster. This is no surprise as the num-
ber of items is then 183, when it is 188,417 for text
only. What is surprising is how good the tags-only
results are, considering that the whole process runs
in seconds on a standard desktop.

In applications involving a huge number of docu-
ments, and requiring fast clustering (e.g., “prior to
query” document clustering for IR), the trade-off
between quality and efficiency may advantage the
tags-only option.

It is however difficult to tell, besides the raw qual-
ity scores, how well the tag features clustering are
matching the “text only” clustering. A good ques-
tion to ask is how close are these clustering solutions
? We know that the tags-only clustering performs
reasonably well wih respect to its computational ef-

Table 5: Results of k-way clustering for the
’volume’ cluster with k=15

| Features | Text | Tags | Text + Tags |
Precision 28% | 99% 100%
Recall 100% | 100% 100%
Entropy 0.722 | 0.016 0
Purity 0.295 | 0.992 1
Internal Similarity | 0.094 | 0.900 0.912
Clustering Time 754s. | 1ls. 837s.

ficiency, but how close is this good answer to the
better answer issued from the “text-only” cluster-
ing ? Unfortunately, this is still in the list of future
work!

3.3 Exception: the ‘volume’ class

For each clustering, most of the 125 volume.xml
files, compiling entity references to the articles of
a given volume of a journal, are found within the
same cluster. In contradiction with the general ob-
servation that text features give higher quality clus-
tering, we have found that for this specific cluster,
“text+tags” and “tags only” give the best perfor-
mance. In table 5, we have computed values for
recall and precision for this 'volume’ cluster. Preci-
sion is the number of 'volume’ documents found in
the volume cluster (true positives), divided by the
size of that cluster. Recall is the number of 'volume’
documents found in the volume cluster, divided by
the total number of volume documents (i.e., 125).

This result is due to the very specific structure of
the volume files. They contain the list of the titles
of all articles published in the corresponding journal
volume. This type of documents totally misleads
the text features approach, as in this case the most
specific features are not article titles, but various
publishing details (month of publication for exam-
ple). We have computed the most descriptive terms
for the volume cluster, for each of the three fea-
ture sets in table 6. The descriptivity measure for
a feature within a cluster is the percentage of inter-
nal similarity that is due to this particular feature.
When the feature set contains element labels (i.e.,
tags), they tend to dominate the text features, as a
consequence of a more discriminant distribution.

3.4 Best clustering method, with respect to

journal title classes

Following these results, we foresaw a better cluster-
ing method, based on the principle to use the tag
features clustering as a preprocessing. The idea is to
pre-detect those documents which are structurally
different. This is harmless from a computational
point of view, as the tag features are so few, and
since their extraction is done in linear time.

85

Even though the “text+tags” performs slightly bet-
ter, the efficiency/quality trade-off obviously plaids
for prefering the tag-feature clustering as the pre-
processing for the simple clustering method we present
right below.

e Step 1: k-means clustering of the full docu-
ment collection based on the “tags-only” rep-
resentation. The n clusters with an average
internal similarity above a threshold (say 0.9)
are kept.

e Step 2: A (k—mn)-means clustering is then led,
based on the remaining documents (those that
do not belong to preselected clusters).

With the INEX collection and k=15, only the vol-
ume cluster is preselected. The results are shown in
table 7 and confirm the clustering quality improve-
ment. However, we are aware that such a method
can not be claimed to be superior, before further
experiments are made (particularly using different
collections).

Table 7: Text features based clustering with
and without tag features pre-clustering, for
k=15

| | Text features | Same, but with pre-clustering |

Entropy 0.633 0.630
Purity 0.379 0.394
Time 754s. 114-742s.

Anyhow, we believe that the general idea to use
structure-based clustering as a preprocessing of stan-
dard clustering must permit to improve the cluster-
ing quality. But to extend the application of this
principle to the general case, we are willing to con-
sider more general and sophisticated structural sim-
ilarity measures. A recent work has notably pro-
vided an edit tree distance between the structure
trees of XML documents [7].

4. DISCUSSION AND CONCLUSION

We adressed the problem of clustering homogenous
structured document collections. We experimented
a common partitional clustering algorithm with var-
ious sets of features. As the current evaluation sys-
tem is not yet reliable, the results we found can
not be considered as definitive, but should rather
be seen as hints.

Our results have then hinted that simply adding
tag labels to the feature set does not improve the
clustering quality. However, our conjecture that a
way to exploit the structure exists is still stand-
ing. What the first results emphasize is that the
solution is not straightforward, and that combining

Table 6: 3 most descriptive features within the ’volume’ cluster for k=15

Text only | january (19%) | society (13%) | publish (6%)
Tags only | <entity>(63%) | <title>(20%) | <secl1>(14%)
Text+tags | <entity>(63%) | <title>(20%) | <sec1>(15%)

structural similarities to content similarity indeed
permits to improve the clustering quality.

It seems like computing tf-idf measures of tag la-
bels is insufficient, and we are now considering more
sophisticated measures for structural similarity be-
tween documents. Instead of using the frequency of
the elements, options are to weight the documents
with the total size of the elements (or with their
average size). It would still remain to be decided
whether the size of an element should be defined
locally or as the total size of its sub-elements, in
which case normalization issues would emerge.

So far, this work has been difficult due to the lack of
a very large text-centric structured document col-
lection. The INEX initiative has already provided
such a collection, but meaningful classes were not
yet available at the time of our experiments. The
manual assessments of the INEX topics will permit
us to further evaluate the various structured docu-
ment clustering approaches. In this regard, we will
also need more document collections, so as to make
sure that the results we get are not “statistical ac-
cidents”, due to specificities of the INEX collection.

There are various possible research directions. One
is to develop feature selection methods for tag la-
bels. Some simple ways might be to replace words
by their full path expressions, or by their local path
expressions. It would also make sense to develop
ways to detect different classes of tag labels. The
distinct nature of some of these classes would then
call for different processing techniques. It is clear,
for example, that the tags 'tfmath’, ’sgmlmath’, and
'math’ have much in common and that they may
probably be merged to a single 'meta-math’ class.
For the least, we must try to account for the fact
that 'tfmath’ and ’sgmlmath’ are more similar than
’sgmlmath’ and ’ss1’ (subsection of level 1).

Another interesting problem emerges, following the
work in the INEX initiative: multi-level clustering.
The idea is to compute representations of docu-
ment sub-elements together with the documents,
and give as a result clusters containing items of
different granularities. This idea is clearly derived
from the IR problem posed by INEX, of retrieving
the best matching elements, rather than full docu-
ments exclusively.

S. REFERENCES

86

[1]

8]
[9]

[10]

[11]

[12]

B. Croft. Organizing and searching large files
of document descriptions. PhD thesis,
University of Cambridge, 1978.

D. Guillaume and F. Murtaugh. Clustering of
XML Documents. Computer Physics
Communications, 127:215-227, 2000.

N. Jardine and C. van Rijsbergen. The use of
hierarchic clustering in information retrieval.
Information Storage and Retrieval, 7:217-240,
1971.

K. S. Jones. A Statistical Interpretation of
Term Specificity and Its Application in
Retrieval. Journal of Documentation,
28(1):11-21, 1972.

B. Larsen and C. Aone. Fast and Effective
Text Mining Using Linear-time Document
Clustering. In Fifth ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, San Diego,
California, pages 16-22, 1999.

H. P. Luhn. A statistical approach to
mechanical encoding and searching of literary
information. IBM Journal of Research and
Development, 1(4):309-317, 1957.

A. Nierman and H. Jagadish. Evaluating
Structural Similarity in XML. In Fifth
International Workshop on the Web and
Databases (WebDB 2002), Madison,
Wisconsin, 2002.

M. Porter. An algorithm for suffix stripping.
Program, 14:130-137, 1980.

C. E. Shannon. A mathematical theory of
communication. Bell System Tech,
27:379-423, 623656, 1948.

M. Steinbach, G. Karypis, and V. Kumar. A
Comparison of Document Clustering
Techniques. In Proceedings of KDD 2000,
Workshop on Text Mining, 2000.

A. Tombros. The effectiveness of hierarchic
query-based clustering of documents for
information retrieval. PhD thesis, University
of Glasgow, 2002.

P. Willett. Recent trends in hierarchic
document clustering: a critical review. In
Information Processing and Management,

24(5):577-597, 1988.

[13]

[14]

J. Yi and N. Sundaresan. A classifier for
semi-structured documents. In Proceedings of
the sizth ACM SIGKDD international
conference on Knowledge discovery and data
mining, Boston, Massachusetts, pages
340-344, 2000.

Y. Zhao and G. Karypis. Criterion functions
for document clustering. Technical report,
Department of Computer Science and
Engineering, University of Minnesota Twin
Cities, 2001.

87

Tarragon Consulting at INEX 2002:

EXPERIMENTS USING THE K2 SEARCH ENGINE FROM VERITY, INC.

Richard M. Tong
rtong@tgncorp.com

TARRAGON CONSULTING CORPORATION
1563 Solano Avenue #350, Berkeley CA 94707, USA

1. Introduction

Tarragon Consulting Corporation (Tarragon) participated in INEX 2002 with the two main goals. First, we
wanted to develop a performance baseline using the "out of the box" K2 search engine from Verity, Inc., and
second, we wanted to test a range of techniques for search and retrieval of XML documents that we have been
investigating as add-ons to K2. Unfortunately, time and resource constraints prevented us from experimenting
with the planned extensions, but we did get valuable insight into the behavior of the K2 engine and the issues
associated with performing a formal evaluation of XML document retrieval systems.

The remainder of this paper includes a brief introduction to the K2 search engine, a description of the techniques
we used for constructing queries for each INEX topic type, a review of our official results and a more detailed
analysis of performance on the Content and Structure topics. We conclude with general comments on the overall
INEX experience.

2. The K2 Search Engine

K2 is an enterprise-class document retrieval platform from Verity, Inc. (http://www.verity.com/) that has a
distributed, brokered architecture and that can access data from a wide range of sources with documents in
multiple formats and languages. For the INEX experiments we made use of two key features of K2 — the ability
to index XML-tagged documents, and the ability to create query expressions that define constraints on the
content of tagged document elements.

2.1 Document and Zone Indexing

K2 has a built-in "zone indexing" mechanism that, in addition to creating a complete inverted keyword index,
creates a set of auxiliary indexes that store positional information on the location and extent of each defined zone
tag pair.

This is a very general mechanism that can be used with any form of document markup, and for the INEX
experiments we chose to index the complete set of XML tags defined by the IEEE DTD. The K2 zone indexing
mechanism also supports indexing of tag attributes, but for the INEX experiments the only tag for which we
extracted attribute information was <AU/>, where we indexed the SEQUENCE attribute values.

All this additional zone information adds to the size of the basic index, of course, and increases the total time
needed to index the INEX documents, but given the relatively small size of the INEX collection this was not a
significant factor in our experiments. The total index size for the complete INEX collection was approximately
170Mb and the time needed to index the complete INEX collection was under an hour on a single-processor
1.5GHz Pentium-4 machine with 512Mb of RAM.

88

2.2 Verity Query Language

The Verity Query Language (VQL) is a rich and expressive language that supports a wide range of query
constructs, including standard keyword and Boolean style operators, as well as sets of operators that specify the
ways in which evidential strengths are to be combined. For the INEX experiments we were primarily concerned
with the VQL constructs that support restrictions on zones so that we could capture the <ce/><cw/> constraints
in the Content and Structure topics. The standard form of this in VQL is:

VQL-expression <IN> tag-name

where <IN> is a VQL operator that directs the K2 engine to search for the VQL expression in the named tag. So
for example:

"QBIC" <IN> bbl

is a search request to look for the keyword OBIC in the zone (document element) defined by the pair of <bb1/>
tags.

The VQL supports nested zone queries so that expressions of the form:

"ibm" <IN> aff <IN> fm

can be used to capture a <cw/><ce/> constraint like:

<cw>ibm</cw><ce>fm//aff</ce>

in a direct way.

3. INEX Topics and Queries

In developing queries for each of the Content Only (CO) and Content and Structure (CAS) topics, we attempted
to emphasize precision at the expense of recall. That is, we made no attempt to perform any kind of term
expansion, using only those terms and phases found in the original topic specification.

The main issue for us however was that the standard Verity engine does not provide a mechanism for returning
pointers to the specific document elements that match the search criteria. That being the case, we had to adopt a
path reporting strategy that used either the first, or the smallest, unique element that contains the matched
element(s) in those cases where the topic itself did not specify a unique target element. In general, of course, this
has the effect of depressing both the recall and precision scores since we thereby artificially limit the number of
elements returned and potentially report a path that has "larger" coverage than the actual matched element.

3.1 Content Only Queries

We used a semi-automatic technique for constructing queries from the CO topics. The first step was to run a Perl
script to extract a list of terms and phrases from the <Title/>, <Description/> and <Keywords/> elements
in each query. We then manually post-processed this list to remove "noise" terms and phrases. Then finally,
using the edited list and a simple template, we automatically generated a VQL content expression corresponding
to the original topic.

So, for example, CO Topic 31 looks, in part, like:

co_topic 31 <Accrue>

* 0.50 "computational biology" <IN> bdy
* 0.50 "bioinformatics" <IN> bdy

* 0.50 "genome" <IN> bdy

* 0.50 "genomics" <IN> bdy

* 0.50 "proteomics" <IN> bdy

* 0.50 "sequencing" <IN> bdy

* 0.50 "protein folding" <IN> bdy

where <Accrue> is the VQL operator that implements a basic evidence summation function, and the weights
0.50 define the relative contribution of each term or phrase. For the simple template used in the INEX baseline
experiments, we assigned all terms and phrases the same weight. We also limited the search for terms and phases
to just the <bdy/> elements as shown.

89

Each CO query was executed against the indexed collection and the list of matching document IDs returned. We
used another Perl script to format the results for submission. So, for example, the first part of the results file for
Topic 31 has the form:

<topic topic-id="31">

<result>
<file>ex/2001/x6014</file>
<path>/article[l]</path>
<rank>1</rank>
<rsv>0.94</rsv>

</result>

<result>
<file>ex/2001/x6008</file>
<path>/article[l]</path>
<rank>2</rank>
<rsv>0.91</rsv>

</result>

<result>
<file>ex/2000/x2020</file>
<path>/article[l]</path>
<rank>3</rank>
<rsv>0.90</rsv>

</result>

</topic>
Note that here, and for all the other CO queries, we chose to report the result path as /article[1] even though
our search was actually restricted to the <bdy/> elements.

3.2 Content and Structure Queries

We used a similar semi-automatic strategy for constructing queries from the CAS topics. The basic difference
being that we mapped all the <cw/><ce/> constraints into VQL zone expressions and then conjoined them with
the content based VQL expressions.

Each CAS query thus has the form:

cas_topic xx <And>
* cas_xx constraints
* cas_xx contents

and so, for example, the constraints for CAS Topic 08 looks like:

cas 08 constraints <And>
* "ipm" <IN> aff <IN> fm
* 'certificates' <IN> sec <IN> bdy

Each CAS query was executed against the indexed collection and the list of matching document IDs returned. As
for the CO topics, we used a Perl script to format the results for submission, but in this case included a topic
specific path. As noted above, the standard Verity engine does not return a pointer to the element(s) that match
the query expressions, so we finessed this point by manually pre-selecting a path for each topic.

Of the 30 CAS topics, 7 have <te/> elements that are unique, so in these cases we used the <te/> element
specified in the topic. In 8 additional topics, we were able to assume a unique element. So, for example, in
Topic 01 we simply reported the first author (i.e., we used the path /article[1]/fm[1]/aul[l]), since there
is always at least one author. And for the remaining 15 topics, we selected the smallest document element
guaranteed to contain the element that matched the query. In many cases, of course, this was just the path
/article[1]/bdy[1].

We designated these three groups of CAS topics as "Actual Unique," "Assumed Unique," and "Default Unique,"
with corresponding topic IDs:

Actual Unique: 08, 09. 13, 18, 23, 24, 25
Assumed Unique: 01, 02, 05, 06, 16, 22, 26, 30
Default Unique: 03,04, 07,10, 11, 12, 14, 15,17, 19, 20, 21, 27, 28, 29

90

Note that in the Default Unique set, Topics 10 and 28 required the ability to extract information from a volume
document and then use this information to identify specific articles. In the first case, we would have needed to
identify that an article was a book review, in the second case that an article was published in a special features
section. The basic K2 engine cannot do this, so in both these cases we created queries that located the
appropriate volume and reported the path as /books[1].

4. Results and Analysis

Since a key objective of our participation in INEX 2002 was to assess the ability of the K2 engine to capture the
query structure, our focus in this section is on performance with respect to the CAS topics.

4.1 Content Only Topics

The precision-recall graphs for our official INEX CO queries (the run labeled tgnCO_base) are shown below:

INEX 2002;tgnCO_base INEX 2002; tgnCQ_base
quantizalion: strict; topics: GO quantization: generalized, lopica: GO
average precision: (.052 average precision: {.045
1 T 1 T
08 - 08 -
5 06- § 06
7 0 |
DE_ 04 A DE_ 0.4 k
0z | \ 0.2 Il'k
=i
0 e H I ——
0 0.5 1 0 0.5 1
Recall Recall

The strict quantization results were ranked 10 of 49, and the generalized quantization results were ranked 17 of
49 (using the on-line evaluation tool on 2003-02-14).

Inspection of individual topic runs shows that many of the topics had reasonable precision performance, but they
universally failed on recall. This is in part because we only reported one path per relevant document, The table
below reports the average precision scores (denoted AvP(S) and AvP(G) for the strict and generalized
quantization respectively) for each topic as generated by the on-line evaluation tool. The blank entries
correspond to those topics for which no assessments were available (as of 2003-02-14).

CO_ID | AvP(S) | AVP(G) | CO_ID | AvP(S) | AVP(G) | CO_ID | AVP(S) | AvP(G)
31 0.000 | 0.076 41 0.002 | 0.038 51 0.066 | 0.047
32 0.039 | 0.023 42 0.024 | 0.043 52 0.157 | 0.047
33 0.000 | 0.128 43 0.169 | 0.023 53 0.038 | 0.011
34 0.032 | 0.043 44 - - 54 - -

35 - - 45 0.026 | 0.028 55 - -
36 0.002 | 0.027 46 0.056 | 0.074 56 - -
37 0.003 | 0.032 47 0.035 | 0.018 57 - -
38 0.003 | 0.030 48 0.060 | 0.045 58 0.041 | 0.034

91

CO_ID | AVP(S) | AvP(G) | CO_ID | AVP(S) | AVP(G) | CO_ID | AvP(S) | AvP(G)
39 0.046 | 0.049 49 0219 | 0.035 59 - -
40 0.124 | 0.141 50 - - 60 0.007 | 0.035

4.2 Content and Structure Topics

The precision-recall graphs for our official INEX CAS queries (the run labeled tgnCAS_base) are shown below:

INEX 2002: tgnCAS _base INEX 2002: tgnCAS _base
guantization: strict; topics: GAS quantization; generalized,; lopics: GAS
average precision: 0,182 average precision: 0,164
1 T 1 T
08 - 1 08 - 1

E 06*- : & 06- 1
A A
£ £

N i

0 0.5 1 0 0.5 1
Hecall Hecall

The strict quantization results were ranked 12 of 42, and the generalized quantization results were ranked 10 of
42 (using the on-line evaluation tool on 2002-02-14).

To see the effect of our inability to report all the paths, we used the INEX online evaluation tool to generate
precision-recall graphs for each of the three sub-groups of CAS topics defined in Section 3.2. Those for which
there was a unique <te/> element (the run denoted tgnCAS_allActual), those for which we used the first
instance of the <te/> element (tgnCAS_allAssumed), and those for which we assigned the smallest unique
element as the reported path (tgnCAS_allDefault).

The "Actual Unique" results are:

INEX 2002 tgnCAS_allActual INEX 2002: tgnTAS_allActual
quanlizaficn: strict; lopics; CAS guanfization: generalized; lopics: CAS
averags pracision; (1,494 averags pracision; (0398
{emply lopic resulls ignored) {emply lopic resulls ignored)
1 : 1

0.6 MH g 0.6 TL g
= = L.
=] 0.8 - L= § o 0.8 - g
. Pl
e 04 1 e 04 L*L 1

02} H_1__ 02t Lo
0 LH‘—

0 0.5 1 0 0.5 1
Recall Recall

]

92

These clearly show that we can do a good job on both precision and recall in the case where there is a single
unique element. The only "failure" we had was on Topic 24 where our policy of using a strict interpretation of
the <ce/><cw/> constraints appears to have severely limited our recall numbers. We note, though, that as of
2003-01-29 the assessments for Topic 24 are marked as inconsistent.

The results for those CAS topics for which we used the first instance of the target element, the "Assumed
Unique" set, are:

IMEX 2002 tgnCAS_allAssumed IMEX 2002 tgnCAS_allAssumed
quanlization: strict; lopics: CAS quaniization: generalized; lopics: CAS
awerage pracision; 0,248 awerags pracision; 0,249
{emply lopic resuls ignored) {emply lopic resuls ignored)
1 . 1 -
08 |] 0.8 lL,‘]
5 086" - & 08" |
A A
5 5
& 04 1 g 04 1
02 - - 02} I :
0 0.5 1 0 0.5 1
Racall Racall

Here again precision performance is good, but the cost of limiting our results to just one element is clearly
apparent in the lower recall values

Finally, the results for the "Default Unique" set are:

INEX 2002; tgnCAS_allDefault INEX 2002; tgnCAS_allDefault
quanlizaficn: strict, lopics: CAS guantization: generalized; lopics: CAS
awerags pracision; 0005 awerags pracision; 0015
{emply lopdie resuls ignored) {emply lopdie resuls ignored)
1 - 1 -
0.8 - 1 0.8 - 1
5 08" < 5 o8 |
R R
8 8
T 04t 1 T 0.4 T
02 - 1 02 & 1
! L
0" 0
i 0.5 1 0 0.5 1
Racall Racall

Obviously these all failed to produce significant results. As already noted, two of these (Topics 10 and 28) could
not be expected to give any results, and of the remaining 13 topics , eight (Topics 07, 12, 14, 15, 17, 19, 20, and
27) failed because the scoring scheme does not allow partial credit for larger or smaller elements when a <te/>
is in fact specified by the topic statement. The remaining five topics had no <te/> element specified (Topics 03,
04, 11, 21, and 29) so that we did get some credit for reporting a "large" path element This explains the slight
positive spike in the allDefault precision-recall curves close to the origin.

93

The complete list of average precision scores generated by the on-line evaluation tool (denoted AvP(S) and
AvP(G) for the strict and generalized quantization respectively) for each of the CAS topics are shown below.
The blank entry correspond to the topic (Topic 28) for which no assessments were available (as of 2003-02-14).

CAS_ID | AVP(S) | AVP(G) | CAS_ID | AvP(S) | AVP(G) | CAS_ID | AVP(S) | AvP(G)
01 0.035 | 0.035 11 0.005 | 0.016 21 0.000 | 0.008
02 0225 | 0224 12 0.001 | 0.003 22 0413 | 0315
03 0.006 | 0.018 13 1.000 | 0.497 23 0.185 | 0.242
04 0.042 | 0.021 14 0.000 | 0.002 24 0.000 | 0.023
05 0.389 | 0311 15 0.000 | 0.008 25 0523 | 0.629
06 0.000 | 0.000 16 0397 | 0.583 26 0.068 | 0.137
07 0.002 | 0.005 17 0.000 | 0.082 27 0.000 | 0.000
08 0.870 | 0.770 18 0.280 | 0.041 28 - -
09 0.601 | 0.581 19 0.005 | 0.010 29 0.005 | 0.028
10 0.002 | 0.009 20 0.000 | 0.001 30 0211 | 0.139

5. Overall Comments

Generally we were satisfied with the performance of the "out of the box" K2 engine. Although K2 does not have
an explicit representation of XML document structure, we successfully exploited its generalized ability to search
within "zones," so that, in all but two CAS topics, we were able to completely capture the <ce/><cw/>
constraints. In addition, for those topics that did have a unique <te/> element we generally got good
performance in both precision and recall.

Clearly though, the biggest issue for K2 with respect to the INEX experiments is its inability to report the actual
path that matched the query constraint. This forced us to adopt a path reporting strategy that turned out to be
ineffective in half the CAS topics, and significantly impacted recall in eight others. The same issue also limited
our ability to do more than a traditional "ad hoc" retrieval with the CO topics.

As part of the "lessons learned" during the effort, we feel strongly that the assessment and results scoring
procedures need further investigation and revision before the next INEX experiment. For example, it is not clear
to us that it really is possible to treat relevance and coverage as independent concepts, or even that it is
reasonable to apply these ideas to those elements in the IEEE DTD that deal with the "look and feel" of the
document, as opposed to the substantive content. And we also believe that the different nature of the information
needs expressed by the CO and CAS topics argues for the use of different evaluation methodologies for the two
sets of results. The CO topics, it seems to us, are primarily about locating those thematic elements within a
document that makes it relevant. Whereas, the focus of the CAS topics is on the nature of constraints over
document elements.

Overall we found the INEX 2002 experiment cycle to be an extremely worthwhile exercise. It certainly helped
us achieve our goal of establishing a performance baseline for the standard K2 engine, and gave us considerable
insight into the challenges associated with evaluating XML document retrieval systems. We would like to thank
all those at the University of Dortmund and at Queen Mary University of London responsible for organizing and
managing the INEX 2002 effort.

94

Using the Extended Vector Model for XML Retrieval

Carolyn J. Crouch
Department of Computer Science
University of Minnesota Duluth
Duluth, MN 55812
(218) 726-7607
ccrouch@d.umn.edu

ABSTRACT

The authors describe an approach to XML retrieval based
on Fox’s extended vector space model [2]. The current
implementation of their system and results to date are
reported. (All results are based on retrieval at the article
level since flexible retrieval is still being implemented.)
The basic functions are performed using the Smart
experimental retrieval system.

1. INTRODUCTION

With INEX, we have for the first time a large testbed—
documents and topics, evaluation procedures—supporting
experimentation in structured document retrieval. With the
enormous influence of the web, it is not surprising that
attention has been focused on XML and appropriate
methods of retrieval in this environment.

Much investigation in information retrieval over the last 40
or so years has centered on the vector space model [8],
developed by Salton and used as the basis for the Smart
experimental retrieval system [7]. In the vector space
model, each document (and query) is viewed as a set of
word types and is represented as a weighted term vector.
The weight assigned to each term is indicative of the
contribution of that term to the meaning of the document.
Very commonly, tf-idf weights [9] or some variation
thereof [10] are used. The similarity between vectors (e.g.,
document and query) is represented by the mathematical
similarity of their corresponding term vectors.

In 1983, Fox [2] proposed an extension of the traditional
vector space model which he called the extended vector
space model. This model allowed for the incorporation of
objective identifiers along with the usual content identifiers
in the storage and retrieval of documents. He developed a
method for representing in a single, extended vector
different classes of information about a document, such as
author name, terms, bibliographic citations, etc. In the
extended vector model, a document vector consists of a set
of subvectors, where each subvector represents a different
concept class or c-type. Similarity between extended
vectors is calculated as a linear combination of the
similarities of corresponding subvectors.

Using this model for document retrieval normally presents
at least two significant problems: (1) the construction of
the extended search request and (2) the selection of the

Sameer Apte
Department of Computer Science
University of Minnesota Duluth
Duluth, MN 55812
(218) 726-7607
apte0002@d.umn.edu

95

Harsh Bapat
Department of Computer Science
University of Minnesota Duluth
Duluth, MN 55812
(218) 726-7607
bapa0005@d.umn.edu

coefficients for combining subvector similarities. The
generation of extended queries, in particular, has attracted
some attention [3,1]. For XML retrieval, of course, this
particular problem is no longer an issue because the query
is already structured; i.e., it is given in a form that is easily
translated into an extended vector. The second problem—
the weighting of the subvectors themselves—remains open
to investigation.

Smart is a powerful tool for experimentation. The
extended vector capability which is a part of the Smart
system would appear well suited for XML retrieval from
the retrieval viewpoint. (It does not, of course, in its
present state lend itself to flexible retrieval at various levels
of granularity.) Since our interests lie in information
retrieval, we chose this approach—using the extended
vector facility of Smart to represent the structured
documents and queries—for our initial investigations in
XML retrieval. We seek to determine the feasibility of
incorporating the functionality (e.g., flexibility and
granularity) required for XML retrieval within the extended
vector environment.

In traditional information retrieval, the system returns a set
of documents, usually in rank order. The XML
experiments are designed to handle two types of queries:
the content-only (CO) query (the traditional query in
information retrieval) and the content-and-structure (CAS)
query. For CO queries, the retrieval system is expected to
return a ranked list of the most relevant elements (article,
section, paragraph, etc.). That is, the granularity of the
response varies depending on the relevance of the element.
No target element is specified. For the CAS queries, the
retrieval system should return a ranked list of elements as
specified in the target element (<te>) field. Search terms
themselves are specified in the <cw> element, and the
context of the search terms is specified in the context
element (<ce>) field. (In a relevant document, the search
terms in the <cw> field should occur in the element
specified in the <ce> field.) Otherwise (if no <ce> is
specified), the search terms can occur anywhere in the
document. For CAS queries, structure is used to limit the
range of the search to a corresponding specified field in the
document.

2. OUR APPROACH

In our approach, using Smart’s extended vector capability,
documents and queries are represented in extended vector
form. The extended vector itself is a combination of
subvectors, some containing normal text and others
containing objective identifiers associated with the
document. Our current representation of an XML
document/query consists of 18 subvectors or c-types (i.e.,
article, ti, atl, pub yr, sec, st fgc, article_au_fnm,
article_au_snm, abs, kwd, ack, tig, bibl au_fnm,
bibl_au_snm, bibl ti, bibl atl, p) as defined in INEX
guidelines.

2.1 Initial Runs
Our system lacks the capability for granular retrieval. With
this in mind, we performed the following steps.

(1) The documents are parsed using a simple XML
parser available on the web. This resulted in a
parsing of the collection such that each of our 18
c-types is now identifiable in terms of its XML
path.

(2) The documents and queries are translated into
Smart format and indexed by Smart as extended
vectors. The indexing was performed on both an
article (i.e., document) and paragraph basis. (For
the results reported here, we used only the article-

based indexing.)

(3) Retrieval takes place by running the queries
against the indexed collection. The result is a list
of articles ordered by decreasing similarity to the
query. (A variety of weighting schemes are
available through Smart. Lnu./tu [10] weighting is

used here.)

(4) For each query, results are sorted by correlation
and the top 100 elements are converted to INEX

format and reported.

The retrieval itself is fairly straight-forward; the only
variation from the normal vector processing at this point is
the splitting of certain CAS queries into separate portions
which are then run in parallel to ensure that the elements
retrieved meet the specified criteria.

Consider, for example, the title section of CAS query 8:
<title>
<te>article</te>
<cw>ibm</cw><ce>fm/aff</ce>
<cw>certificates</cw><ce>bdy/sec</ce>
</title>

In this case, the query is to return a ranked list of articles as
specified by the target element <te>. The narrative
specifies that the body or sections of relevant documents
should contain information about the use of certificates for

96

authenticating users on the Internet. And since the context
of the content word ibm is fm/aff, the author(s) of those
documents must be affiliated with IBM. Thus the query
should retrieve only those articles on the use of certificates
whose author(s) are affiliated with IBM. To guarantee that
the system returns only those articles, we split the query
into two parallel queries as follows:

Ql: <cw>ibm></cw><ce>fm/aff</ce>
Q2: <cw>certificates</cw><ce<bdy/sec</ce>

Affiliation and section are two different c-types. So query
1 searches for documents containing the objective identifier
ibm in the affiliation subvector. Query 2 seeks articles
whose body or section(s) contain the term certificate.
Smart returns a ranked list of documents for both queries.
The intersection of these lists is the final, ranked list of
documents returned for topic 8.

2.2 Results

Our system is still in a very rudimentary stage of
development. The results reported here are all based on an
Lnu.ltu [10] weighting of the collection indexed at the
article level. We are not yet able to return the most
relevant elements; we can report only what our system
presents as the most highly correlated articles.

We participated in the early work of the INEX group (the
initial submission of queries and relevance assessments).
Those relevance assessments were based on results
obtained by using Smart in extended vector form and the
subsequent manual mapping of results to the format
required by INEX. (In fact, the automatic mapping from
INEX to Smart format and vice versa has consumed much
of our time and effort to date.) The results reported here
represent what is at this point a straight-forward search by
Smart using the extended vector facility with results
converted automatically to INEX reporting format. No
attention has as yet been given to weighting within or
among subvectors or to analyzing the queries with the aim
of improving performance.

Mixing objective and content-based subvectors in a single
query is interesting. The splitting of such queries into
separate portions to be run in parallel, as described in the
previous section, works well—in, for example, CAS topic
8, with an average precision of 0.801 under generalized
quantization. It did not work (in the results shown here)
for queries such as CAS topic 9, which seeks articles on
nonmonotonic reasoning from 1999 or 2000. The reason is
clear—there are hundreds of articles in the collection from
these two years and the programming team (thinking in
terms of content-based retrieval) initially decided to impose
a limit (of 700) on the number of items returned by a
subquery. Thus there may be many relevant articles
retrieved by the content subvector which cannot be
identified as meeting the second condition because they are

not in the limited set of items retrieved by the objective
subvector. (This error negatively impacts our results with
respect to a number of queries, but we are unable to rerun
these cases within the timeframe for reporting.) In all cases,
we used only the title and keyword fields of the queries.

The recall-precision graphs for retrieval of the CAS and
CO topics based on our current implementation are given
below in Figures 1 and 2.

INEX 2002: 02

quantization: generalized; topics: CAS
average precision: 0.103

1
0.8
5 06
0
a
a 04 \\
0.2 i
0
0 0.5 1
Recall
Figure 1. Recall-precision for CAS topics
INEX 2002: 02
guantization: generalized; topics: CO
average precision: 0.044
(empty topic results ignored)
1
0.8
S 06
0
o
0.2 L\
0
0 0.5 1

Recall
Figure 2. Recall-precision for CO topics
2.3 System Modification

Of course, the data in these figures are based on a flat or
static indexing of the collection (at the article level). We

97

now turn our attention to two important aspects of XML
retrieval, namely, granularity and flexibility.

In XML retrieval, the system is supposed to return the most
relevant element (as opposed to document). That element
might be a paragraph, section, article, etc. The element
may be specified (as it is for some CAS queries) or not
specified (as is the case for CO queries). In either case, the
requirement is to return those elements (at the proper level
of granularity) that are most relevant to the query. To
accomplish this goal in a realistic timeframe and manner,
we need flexible retrieval—i.e., “the retrieval over arbitrary
combinations and nestings of element types” as described
by Grabs and Schek [5]. This means that we must decide,
dynamically at execution time, which element(s) are most
relevant to a particular query.

Toward this end, we will utilize only one indexing of the
collection, namely, the indexing at the paragraph level. We
now consider those basic indexing units (c-types) which
serve as the root of a subtree in the document structure
hierarchy--i.e., article, section, acknowledgement, and
abstract. Articles contain sections; all contain paragraphs.
These are the primary nodes of interest for flexible
retrieval. (Title-group also serves as a root node but is of
lesser interest in this context.)

Consider a query (in extended vector form) containing
search terms in a non-objective subvector. Using an
indexing of the collection at the paragraph level, a search
of the corresponding document subvectors retrieves a
ranked list of the most relevant (i.e., highly correlated)
paragraphs. For each concept (or stemmed word type) in
the collection, an inverted file specifies each paragraph in
which that term is contained along with its weight in that
paragraph (i.e., its term frequency).

To implement a version of flexible retrieval, we need
additional information. A paragraph retrieved by the
resolution of a content query subvector may in fact be the
most relevant element associated with it—or not. The
desired element may really be the section containing that
paragraph (or the article containing that section). To
decide which element to report, we need the appropriate
statistics (term and element frequency) for each local
environment (paragraph, section, and article). We have the
data for each paragraph. In determining which element to
report, we will calculate relevance at execution time for the
subtrees rooted by the corresponding section and article.

How do we calculate the relevance of the parent element
(e.g., section) of the current node (in this case, paragraph)?
The nature of the vector space model suggests two
approaches. We might choose, for example, to construct a
vector for the section, using information available from its
child nodes (the paragraphs contained in that section). Our
retrieval system then correlates the section vector with the
query, i.e., retrieves the section. This action is repeated

first for all sections in the document and subsequently, in
the same manner, for the article itself. The rank of the
element in the final set of correlations (including
paragraphs, sections, and article) determines whether one
element is more relevant than another. The top n elements
are reported.

Another approach to the problem (i.e., determining the
relevance of the element rooted at the parent) might utilize
the correlations of the child nodes. For example, at this
point in the retrieval process, we already know the
similarity of each paragraph with the query. We could then
propose calculating the similarity of the parent (i.e.,
section) as a function of the similarities of its children (and
likewise, using the section similarities, compute the
similarity for the article).

In either case, it seems clear that we need particular
information. ~ From our viewpoint, the initial query
retrieves a set of relevant paragraphs (i.e., those having a
positive correlation with the query). For each of these
paragraphs and for each query term, we need both term
frequency (#f) and element frequency (ef) information.
Suppose we want to use #f-idf weighting, the advantages of
which are well known. To calculate the relevance of the
section, we must know the frequency of each query term in
each paragraph (#) and the number of paragraphs in which
that term occurs (ef). Almost all data is available in the
inverted file.

One important aspect of this process relates to the position
of a node in a subtree. As Grabs and Schek [5,6] indicate,
information contained in a more distant node (the last
paragraph in a section, for example) is often less important
than that in a nearer node (e.g., the first paragraph). To
deal with this issue, they adopt the augmentation weights of
Fuhr and BroPjohann [4] wherein terms are downweighted
when propagated upwards. [5,6] utilizes a vector space
approach here which we find attractive. They claim that
their model allows retrieval across the document hierarchy
(i.e., using arbitrary combinations of element types) while
at the same time dynamically performing flexible retrieval
at desired levels of granularity. So does ours.

2.4 Current State

Our system is still in a very early stage of development.
Weighting of terms within subvectors and the weighting of
subvectors themselves are issues of concern which we have
not yet had time to examine carefully. The next focus of
development in our system is flexible retrieval (in
particular, what [5] refers to as nested retrieval). We plan
to implement a version using their method for calculating
the weight of an interior element in nested retrieval. We
will look at other approaches as well.

98

3. CONCLUSIONS

Given the small size of our team and the scheduling
constraints, we are unable to report results attributable to
flexible retrieval. However, the extended vector model
would appear to provide a natural framework for structured
retrieval. Except for the dynamic retrieval of elements, it
provides the capabilities needed for the XML task. The
dynamic aspects can be added. We do not expect that the
additional costs at execution time will significantly impact
retrieval. The major difficulties faced by our team to date
pertain to the mapping from XML format to Smart and vice
versa. These problems having now been solved, we
anticipate more rapid progress.

4. REFERENCES

[1] Crouch, C., Crouch, D. and Nareddy, K. The
automatic generation of extended queries. In Proc. of
the 13" Annual International ACM SIGIR Conference,
(Brussels, 1990), 369-383.

Fox, E. A. Extending the Boolean and vector space
models of information retrieval with p-norm queries
and multiple concept types. Ph.D. Dissertation,
Department of Computer Science, Cornell University
(1983).

Fox, E., Nunn, G. and Lee, W. Coefficients for
combining concept classes in a collection. In Proc. of
the 11th Annual International ACM SIGIR
Conference, (Grenoble, 1988), 291-307.

Fuhr, N. and Brofjohann, K. XIRQL: a query
language for information retrieval in XML documents.
In Proc. of the 24th Annual International ACM SIGIR
Conference, (New Orleans, 2001), 172-180.

[5] Grabs, T. and Schek, H. Generating vector spaces on-
the-fly for flexible XML retrieval. In Proc of the
ACM SIGIR Workshop on XML and Information
Retrieval, (Tampere, Finland, 2002), 4-13.

Grabs, T. and Schek, H. ETH Zurich at INEX:
Flexible information retrieval from XML with
PowerDB-XML. INEX 2002 Workshop Proceedings,
(Dortland, 2002), 35-40.

Salton, G. Automatic information organization and
retrieval. Addison-Wesley, Reading PA (1968).

Salton, G., Wong, A., and Yang, C. S. A vector space
model for automatic indexing. Comm. ACM 18, 11
(1975), 613-620.

Salton, G. and Buckley, C. Term weighting approaches
in automatic text retrieval. In IP&M 24, 5 (1988),
513-523.

[10]Singhal, A. AT&T at TREC-6. In The Sixth Text
REtrieval Conf (TREC-6), NIST SP 500-240 (1998),
215-225.

(2]

(4]

(6]

(8]

[9]

Compression and an IR Approach to XML Retrieval

Vo Ngoc Anh

Alistair Moffat

Department of Computer Science and Software Engineering
The University of Melbourne
Victoria 3010, Australia
www.cs.mu.oz.au/"{vo,alistair}

Abstract

A two-phase evaluation scheme is proposed for XML
retrieval. In the first phase, a modified vector space
model is employed to obtain similarity scores for the
textual nodes of XML trees. In the second stage, the
scores are propagated upward in the XML trees, with
scores of the textual nodes being modified and scores of
other nodes being generated. As a result, while a vec-
tor space ranking is used, the final scores computed do
not truly reflect the vector space scores. In addition to
the two-phase evaluation, an integrated compressed file
system is proposed for both storing and retrieving XML
documents. This leads to an efficient representation of
XML repositories.

1 Introduction

Applying IR techniques to XML retrieval is undoubt-
edly an interesting and promising approach. Conven-
tional IR techniques, however, cannot be employed
directly because of the need to handle content-and-
structure queries. To accept this kind of query, retrieval
systems must capture the structure of the documents
and queries, and carry out some computation over these
structures. In this paper we focus on two of the vari-
ous aspects of the task. The first focus is on an alterna-
tive method to extend the vector space model to XML
retrieval. The second is a unified compression scheme
that supports both the retrieval model and efficient de-
compression of any part of an XML document. While
the first goal is core to the INEX project, the second goal
should as well be regarded as important. XML docu-
ment collections can be large. Moreover, retrieval of
XML elements involves not only the document content
but also its structure, potentially consuming more disk
space than retrieval of flat documents would.

A number of techniques to extend the vector space
model to XML retrieval have been presented. Three
main approaches are worth commenting on. Fuhr et al.
[1998], Fuhr and GroRjohamn [2001] explicitly indi-
cate indexing nodes, each of which is a group of XML
nodes. Indexing is then done for these nodes. This
static index is used directly for query processing. Grabs
and Schek [2002] proposed to generate vector space
statistics on-the-fly during query processing. In this ap-

proach, a static index is built only for basic indexing
nodes, which can be defined manually or automatically.
At query time, the basic index is used to derive appro-
priated vector space statistics depending on the query
scope. Carmel et al. [2002] chose to index the pairs
(path, word) (as opposed to the conventional indexing
of words only), where path is the XML path of the node
that contains word.

A common property of these techniques is that they
are tightly bound to the vector space model. During the
evaluation of a query, the statistics are retrieved or gen-
erated for all nodes that are in the query’s scope. These
statistics are then used to compute similarity scores and
rank the nodes. The commaon property likely guarantees
the correctness of applying a vector space ranking, since
otherwise there would be serious problems with ranking
inconsistency. On the other hand, semi-structured XML
documents are quite different from flat documents for
which vector space ranking is good, and an alternative
formulation of the similarity score might be preferable.
Moreover, it is still not clear how to fairly combine dif-
ferent kinds of XML node according to a common sta-
tistical scale.

We use a vector space ranking technique because of
its efficiency and effectiveness for flat text retrieval. But
we do not rely exactly on the vector space score. In-
stead we adjust the scores, possibly more than once. The
“right” statistics for an appearance of a word are counted
once for the node that contains the word directly. Only
these nodes are then processed through the conventional
vector space ranking, regardless of whether they are
compatible with the structural conditions of the query.
Even at this stage, the scores computed are not exactly
vector space scores — they are augmented according to
the structural conditions. After the IR stage has been
done, a second stage is conducted where the scores are
propagated upward in the XML tree, and then the top
nodes are selected as answers.

For our second goal — providing a compression
framework for XML retrieval, we mainly rely on the
existing work. Our contribution here is extending the
current compression framework for flat text retrieval to
XML retrieval. We introduce additional files to keep
the XML collection in the compressed form, allowing
effective decompression of any XML node.

The remainder of the paper is organized as follows.

99

<article>
<atl> XML Retrieval </atl>
<au sequence="first">
<fnm> First N. </fnrm>
<ref> Surname </ref>
<lau>
<sec> <st> Everything </st>
<p>
Everything about XML </it>
and XML retrieval </it>.
<lp>
</sec>
</article>

Figure 1: Example of XML document.

Section 2 introduces some concepts of XML documents
and presents our opinion on query format and interpreta-
tion of queries. Then, section 3 describes the data struc-
tures employed for compressing XML collections. Sec-
tion 3 also introduces a general scheme for query evalu-
ation with these structures. Sections 4 and 5 describe the
main techniques employed for the two phases of evalu-
ation. Section 6 outlines the experiments we undertook.

2 Documentsand queries

Documents A simplified example of an XML docu-
ment is provided in Figure 1 and is used throughout this
text to illustrate the concepts introduced.

It is convenient to list some of the standard def-
initions here. Thus, an XML document is a set of
nodes or elements such as <article> and <p>. Each
node is associated with a path, for example, /article
and /article/sec/p. The exact location and content of
a node is defined by its positional path. For exam-
ple, if the above XML document is the first one in a
collection, then /article[1]/sec[1]/p[1]/it[1] and /arti-
cle[1])/sec[1]/p[1)/it[2], respectively, is used to indicate
XML </it> and XML retrieval </it>.

The following concepts are introduced for this paper.
A node is called textual if and only if it has some proper
free text which does not belong to any of its children or
descendants. Otherwise, the node is called skeleton and
it contains no proper text. In the above document, for
example, textual nodes are

[article[1]/atl[1],

/article[1])/au[1])/fnm[1],

/article[1)/au[1]/ref[1],

farticle[1]/sec[1]/st[1],

[article[1]/sec[1]/p[1],

[article[1])/sec[1])/p[1]/it[1],

(article[1]/sec[1])/p[1)/it[2];

and the skeletal nodes are

[article[1],

farticle[1]/au[1],

farticle[1]/sec[1].

<query>
<te> article </te>
<ce>
<cp> bdy/sec </cp>
<cw> nonmonotonic reasoning </cw>
</ce>
<ce>
<cp> hdr/lyr </cp>
<cw> 1999 2000 </cw>
<l/ce>
<ce>
<cp> tig/atl </cp>
<cw> <nw> calendar </nw> </cw>
<lce>
<cw> belief revision </cw>
<kw>
nonmonotonic reasoning belief revision
<lkw>
</query>

Figure 2: Example of query: the reformatted version of
topic 09.

Note that normally in an XML tree, leaf nodes
are textual, and internal nodes are skeletal, but this
cannot be assumed. A counter-example is the /arti-
cle[1]/sec[1])/p[1], which is an internal node, but con-
taining some proper text. This type of node is popular
in the INEX collection.

The textual part of a textual node, including any ac-
companying punctuation, is called a textual item of the
node wrt the XML collection. Thus, the textual item of
farticle[1])/au[1]/ref[1] is Surname, while that of /arti-
cle[1]/sec[1])/p[1] is Everything about and.

Queries We appreciated the straightforward query
format supplied by the INEX organizer and described
by Fuhr et al. [2002]. In our opinion, the format
(of course, after removing Description and Narrative
fields) is simple and powerful enough, at least for the
purpose of IR approaches.

To make the queries more consistent, we introduced
a couple of small changes to the initial format. Firstly,
words appearing in a ce field are included inside the
field itself. Secondly, a formal element <nw> ...
</nw> is added to surround negative words in queries.
For example, topic 09 is now reformatted as shown in
Figure 2.

We believe that the Keywords of the original INEX
queries is unnecessary and it would better be removed
totally from the query format, making queries simpler
and shorter. However, to be consistent with the settle-
ment of this round of INEX, this element is left in this
format with the new name of <kw>.

There is a number of points that should be made clear.
Firstly, the Title field in this format is removed since
we consider that field the main part of queries. As the
field is in fact a structured node, it is simply removed.

100

Secondly, the format is used for both content-only and
content-and-structure queries, and we also recommend
the use of queries which have no te field but contain ce
fields. Thirdly, it is easy to build a script to transfer all
INEX queries to the new format automatically. And last,
except for the te field, all other information should be
considered by a retrieval system as inexact constraints
as is also the case in conventional IR ranking. For ex-
ample, the first ce element in 2 should be interpreted as
the desire of having the sections discussing about “non-
monotonic reasoning”, and it does not necessarily mean
that the sections must contain these word. In the same
manner, a retrieved article for the query, for example,
might not be published in 1999-2000 as required by the
topic’s author.

3 System Architecture

Backbone Our system is based on the MG system (see
http://ww. cs. nu. oz. au/ ng/). The main feature
of MG for text retrieval is that it applies compression
to the documents as well as to the index. This feature
is especially suitable for our task of building a compact
repository for XML retrieval. We report here only the
changes made specifically for this task.

Filesystem Textual and related files: All textual items
of the XML documents are gathered together in a data
structure, called textual file. That is, each item in this
file corresponds to one textual node of a certain XML
document. This file is compressed and is accompanied
with some auxiliary files supporting direct access to, and
decompression of, each of of the textual items. An il-
lustration of textual files is given at the bottom left of
Figure 3. Information about text compression methods
employed, as well as about the auxiliary data structures,
can be found in [Witten et al., 1999].

Structural files: Each node (either textual or struc-
tural) of any XML document has an entry in a structural
file. In this data structure, entries are stored in the order
of their appearance (or, more correctly, of the appear-
ance of their opening markups) in the XML collection.
An entry of the structural file describes a node’s struc-
ture and its position in the parent’s node. The entry in-
cludes

o the opening markup of the node (including the ac-
companying parameters, if any);

e distance to the parent node (that is, number of
nodes between the node and its parent, which is
0 if the current node is a root node);

o byte-offset position of the beginning of the node
relative to the (end of) its immediately preceding
markup;

e pointer to the textual item of the node, that is, to
the corresponding item in the textual file (the value
is 0 if the node is a skeleton).

The bottom right block in Figure 3 illustrates the content
of a structural file. Note that for each node, the closing
markup is not stored.

To the structural items, random access is needed.
Since all the numerical values of the file is generally
small, and the texts (that is, the markups) are generally
repeated, the file can be compressed effectively even
with the random access requirement. Our ad-hoc so-
lution is to use a dictionary for all the text parts, then
to replace each text with the pointer to the correspond-
ing element in the dictionary, hence transforming each
structural item to a quadruple of numbers prior to the
compression. Conventional compression techniques for
small integers are then applied.

Note that with support of the textual files, which
allow direct access and decompression of any textual
item, the structural file can be used to build back any
node of the original XML document collection. An ex-
ample of this process is given in Figure 3. Truly, the
compression is lossy: when there is no text between two
consecutive markups, the punctuation between them (if
any) is not stored anywhere. However, as the primary
purpose of the XML documents is to have the structure
of documents along with their texts, not to render them,
the compression scheme can be considered as lossless.

Text-structure mapping files: A text-structure map-
ping file is illustrated at the top of Figure 3. The file
maps any item in textual file to its corresponding en-
try in the structural file. During query processing it is
better to have the mapping resided in the memory, so
the random access to the file is not required. Hence,
the numbers indicating absolute position of a structural
node (in the structural file) are replaced by the gaps be-
tween it and its preceding . That is, run-length coding is
applied. In our current implementation, Elias’s Gamma
code Elias [1975] is used for this purpose.

Index files: Changes have been made to MG to suit
our needs, in both the indexing and the querying mod-
ules. While the changes are already reported in Anh and
Moffat [2002], it is worth reiterating that the weighting
scheme for terms of the textual items is integrated into
the index, and that during query processing, the calcula-
tion of cosine measure for these items is not required.

Remark: It might be arguable about the need to divide
the XML collection into textual, structural and the map-
ping files since keeping them in one file might be better
for compression. The point is that during query evalu-
ation the structural parts are needed anyway, when the
whole textual parts are needed only when the documents
need to be rebuilt to present as the answer. Another ar-
gument might be that it would probably better to insert
empty items to the textual file to represent the structural
nodes, and hence exclude the mapping file from consid-
eration. However, number of such empty items is rel-
atively high, making the compression of inverted files
ineffective.

Query evaluation After an query has been parsed, in-
formation about each of its distinct terms is stored in
a general list data structure. This information includes

101

—5 7 1 1] |
1 2 3 5
#str 2 4 5 7 8 9 10
|
0| 0| O | <article> 1
— XML Retrieval 1 1| 1| 0| <atl> 2
—1 First N. 2 0 | 2 | 0 | <ausequence="first"> 3
— Surname 3 \ 2|11\ 0| <fnm> 4 |=
—| Everything 4 \ 32| 0| <ref> 5 |=-
—| Everything about and . 5 \ 0|5 | 0 | <sec> 6
—— XML 6 \ 4110 <st 7=
XML Retrieval 7 \ 52| 0|<p> 8 |=—
#ont # \ 6| 1|17 <it> 9 |=—
712 | 4 <it> 10 |=—
#ixt #par #pos #mrk #

Figure 3: Example of textual, structural and their mapping files. The picture conceptually describes a database
which has only one XML document, namely, the document presented in Figure 1. The arrows represent explicit
or implicit links from a file to another. To each file, the field # is added to show the item number. The contextual
file is shown at the bottom left. It contains 7 items, each for one textual node of the document. The ranking is
first done in the IR manner for these items. In this process, the system can use the mapping file (top) to map the
items with their path in the structural file (bottom right). In the structural file, the #par link a node to its parent.
For example, the value 2 of #par for the last item (item number 10) means that its parent is at 2 positions ahead,
that is, is the item number 10-2=8. The columns #txt and #pos are used to rebuild nodes. For example, rebuilding
of item number 8 begins from building its initial string value <p> Everything about and . </p>, then the next
structural items are taken to insert into this string since they are the item’s children. Value #par = 17 of item 9
shows that the corresponding node should be inserted to position 17 after <p> (its preceding markup), making
the above string become <p> Everything about XML </it> and . </p>. Similarly, item number 10 should be
inserted to this string at position 4 after </it>.

representation of the term itself, list of the query’s selection step is a) to delete some anomalies, and b)
<ce> paths that contains the term (with a special value to select the nodes with the top scores. There are
to represent “any path”), and the frequency for each of three situations where a node is considered abnor-
these paths. The evaluation then involves the following mal. The first case is when the node or any of its
main steps: descendants has negative score. The second case
. . . happens when the parent of the node scores higher

1. Scoring: Conventional vector space technique, than it as well as any of its siblings. The motivation
with an adjustment to take into account structural behind this case is to avoid retrieving the descen-
conditions of queries, is employed to calculate sim- dants of retrieved nodes. The third case is applied
ilarity score for each textual item. The weighting only to content-and-structure queries. It involves
scheme for this step is reported in section 4. the clearing of scores of the nodes that do not be-

2. Propagation: The scores obtained are propagated long to the <te> list.

upward in the XML ftree, hence awarding the in- 4 presentation: The list of the nodes with the top

ternal (not necessarily being structural) nodes with scores is now used to retrieve the actual nodes. In
some scores. The techniques for doing this step is this step, we use information from the structural
shown in section 5. file to rebuild the full node. Figure 3 serves as an

3. Selection: After the previous step we come up with example for this process.

a list of nodes with non-zero scores. The task of the

102

For simplicity, the first and second steps, and only them,
are referred to as the first and second, respectively, phase
of the query evaluation process.

4 Weighting Textual Items

The weighting scheme employed for the textual items
is based on our impact transformation technique [Anh
and Moffat, 2002]. The weight is an integer number and
computed as

Sa,q = ZtEQOdpd’q’t - Wd,t - We,t

where pq,,,; is cross-structural importance of ¢ relative
to d and ¢, wq¢ and wy ¢ are quantized impact of term ¢
in textual item d and query g, respectively.

The cross-structural importance is defined by

— w w e e
Pd,q;t = Cw*Pd,q,t T €@ *Pd,qt T Ce Pd,gt T Co Pag,t -

Here ¢y, ¢z, ¢. and ¢z are constants and, in this series of
experiments, are set to 1, 10, -10 and -20, respectively.
Other values are generally 0 except for the following
special cases:

® py,.issetto1if ¢ appearsin either /query/cw or
/query/kw, and d is any textual item,

. pg’,q,t =1 i_f t appears in /query/cw/nw, and d is
any textual item,

e pf .+ = 1if ¢t appears in an /query/ce/cw field
an 4the parent of this field contains at least one item
that is the same as, or the ancestor of, the path name
of the textual element d,

. pfi’q’t = 1 if ¢t appears in an /query/ce/cw/nw
field, and the ancestor /query/ce of this field con-
tains at least one item that is the same as, or the
ancestor of, the path name of the textual element d.

Each of the quantized impacts wq ; and wy ¢ is in the
range 1 to 2°, with (in these experiments) b = 5. Each
of them is calculated in two steps. First, a normal cosine
similarity is used to compute wj , and wy ,

way = (1+]log, faz)
Wd = ng,t
ted
Wi o= 1/((1—s)+s Wa/W?)
wgy = wa/Wg
wy, = log, (1 + fT) (1 +log, fq,t)

where fq; is the term frequency in the textual item, f, ;
is frequency of ¢ in the textual part of the query ¢ (that
is, fq,¢ is calculated without considering the markups);
f+ is the number of textual items that contain term ¢;
f™ is the greatest value of f; in the textual file; Wy is

length of the textual item d; W is the average value of
W4 over all items of the textual file; and W7 represents
the normalized item length using pivoted normalization
[Singhal et al., 1996] with a slope of s = 0.7.

Then, a small enough positive value L and a large
enough positive value U are chosen such that all of the
wg , lie between L and U, thereby allowing the follow-
ing transformation to be calculated:

, logwy, —logU
W, ¢ 27 .
logU —log L + ¢
o ob . logwy ;, —logU
@ logU —log L + ¢
in which B = (U/L)*/(U~L) and e is a small positive

quantity, and the impact values are recorded and used as
integers.

Our experiments made use of two different types of
transformation, characterized by the choice of L and U.
In the first, referred to as global, the values of L and
U respectively are the minimum and maximum values
of wj , over the whole textual file. In the second, re-
ferred'to as local, each textual item or query z is associ-
ated with its own L and U, which are the minimum and
maximum among all of the values wj ; generated from
. That is, in the local transformation, a value wy 4 I8
transformed with respect to the values of L and U of z
— the textual item or query it belongs to.

5 Propagating Scores

After having the scores of the textual nodes, the next
step is to propagate the scores upward in the XML trees
(or tree). Two methods are investigated in our experi-
ments. In the description of the methods (below) it is
supposed that the propagation is being done for a node
b whose parent is a, and that a has totally n children, of
them m have non-zero (possibly negative) score.

The first method is called maximum-by-category.
Here, each distinct term is called a category. For this
method, whenever a score is computed, regardless of
whether the computation belongs to the first or the sec-
ond phase of the evaluation process, it is calculated sep-
arately and kept separately for each category. A real
score of an item is then the sum of its scores over the
categories. Hence the categorical score of b can be rep-
resented as (s (b), s2(b), - - -, 8¢/ (b)), and the real score
forbis

where |g| is number of distinct terms of query ¢g. The
score s(a) of a is computed based on
si(a) = s;(a) + sign s;(b) - a - mbax|sz~(b)|,

where |s;(b)| is the absolute value of s;(b), « is a con-
stant and is set to 0.8 in these experiments.

103

Label
um_mgx21_short
Queries: not having <kw> elements

Type of transformation: global

Propagation method: summation
um-_mgx2_long

Queries: having <kw> elements

Type of transformation: global

Propagation method: maximum-by-category
um_mgx26_long

Queries: having <kw> elements

Type of transformation: local

Propagation method: maximum-by-category

Characteristics

Table 1: Settlement of the experiments

The second method of propagation is called summa-
tion. It involves not only the calculation of s(a) but also
the re-scoring of s(b). s(a) is computed as

s(a) = s(a) + Y _(B-s(b)/n+ - s(b)/m)
b

and s(b) is redefined as

5(b) = 5(b) — (8- 5(b)/n + - s(b)/m).

where 8 and +y are constants. Both of them are set to 0.5
in the experiments reported below.

6 Experiments

Hardware The experiments were carried out on a 933
MHz Intel Pentium 111 with 1 GB RAM, a 9 GB SCSI
disk for system needs, and four 36 GB SCSI disks in
a RAID-5 configuration for data. The indicative times
reported below are for experiments in which there was
no other activity on the hardware.

Experiment parameters Three experiments were
conducted. Their labels and settings are listed in Ta-
ble 6.

References

V. N. Anh and A. Moffat. Impact transformation: effective
and efficient web retrieval. In M. Beaulieu, R. Baeza-Yates,
and S. H. Myaeng, editors, Proc. 25th Annual International
ACM S GIR Conference on Research and Development in
Information Retrieval, pages 3—10, Tampere, Finland, Aug.
2002. ACM Press, New York.

D. Carmel, N. Efraty, G. M. Landau, Y. S. Maarek, and
Y. Mass. An extention of the vector space model for query-
ing XML documents via XML fragments. In Proc. S-
GIR 2002 Workshop on XML and Information Retrieval,
pages 14-25, Tampere, Finland, Aug 2002.

W. Croft, D. Harper, D. Kraft, and J. Zobel, editors. Proc. 24th
Annual International ACM SGIR Conference on Research
and Development in Information Retrieval, New Orleans,
Louisiana, USA, Sept. 2001. ACM Press, New York.

P. Elias. Universal codeword sets and representations of the
integers. |EEE Transactions on Information Theory, 21(2):
194-203, Mar. 1975.

N. Fuhr, N. Govert, G. Kazai, and M. Lalmas. INEX: Initiative
for the Evaluation of XML Retrieval. In Proc. SGIR 2002
Workshop on XML and I nformation Retrieval, pages 62-70,
Tampere, Finland, Aug 2002.

N. Fuhr, N. Govert, and T. Rolleke. Dolores: A system for
logic-based retrieval of multimedia objects. In W. B. Croft,
A. Moffat, C. J. van Rijshergen, R. Wilkinson, and J. Zobel,
editors, Proc. 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, pages 257-265, Melbourne, Australia, Aug. 1998.
ACM Press, New York.

N. Fuhr and K. GroBjohamn. XIRQL: a query language for
information retrieval in XML. In Croft et al. [2001], pages
172-180.

T. Grabs and H. Schek. Generating vector spaces on-the-fly
for flexible XML retrieval. In Proc. SGIR 2002 Workshop
on XML and Information Retrieval, pages 4-13, Tampere,
Finland, Aug 2002.

A. Singhal, C. Buckley, and M. Mitra. Pivoted docu-
ment length normalization. In H.-P. Frei, D. Harman,
P. Schauble, and R. Wilkinson, editors, Proc. 19th An-
nual International ACM S GIR Conference on Research
and Development in Information Retrieval, pages 21-29,
Aug. 1996.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Mor-
gan Kaufmann, San Francisco, second edition, 1999.

104

Applying the IRstream Retrieval Engine
for Structured Documents to INEX

Andreas Henrich
University of Bayreuth
D-95440 Bayreuth, Germany

andreas.henrich@uni-bayreuth.de

ABSTRACT

For a long period of time the research activities in
information retrieval have mainly addressed flat text
files. Although there have been approaches towards
multimedia data and structured data in the past,
these topics gain increasing interest today in the con-
text of XML data. To address structured multime-
dia data, an efficient combination of content-based
retrieval for multimedia data, retrieval in meta data
and mechanisms which allow to exploit the document
structure is needed.

To this end, we propose [Rstream as a general pur-
pose retrieval service for structured multimedia docu-
ments. IRStream is intended as a powerful framework
to search for components of arbitrary granularity —
ranging from single media objects to complete docu-
ments. IRstream combines traditional text retrieval
techniques with content-based retrieval for other me-
dia types and fact retrieval on meta data. In contrast
to other retrieval services which permit set-oriented or
navigation-oriented access to the documents, we ar-
gue for a stream-oriented approach. We describe the
significant features of this approach and point out the
system architecture. Furthermore, we present the ap-
plication of IRstream as a retrieval system for XML
documents in the context of INEX.

1. MOTIVATION

Today, electronic documents are more than flat
text, rather they form a complex structure of dif-
ferent parts. Besides text data, we can find other
media types like audio, image, and video. Further-
more, documents can contain meta data concerning
the contained media objects, the internal document
structure, and the document itself.

To deal with such documents, we need an efficient
combination of (1) content based retrieval techniques
for text and multimedia data, (2) search mechanisms
which can address and exploit the structure of the
documents, (3) retrieval in meta data, and (4) tradi-
tional retrieval facilities such as fact retrieval or pat-
tern matching. Finally — according to the experiences
in the information retrieval community — the retrieval
system should yield a ranking based on some type
of similarity conditions. In the context of structured
multimedia data, the system has to allow for a flexible
and precise definition of these similarity conditions.

In the present paper, we propose a stream-oriented
approach to process such complex similarity-based
queries. The basic idea is to deploy access structures
efficiently supporting similarity queries wherever pos-
sible. These access structures produce initial streams

Gunter Robbert
University of Bayreuth
D-95440 Bayreuth, Germany

guenter.robbert@uni-bayreuth.de

which can be combined and transferred afterwards.
To this end, we use components which combine mul-
tiple rankings (usually derived for different ranking
criteria) and transfer rankings derived for objects of
a certain type to objects of a related type. An impor-
tant feature of the approach is that it is pull-based, i.e.
each stream extracts elements from its input streams
only on demand. This can be seen as a lazy evaluation
approach, where each input stream is produced only
to the extent needed to produce the desired number
of elements in the final output stream presented to
the user.

Obviously, this approach is not only applicable to
structured multimedia documents, but also in the
area of structured text documents. Especially the in-
creasing use of XML in digital libraries, product cata-
logues, scientific data repositories and across the Web
encouraged the development of appropriate searching
and browsing methods. For this reason, the Initia-
tive for the Evaluation of XML retrieval (INEX) [5]
initiated an international, coordinated effort to pro-
mote evaluation procedures for content-based XML
retrieval. INEX provides an opportunity for partic-
ipants to evaluate their retrieval methods using uni-
form scoring procedures and a forum for participating
organizations to compare their results. As a partici-
pating organization, we applied IRstream to the col-
lection of XML documents provided by INEX. Hereby,
we investigated the usability of IRstream for struc-
tured text documents.

The rest of the paper is organized as follows: In
section 1 we will give a first rough description of our
approach. Thereafter, we will go into the details of the
main components of IRstream in section 2. The con-
crete architecture of our IRstream implementation is
presented in section 3. Section 4 shows how IRstream
can be used as a retrieval engine for XML documents
in the context of INEX and presents the experiences
gained. Finally, section 5 concludes the paper.

2. A FIRST VIEW

A first impression of our approach can be given best
by an example. Such an example for a query dom-
inated by ranking conditions might arise when the
user is searching for images maintained in structured
multimedia documents. Here, the user might be inter-
ested in images containing a given logo — i.e. images
which contain a segment similar to the given logo —
where the text nearby the image is dealing with skiing
or winter sports in general. This query contains two
ranking conditions: (1) There is a ranking condition
for the text in the vicinity of the desired images and

105

section @
transfer ranking

with a Transferer

text

combine ranking
I e streams (e.g. according to the
| with Quick VSM (e.g. from

Combine) inverted files)

" W————
transfer ranking
with a Transferer
image segment @

combine streams
(e.g. with Quick
Combine)

ranking with) (ranking with

respect to respect to
color texture
similarity similarity
(e.g. from (e.g. from
LSD’-tree) LSD'-tree)

Figure 1: Stream-oriented processing of our
example query

(2) a ranking condition for image segments which are
required to be similar to a given logo.

Now we assume that the multimedia documents
consist of an (ordered) set of sections. Each section
contains images and/or text blocks. Furthermore,
each image is associated with several image segments.
In this case, our example query searching for images
containing a given logo where the text nearby the im-
age is dealing with skiing or winter sports in general
can be processed as depicted in figure 1.

First, two different rankings are generated for
the image segments delivering these image segments
sorted according to their color and texture similar-
ity, respectively, compared to the given logo. To this
end, feature vectors representing the color and tex-
ture characteristics of each image segment are ap-
plied. Comparing these vectors with the given logo,
two retrieval status values are calculated for each im-
age segment defining the rankings for the color and
texture similarity. For the efficient stepwise calcula-
tion of these rankings various access structures have
been proposed, such as the M-tree, the X-tree or the
LSD"-tree [15, 1, 8]. In figure 1 this part of the query
evaluation process is indicated as step 1.

Then the rankings derived for the two criteria
have to be combined into a single weighted ranking
(step 2). To this end, algorithms such as Fagin’s al-
gorithm [2, 3], Nosferatu [14] or Quick-Combine [6]
can be deployed.

Now we have derived a combined ranking for the
image segments. However, what is needed is a rank-
ing for the images themselves. To derive this ranking,
we transfer the ranking for the image segments to the

images. To this end, we exploit that each image seg-
ment is associated with some type of retrieval status
value determining the ranking of the image segments.
As a consequence, we can transfer the ranking for
the image segments to the images based on these re-
trieval status values. For example, we can associate
the maximum retrieval status value of a related image
segment with each image. To implement this trans-
fer of the ranking, we consider the ranking for the
image segments one element after another, determine
the associated image and calculate the corresponding
ranking of the images (step 3). More details of this
algorithm will be presented in section 2.3.

Now we have to derive a second ranking for the
images with respect to the requirement that the text
nearby the image — i.e. in the same section — is
dealing with skiing or winter sports in general. To
this end, a ranking for the text blocks can, for exam-
ple, be created via an implementation of the vector
space model using inverted files (step 4). Then this
ranking has to be transferred from the text blocks to
the images in the same section (step 5). Now we have
got two rankings for the images: one concerning the
“logo criterion” and one concerning the “text in the
vicinity criterion”. Finally these rankings have to be
combined to yield a common ranking for the images
(step 6).

2. STREAM-ORIENTED QUERY
PROCESSING

“Stream-oriented” means that the entire query
evaluation process is based on components produc-
ing streams one object after the other. First, there
are components creating streams given a base set of
objects and a ranking criterion. We call these com-
ponents rankers. Other components consume one or
more input streams and produce one (or more) out-
put stream(s). Combiners, transferers and filters are
different types of such components.

2.1 Rankers

The starting point for the stream-oriented query
evaluation process are streams generated for a set of
objects based on a given ranking criterion. For ex-
ample, text objects can be ranked according to their
content similarity compared to a given query text and
images can be ranked with respect to their color or
texture similarity compared to a given sample image.

Such “initial” streams can be efficiently imple-
mented by access structures such as the M-tree, the
X-tree, the LSD"-tree, or by approaches based on in-
verted files. All these access structures can perform
the similarity search in the following way: (1) the
similarity search is initialized and (2) the objects are
taken from the access structure by means of some type
of “getNext” method. Hence, the produced streams
can be efficiently consumed one element after the
other.

2.2 Combiners

Components of this type combine multiple streams
providing the same objects ranked with respect to dif-
ferent ranking criteria. Images are an example for me-
dia types, for which no single comprehensive similar-
ity criterion exists. Instead, different criteria address-
ing color, texture and also shape similarity are appli-
cable. Hence, components are needed which merge

106

multiple streams representing different rankings over
the same base set of objects into a combined ranking.

Since each element of each input stream is associ-
ated with some type of retrieval status value (RSV),
a weighted average over the retrieval status values in
the input streams can be used to derive the overall
ranking [4]. Other approaches are based on the ranks
of the objects with respect to the single criteria [12,
9]. To calculate such a combined ranking efficient al-
gorithms, such as Fagin’s algorithm [2, 3], Nosferatu
[14], Quick Combine [6] and J* [13] can be deployed.

2.3 Transferers

With structured documents, ranking criteria are
sometimes not defined for the required objects them-
selves but for their components or other related ob-
jects. An example arises when searching for images
where the text in the “vicinity” (for example in the
same section) should be similar to a given sample text.
In such situations the ranking defined for the related
objects has to be transferred to the desired result ob-
jects. This transfer of a ranking onto related objects
seems to be worth a more in-depth consideration.

Before we can explain the algorithm for the trans-
fer of a ranking, we have to clarify the semantics of
this transfer. To this end, we consider a simplified
example query where the user is searching for images
containing an image segment similar to a given logo.
Here the situation is as follows: We have a retrieval
status value for the image segments. This value allows
to derive a ranking for the image segments. However,
we are not interested in a ranking of the image seg-
ments but in a ranking of the images. Therefore it
is necessary to derive a retrieval status value for each
image.

Let RSV, (ro) be the retrieval status value of object
ro (ro for “related object” and RSV, for the RSV val-
ues of “related” objects). In our example ro would be
an image segment. Further let {ro;,1,70:2,...,70in,;}
be the set of related objects associated with the “de-
sired object” do;. In our example this set would con-
tain the image segments associated with the image
do;. Finally let us assume that high RSV values stand
for well fitting objects. Then we need a function F
deriving the retrieval status value RSVy(do;) from the
objects associated with do; and their RSV values:

(roi,1, RSVi.(roi1)),
def (roia, RSV (ro;2)),

RSVy(do;) = F
(roin,, RSV, (roin,))

Examples for meaningful choices for F are the
maximum RSV, value, the average RSV, value, a
weighted average RSV, value, or even the minimum
RSV, value.

Now the problem which has to be solved by a trans-
ferer can be described as follows: We are concerned
with a query which requires a ranking for objects of
some desired object type oty (image for example).
However, the ranking is not defined for the objects
of type otq, but for related objects of type ot, (image
segments for example).

We assume that the relationship between these ob-
jects is well-defined and can be traversed in both di-
rections. For our example, this means that we can
determine the concerned image for an image segment

and that we can determine the related image segments
for an image. In this situation there will be only one
concerned image for each image segment, but situa-
tions are conceivable where a related object is shared
by multiple desired objects. In this case, we get mul-
tiple objects of type otq.

In addition, we assume there is an input stream
yielding a ranking for the objects of type ot,.

Based on these assumptions, the “transfer algo-
rithm” can proceed as follows. It uses the stream
with the ranked objects of type ot, as input. For
the elements from this stream, the concerned object
— or objects — of type oty are computed traversing
the respective relationships. Then the RSV, values
are calculated for these objects of type otq according
to the desired semantics and the object of type otq
under consideration is inserted into an auxiliary list
maintaining the objects considered so far. In this list,
each object is annotated with its RSV value. Now
the next object of type ot, from the input stream is
considered. If the RSV, value of this object is smaller
than the RSV, value of the first element in the auxil-
iary list which has not yet been delivered in the output
stream, this first element in the auxiliary list can be
delivered in the output stream of the transfer compo-
nent.

For a more detailed consideration, we have to define
the characteristics of the auxiliary list AL. AL main-
tains pairs (do;; RSVy(do;)) with type(do;) = otq.
These pairs are sorted in descending order with re-
spect to their RSV, values. For AL the following
operations are needed: createAL() creates an empty
auxiliary list. getObj(AL,) yields the object with the
i'" highest RSVy value stored in AL. getRSV (AL, 1)
returns the RSV, value for the object with the ith
highest RSVy value stored in AL. contains(AL,do;)
checks whether there is an entry for object doj in AL.
insert(AL, (do;; RSVa(doy))) inserts the entry for do
into AL preserving the sorting with respect to RSV —
moreover, if other objects with the same RSV, value
are already present in AL, the new object is placed be-
hind these objects in AL. size(AL) returns the num-
ber of entries in AL.

Based on these definitions, we can state a class
Transferer which provides a constructor and a get-
Next method. This class is given in pseudo-code in
figure 2. The attributes which have to be maintained
for a transferer comprise the input stream, a defini-
tion of the desired relationship between the objects
of type ot, and oty, the auxiliary list, a variable o,
which stores the next object of the input stream, and
the number of delivered objects.

It has to be mentioned that the mazimum seman-
tics allows for some simplifications of the presented
algorithm. With this semantics, there is no need
to calculate RSV, values in the foreach loop, be-
cause if there is no entry for o4 in AL, o, is surly
the related object with the highest RSV, value for
oq4. Consequently, RSVy(04) = RSV; (o) holds, and
the operation insert (AL, (04; RSV4(04))) in the get-
Next method can be replaced by the more efficient
operation insert (AL, (oq4; RSV:(0r))).

2.4 Filters

Of course, it must be possible to define filter con-
ditions for all types of objects. With our stream-
oriented approach this means that filter components
are needed. These filter components are initialized

107

Class Transferer {

Stream : inputStream;

RelationshipDef : rely; /* desired relationship */
AuxiliaryList : AL;

InputObject : or; /* next obj. to be considered */
Integer : m; /* no. of next object to be delivered */

constructor(Stream : input, RelationshipDef : rel)
{

inputStream := input;

relg := rel;

AL := createAL();

o, = streamGetNext(inputStream);

if o, = L then exception(“empty input stream”);

n:=1;

}

getNext() : OutputObject {
while o, # L
A (size(AL) < n
V RSV;-(or) > getRSV(AL,n)) do
/* consider the next input object o, */
SDO := {oq | Irelg(oqg — or)};
/* all objects with the
desired relationship to o, */
foreach oy € SDO do
if —contains(AL, 04) then
insert (AL, (0q; RSV4(04)));
end /* foreach */;
or := streamGetNext(inputStream);
end /* while */;
if o, = L A size(AL) < n then
return L; /* stream exhausted */
else
n++;
return getObj(AL, n —1);
end /*if */;
}
}

Figure 2: Class Transferer in pseudo code

with an input stream and a filter condition. Then
only those objects from the input stream which ful-
fill the given filter condition are passed to the output
stream.

3. THEIRSTREAM ARCHITECTURE

The architecture of our IRstream system is based on
the idea that the data is maintained in external data
sources. In our implementation, an ORDBMS is used
for this purpose. The stream-oriented retrieval engine
is implemented in Java on top of this data source and
provides an API to facilitate the realization of simi-
larity based retrieval services. Figure 3 depicts this
architecture.

The core IRstream system — shaded grey in figure
3 — comprises four main parts: (1) Implementations
for rankers, combiners, transferers, and filters. (2) Im-
plementations of various methods for the extraction
of feature values as well as corresponding similarity
measures. (3) A component maintaining meta data
for the IRstream system itself and applications using
IRstream. (4) Wrappers needed to integrate external
data sources, access structures and stream implemen-
tations.

graphical user interface

arbitrary
declarative QL applications
; performing
similarity
Optimizer quertes

IRstream-AP! |

fl Rstream |
\ \ g
‘ Ranker ‘ ‘ Comblner‘ ‘Transferer‘ ‘ Filter ‘ ‘ ‘ g
‘ FeatureExtr;a::er “‘\I;/;lietl’l cs ‘
ENEARCANTA R
access s\:tructure \d;éfé’source stream
Wrapper wrapper Wrapper
ORDBMS ﬁ ﬁ

Figure 3: Architecture of the IRstream system

Feature Extractors and Similarity Measures

A feature extractor receives an object of a given type
and extracts a feature value for this object. The simi-
larity measures are methods which receive two feature
representations — usually one representing the query
object and an object from the database. The result of
such a similarity measure is a retrieval status value.

Ranker, Combiner, Transferer, Filter, ...

All these components are subclasses of the class
“Stream”. The interface of these classes mainly con-
sists of a specific constructor and a getNext method.

For example, the constructor of a ranker receives a
specification of the data source, a feature extractor, a
similarity measure and a query object. Then the con-
structor inspects the meta data to see if there is an
access structure for this data source, this feature ex-
tractor, and this similarity measure. In this case, the
access structure is employed to speed up the ranking.
Otherwise, a table scan with a subsequent sorting is
performed.

For the construction of a combiner two or more in-
coming streams with corresponding weights have to
be defined. Here it is important to note that combin-
ers such as Fagin’s algorithm or Quick Combine rely
on the assumption that random access is supported
for the objects in the input streams. The reason for
this requirement is simple. When these algorithms
receive an object on one input stream, they want to
calculate the mixed retrieval status value of this ob-
ject immediately. To this end, they perform random
accesses on the other input streams. Unfortunately,
some input streams are not capable of such random
access options, or a random access would require an
unreasonable high effort. In these cases, other com-
bine algorithms — such as Nosferatu or J* — have

108

to be applied.

For the construction of a transferer, an incoming
stream, a path expression and a transfer semantics
have to be defined. In our implementation, references
and scoped references provided by the underlying OR-
DBMS are used to define the path expressions.

To construct a filter, an incoming stream and a filter
predicate have to be defined.

Meta Data

This component of our system maintains meta data
about the available feature extractors, similarity mea-
sures, access structures, and so forth. On the one
hand, this meta data is needed for the IRstream sys-
tem itself in order to decide if there is a suitable access
structure, for example. On the other hand, the meta
data is also available via the IRstream-API. Here the
meta data can e.g. be used to control the query con-
struction in a graphical user interface.

Wrapper

Data source wrappers are needed to attach systems
maintaining the objects themselves to our retrieval
system. At present, ORDBMSs can be attached via
JDBC.

Access structure wrappers can be used to deploy ac-
cess structures originally not written for our system.
For example, we incorporated an LSD”-tree imple-
mentation written in C++4 via a corresponding wrap-
per. In general, this interface should be used to at-
tach access structures which can maintain collections
of feature values and perform similarity queries on
these values.

Finally, stream wrappers can be used to incorpo-
rate external stream producers. At present, the text
module of the underlying ORDBMS is integrated via
a stream wrapper. In contrast to an access structure,
such an external stream producer provides not only
a ranking but also access to the maintained objects
themselves. This means that an external stream pro-
ducer is aware of the objects themselves, whereas an
external access structure does only maintain feature
values and associated object references.

On top of the IRstream API various types of ap-
plications can be realized. An example is a graphical
user interface where the user can define the query as
a graph of related query objects [10]. Another possi-
bility is to implement a declarative query language on
top of the API. At present, we are working on a re-
spective adaptation of our POQL™™ query language
7, 11].

4. |IRSTREAM IN THE CONTEXT OF
INEX

To assess the applicability of our IRstream ap-
proach as a retrieval engine for XML documents, we
performed one INEX retrieval run containing the top
100 results for all 60 topics. The INEX test collec-
tion consists of more than ten thousand documents
and was inserted into the ORDBMS underlying our
system. To this end, we parsed all documents and de-
composed them hierarchically into several parts. Ta-
ble 1 depicts all document parts and their cardinality.
By these means, we can address different granules of
the document in order to support a search concerning
the documents structure.

Furthermore we implemented a specialized ranker
for XML data which internally uses the text retrieval

[document part | cardinality |
journal 124

article 11,993

author 21,902
frontmatter 11,993

body 11,993
backmatter 9,954
section/subsection/... 140,417
paragraph 1,398,494

Table 1: Addressable document parts and

their cardinality

functionality provided by the underlying ORDBMS,
and incorporated this ranker into our IRstream re-
trieval engine. Using this approach, we were able to
deal with all sixty topics.

In the following, we point out how the query pro-
cessing in IRstream is done by means of a typical ex-
ample topic. To this end, we consider topic 3, which
is a so-called content and structure topic (CAS):

<Title>

<cw>information data visualization</cw>
<ce>kwd</ce>

<cw>large information hierarchies spaces

multidimensional data databases</cw>

</Title>

<Description>
I am looking for techniques for visualizing large
information hierarchies or information spaces.

</Description>

<Narrative>
For a document or document element to be
considered relevant, the document (element) has
to deal with visualization techniques for data
mining or visualization techniques for large
textual information spaces or hierarchies.
Document/document components describing
visualization of any multidimensional data
(be it hierarchical or otherwise) are relevant.
Documents describing rendering techniques and
algorithms are not relevant.

</Narrative>

To process topic 3 we used three rankers, three
transferers and one combiner. Figure 4 shows the
involved components and their interaction for the
stream-oriented processing of topic 3 with IRstream.

First we used one ranker to determine a ranking
for the document parts of type frontmatter, where
the attribute keyword (tag <keywd>) contains terms
like “information data visualization”. In parallel, we
employed two rankers to acquire a ranking for the
document parts of type body (tag <bdy>) concern-
ing the terms “information hierarchies” and “infor-
mation techniques”. The original query text and the
addressed document granule are depicted in the boxes
of figure 4 named XML ranker.

In order to get whole articles as result elements, we
used three transferers applying the maximum seman-
tics to map the results of the different streams onto
the document type article.

Last but not least, to achieve the final result we
used a combiner to merge the ranking of the three in-
coming streams using the algorithm Nosferatu simple
[14]. For the merging of the different input streams,
a weight was assigned to each stream in order to con-
trol the influence of the different document parts. The

109

Jnsal

combiner
article

Combining Algorithm:
Nosferatu simple

article article article

Semantic:
Maximum

Semantic:
Maximum

Semantic:
Maximum

frontmatter body body
Query: Query: Query:
$information $data near(($information, ($information
$visualization not $techniques),5) not $hierarchies) not
$rendering $rendering $rendering
XML ranker XML ranker XML ranker
Figure 4: Stream-oriented processing of
topic 3

weights are noted at the arrows leading from the tran-
ferers to the combiner in figure 4.

For all topics the average response time of the
IRstream retrieval engine was about one second. It
has to be noted that all query processing has been
performed with a first IRstream prototype. This pro-
totype implemented in Java is by no means optimized.

5. CONCLUSION

In this paper, we have presented an approach for
the stream-oriented processing of complex similarity
queries. The approach is intended to complement tra-
ditional query processing techniques for queries dom-
inated by similarity conditions. The approach has
been implemented as a prototype in Java on top of
an ORDBMS and first experimental results achieved
with this prototype are promising. The prototype di-
rectly applying the text retrieval facilities of the OR-
DBMS without a thesaurus or other enhancements
obtained rank 16 among the 42 INEX participants
with respect to the CAS topics.

In the near future, we will address the optimization
of the prototype implementation and perform exper-
iments with larger test collections. Furthermore, we
will develop a query language for this approach and
consider optimization issues regarding the interaction
between the underlying ORDBMS and the IRstream
system. Last but not least, IRstream should build a
good basis for the integration of further query criteria
— like context information — into the query execu-
tion in order to improve the precision of the system.

6. REFERENCES

[1] S. Berchtold, D. A. Keim, and H.-P. Kriegel.
The X-tree : An index structure for
high-dimensional data. In VLDB’96, Proc. 22th
Intl. Conf. on Very Large Data Bases, pages
28-39, Mumbai, India, 1996.

[2] R. Fagin. Combining fuzzy information from
multiple systems. Journal of Computer and
System Sciences, 58(1):83-99, 1999.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In Proc.
10th ACM Symposium on Principles of
Database Systems: PODS, pages 102-113, New
York, USA, 2001.

[4] R. Fagin and E. L. Wimmers. A formula for
incorporating weights into scoring rules.
Theoretical Computer Science, 239(2):309-338,
2000.

[5] N. Fuhr, M. Lalmas, G. Kazai, and N. Govert.
Initiative for the Evaluation of XML retrieval
(INEX). Online available: url:
http://qmir.des.qmul.ac.uk/inex/, 2002.

[6] U. Glintzer, W.-T. Balke, and W. KieBling.
Optimizing multi-feature queries for image
databases. In VLDB 2000, Proc. 26th Intl.
Conf. on Very Large Data Bases, pages
419-428, Cairo, Egypt, 2000.

[7] A. Henrich. Document retrieval facilities for
repository-based system development
environments. In Proc. 19th Annual Intl. ACM
SIGIR Conf. on Research and Development in
Information Retrieval, pages 101-109, Ziirich,
Switzerland, 1996.

[8] A. Henrich. The LSD"-tree: An access structure
for feature vectors. In Proc. 14th Intl. Conf. on
Data Engineering, Orlando, USA, pages
362-369, 1998.

[9] A. Henrich and G. Robbert. Combining
multimedia retrieval and text retrieval to search
structured documents in digital libraries. In
Proc. 1st DELOS Workshop on Information
Seeking, Searching and Querying in Digital
Libraries, pages 35—40, Ziirich, Switzerland,
2000. ERCIM Workshop Proceedings.

[10] A. Henrich and G. Robbert. An end user
retrieval interface for structured multimedia
documents. In Proc. 7th Workshop on
Multimedia Information Systems, MIS’01, pages
71-80, Capri, Italy, 2001.

[11] A. Henrich and G. Robbert. POQLMM: A query
language for structured multimedia documents.
In Proc. 1st Intl. Workshop on Multimedia Data
and Document Engineering, MDDE’01, pages
17-26, Lyon, France, 2001.

[12] J. H. Lee. Analyses of multiple evidence
combination. In Proc. 20th Annual Intl. ACM
SIGIR Conference on Research and
Development in Information Retrieval, pages
267276, Philadelphia, PA, USA, 1997.

[13] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li,
and J. S. Vitter. Supporting incremental join
queries on ranked inputs. In Proc. 27th Intl.
Conf. on Very Large Data Bases, pages
281-290, Los Altos, USA, 2001.

[14] U. Pfeifer and S. Pennekamp. Incremental
Processing of Vague Queries in Interactive
Retrieval Systems. In Hypertezt - Information
Retrieval - Multimedia ’97: Theorien, Modelle
und Implementierungen, pages 223—-235,
Dortmund, 1997.

[15] P. Zezula, P. Savino, G. Amato, and F. Rabitti.
Approximate similarity retrieval with M-trees.
VLDB Journal, 7(4):275-293, 1998.

110

A database approach to content-based XML retrieval

Djoerd Hiemstra
University of Twente, Centre for Telematics and Information Technology

P.O. Box 217, 7500 AE Enschede, The Netherlands
d.hiemstra@utwente.nl

Abstract This paper describes a first prototype sys-
tem for content-based retrieval from XML data. The
system’s design supports both XPath queries and com-
plex information retrieval queries based on a language
modelling approach to information retrieval. Evalua-
tion using the INEX benchmark shows that it is ben-
eficial if the system is biased to retrieve large XML
fragments over small fragments.

1 Introduction

This paper describes a number of fundamental ideas
and starting points for building a system that seam-
lessly integrates data retrieval and information re-
trieval (IR) functionality into a database system. We
describe a first prototype system that is developed ac-
cording to these ideas and starting points and report
on experimental results of the system on the INEX
collection. The current prototype system only sup-
port a small part of the functionality that we envi-
sion for future systems. In the upcoming years we
will build a number of such prototype systems in the
CIRQUID (Complex Information Retrieval Queries in
a Database) project that is funded by the Netherlands
Organisation for Scientific Research (NWO).

The CIRQUID project bridges the gap between
structured query capabilities of XML query languages
and relevance-oriented querying. Current techniques
for XML querying, originating from the database field,
do not support relevance-oriented querying. On the
other hand, techniques for ranking documents, orig-
inating from the information retrieval field, typically
do not take document structure into account. Rank-
ing is of the utmost importance if large collections are
queried, to assist the user in finding the most relevant
documents in a retrieved set.

The paper is organised as follows: Section 2 de-
scribes our database approach to relevance-oriented
querying from XML documents. Section 3 reports the
experimental results of our first prototype system. Fi-
nally, Section 4 concludes this paper.

2 A multi-model

approach

A three level design of DBMSs — distinguishing a

conceptual, a logical, and a

physical level — provides

the best opportunity for balancing flexibility and effi-
ciency. In our approach, we take the three level archi-
tecture to its extreme. Not only do we guarantee logi-
cal and physical data independence between the three
levels, we also map the conceptual data model used
by the end users to a physical implementation using
different data models at different levels of the database
architecture: the so-called “multi-model” database ap-

proach [26].

‘ XPath

&IR ‘

o
\K

Object algebra for

T

language model

‘ Extension

Conceptual Layer ‘

IR extensions

~
~
~
~
~

i

N = =<
\ l Extension Logical Layer (Mo\a) ‘
t: rewrite rules \/V
\i Extension | Physical Layer (Manet) ‘ T~

A = == ===
s

’

7
Relational storage of XML

Optimisation

Figure 1: Database internals

Figure 1 shows a graphical
proach. At the logical level,
used to develop information

representation of the ap-
language models will be
retrieval primitives as a

logical algebra. The physical level provides a relational
storage of the XML data, including fast index struc-

tures.

A new approach to query optimisation deals

with the complex queries that combine structure and
content at the logical level. In the following three sub-

sections we will present some

ing points for developing the
model database approach.

111

of the ideas and start-
three levels of the multi-

2.1 XPath and modern IR queries

The conceptual level should support XML and IR
queries. Our objective is to build a system that sup-
ports “all of XML and all of IR”.

For XML, standards are currently emerging, and it
seems reasonable to support the XPath standard for
our “traditional database queries”. Practically, this
means that our system should contain a complete rep-
resentation of the XML data, and that the system is
able to reproduce (parts of) the data as the result of
the query. For XPath we refer to [2].

Unlike the database and XML communities, which
have developed some well-accepted standards in the
past 30 years, the information retrieval community
does not have any comparable standard query lan-
guage or retrieval model. If we look at some practi-
cal systems however, e.g. internet search engines like
Google and AltaVista, or online search services as pro-
vided by e.g. Dialog and LexisNexis, we see that there
is much overlap in the kind of functionality they pro-
vide.

IT magazines

+IT magazine* -MSDOS

"IT magazines"

IT NEAR magazines

(IT | computer) (books | magazines | journals)
XML[0.9] IR[0.1] title:INEX site:utwente.nl

o Gl WN -

Figure 2: Examples of complex IR queries

Figure 2 gives some example queries from these sys-
tems. The first query is a simple “query by example”:
retrieve a ranked list of documents about IT maga-
zines. The second query shows the use of a mandatory
term operator ‘+’; stating that the retrieved document
must contain the word IT,! a wild card operator ‘¥’
stating that the document might match “magazine”,
but also “magazines” or “magazined” and the ‘=’ op-
erator stating that we do not prefer IT magazines
about MSDOS. The third and fourth query searches
for documents in which “IT” and “magazines” oc-
cur respectively adjacent or near to each other. The
fifth query shows the use of the ‘|’ operator (logical
OR), stating that the system might retrieve documents
about “IT magazines”, “computer magazines”, “IT
journals”, “IT books”, etc. The sixth and last query
shows the use of structural information, very much like
the kind of functionality that is provided by XPath; so
“title:INEX” means that the title of the document

INote that most retrieval systems do not distinguish upper
case from lower case, and confuse the acronym “IT” with the
very common word “it”.

should contain the word INEX. The last query also
shows additional term weighting, stating that the user
finds XML much more important than IR.

These examples suggest that at the logical level, our
system should support algebraic constructs for prox-
imity of terms, mandatory terms, a logical OR, term
weighting, etc. To support proximity operators the
system should at least store term position information
somehow at the physical level.

2.2 Moa and Language Models

Parts of a prototype multi-model database system have
already been developed with the extensible object al-
gebra Moa [14] as the logical layer. An open question
in this set-up is how Moa, which provides a highly
structured nested object model with sets and tuples,
can be adapted to managing semi-structured data. In
this paper we will not get into Moa, but direct our
attention to the language modelling approach to in-
formation retrieval as proposed in [9, 18] to guide the
definition of the logical layer of our system.

The basic idea behind the language modelling ap-
proach to information retrieval is that we assign to
each XML element X the probability that the element

is relevant, given the query Q = ¢i1,---,¢,. Using
Bayes’ rule we can rewrite that as follows.
P(Q17q27 R QTL|X)P(X)
P(Xq17q2a"'7q) = 1)
| " P(qlqua"'vqn) (

Note that the denominator on the right hand side
does not depend on the XML element X. It might
therefore be ignored when a ranking is needed. The
prior P(X) however, should only be ignored if we as-
sume a uniform prior, that is, if we assume that all
elements are equally likely to be relevant in absence of
a query. Some non-content information, e.g. the num-
ber of accesses by other users to an XML element, or
e.g. the length of an XML element, might be used to
determine P(X).

Let’s turn our attention to P(q1,¢q2, ", ¢n|X). The
use of probability theory might here be justified by
modelling the process of generating a query @ given
an XML element as a random process. If we assume
that this page in the INEX proceedings is an XML el-
ement in the data, one might imagine picking a word
at random from the page by pointing at the page with
closed eyes. Such a process would define a probabil-
ity P(q|X) for each term ¢, which might simply be
calculated by the number of times a word occurs on
this page, divided by the total number of words on
the page. Similar generative probabilistic models have
been used successfully in speech recognition systems
[21], for which they are called “language models”.

112

The mechanism above suggests that terms that do
not occur in an XML element are assigned zero proba-
bility. However the fact that a term is never observed
does not mean that this term is never entered in a
query for which the XML element is relevant. The
problem that events which are not observed in the data
might still be reasonable in a new setting, is called the
sparse data problem in the world of language models
[16]. Zero probabilities should therefore be avoided.
A standard solution to the sparse data problem is
to interpolate the model P(g|X) with a background
model P(g) which assigns a non-zero probability to
each query term. If we additionally assume that query
terms are independent given X, then:

n

[1(-NP@) +AP@IX)) ()

i=1

P(Qlf"in‘X) =

Equation 2 defines our basic language model if we as-
sume that each term is generated independently from
previous terms given the relevant document. Here, A
is an unknown mixture parameter, which might be set
using e.g. relevance feedback of the user. Ideally, we
would like to train the probability of an unimportant
term P(g;) on a large corpus of queries. In practice
however, we will use the document collection to define
these probabilities. By some simple rewriting, it can
be shown that Equation 2 can be implemented as a
vector space weighting algorithm [10].

Why would we prefer the use of language models
over the use of e.g. a vector space model with some
tf.idf weighting algorithm as in [22]? The reason is the
following: our generative query language model gives a
nice intuitive explanation of tf.idf weighting algorithms
by means of calculating the probability of picking at
random, one at a time, the query terms from an XML
element. We might extend this by any other generating
process to model complex information retrieval queries
in a theoretically sound way that is not provided by
a vector space approach. For instance, we might
calculate the probability of sampling either “maga-
zines” or “books” or “journals” from the XML doc-
ument by summing the probabilities P(magazines|X),
P(journals|X), and P(books|X). So, Query 5 from
Figure 2 would assign the following probability to
each XML element (ignoring for a moment the prior
P(X) and the linear interpolation with the background
model P(g;) for simplification of the example).

P(Query 5) = (P(IT|X) + P(computer|X)) -
(P(books|X) + P(journals|X) + P(magazines| X))

Interestingly, a similar approach was proposed in 1960
by Maron and Kuhns [17]. In a time when manual in-
dexing was still guiding the field, they suggested that

an indexer, which runs through the various possible in-
dex terms ¢ that possibly apply to a document, might
assign a probability P(¢q|X) to a term given a docu-
ment instead of making a yes/no decision. The lan-
guage modelling equivalent of ‘disjunction’ and ‘con-
junction’ (i.e. ‘AND’ and ‘OR’ operators) is motivated
by adding a so-called translation model to the basic
model [1, 13, 27].

In CIRQUID we will explore language modelling ap-
proaches that model all structured queries in Figure
2. The interested reader is referred to [18, 25] for so-
called bigram models for proximity queries, and [12]
for mandatory terms. A similar approach to querying
XML data is proposed by List and De Vries [15], and
Ogilvie and Callan [19].

2.3 Relational storage

At the physical level, we will use the ‘good-old’ rela-
tional model for storage of the data. In order to com-
bine XPath and information retrieval functionality, we
somehow have to combine relational data representa-
tions of XML as described in e.g. [4, 24], and rela-
tional representations of information retrieval indexing
structures as described by e.g. [3, 7, 26]. Our starting
point for the relational storage of the XML data is
that it should not critically depend on the existence
of a schema or DTD, and that it should be possible
to reconstruct the XML data completely. Our starting
point for the storage of information retrieval index-
ing structures is that it should provide the ‘traditional
information retrieval’ functionality as well as term po-
sition information to support proximity queries.

Related work on XML storage

A standard approach to storing hierarchical or nested
data, with or without a schema, is to store each “in-
stance node” separately in a relational table. This is
illustrated in Figure 3, 4 and 5. Figure 4 shows a tree
representation of the XML instance of Figure 3. Each
node in the tree is assigned a node identifier “id”.

<article>
<au><fnm>Boudewi jn</fnm><snm>Biich</snm></au>
<atl>Kleine blonde dood</atl>
<bdy>
<p>Een schrijver ontmoet een oude bekende.</p>
<p>Er ontstaat een liefdesrelatie.</p>
</bdy>
</article>

Figure 3: Example XML data

113

articlel

o
/N

fnm3 snm

bdy ©

p10 p12

‘4 ‘ 6 8 ‘11 ‘ 13
Boudewijn Buch Kleine... Een.. Erontstaat...

5

Figure 4: Tree representation of the data

Now for each node, we might store its id and the
id of its parent as shown in Figure 5. One can think
of numerous alternative ways to assign the ids to the
instance nodes (in this example they were assigned in
pre-order). Similarly, one can think of many relational
schemas that support this basic idea, by fragmenting
the tables of Figure 5 in various ways. In previous
work, we used a full fragmentation in binary relational
tables [14] which provides efficient support for XML
querying [24].

tags pcdata
id | parent | tag_name id | parent | string
1 0 article 4 3 Boudewijn
2 1 au 6 5 Biich
3 2 fnm 8 7 Kleine blonde...
5 2 snm 11 10 Een schrijver...
7 1 atl 13 12 Er ontstaat...
9 1 bdy
10 9 P
12 9 p

Figure 5: Example relational storage of XML data

Related work on the storage of IR indexes

A standard approach to the relational storage of in-
formation retrieval indexes uses two tables. One ta-
ble stores the document term statistics, i.e. for each
document-term pair some statistics related to the num-
ber of times the term occurs in the document. A sec-
ond table stores the global term statistics, i.e. for each
term some statistics related to the total number of
times that a term occurs in the entire collection. In
traditional systems that use a tf.idf term weighting al-
gorithm, the first table contains the t¢f’s (term frequen-
cies) and the second table contains the df’s (document
frequencies). In the language modelling approach we
might store P(g|X) in the first table and P(q) in the
second.

In [3, 7, 26], id refers to a document identifier. For
XML data it should refer to the node id of the XML
element as shown in Figure 4 and 5. A fundamen-
tal problem with this approach is the following. If we

local_stats global_stats

word id | P(word[id) word P(word)
aardvark 43 0.007 aardvark | 0.00001
after 3 0.09 after 0.0345
after 42 0.11 affect 0.00055
after 78 0.015 ambient 0.0000001
after 980 0.067 an 0.107
affect 321 0.2

ambient 761 0.0001

bekende 1 0.031

blonde 1 0.031

boudewijn 1 0.031

Figure 6: Example relational storage of an IR index

include all word-id pairs in the table local_stats of
Figure 6, then each word in the data will occur as often
as the average depth of the XML data. For INEX, the
average depth is about 7, so our information retrieval
index would be 7 times as big as the “regular” in-
dex that only indexes traditional documents (e.g. web
pages).

A solution to this problem is to let the database
administrator choose the nodes that need to be
indexed, the so-called “indexing nodes” [5, 28],
however, this will restrict the functionality such
that queries like //*[. =~ "computational biology"]
(pseudo “XPath+IR” for any element about “compu-
tational biology”) would be impossible, or only possi-
ble by inefficient linear scans over all string fields in
the pcdata table of Figure 5.

An alternative solution to this problem is to only
store all leaf nodes of the XML data in local_stats
as suggested in [6]. In this case, queries like
//article[. =" "computational biology"] (any arti-
cle element about “computational biology”) would
need a number of repeated joins with the table tags
of Figure 5 in order to determine the id of the article
node that contains the query terms.

Instead of storing the tag name, one could store the
complete path in Figure 5. This would solve only part
of the problem, because it would require a special pur-
pose implementation of regular path matches on at-
tributes.

SELECT id, SUM(f(local_stats.p, global_stats.p))ASs
FROM local_stats, global_stats
WHERE local_stats.word = global_stats.word
AND (local_stats.word ’computational’
OR local_stats.word ’biology’)
GROUP BY id
ORDER BY s DESC

Figure 7: Traditional IR query in pseudo SQL

114

Figure 7 shows the typical information retrieval
ranking algorithm expressed in SQL to give the reader
a flavour of how the system uses the tables of Figure 6.
In practice, we will not use SQL at the physical level.
The function f in the algorithm might be any tf.idf
formula. In case of the language modelling approach,
f might be defined as log(1 + P(q|X)/P(q)) [10].

A first prototype

For our first prototype we implemented the XML stor-
age scheme proposed by Grust [8]. Grust suggests to
assign two identifiers to each instance node: one id
is assigned in pre-order, and the other in post-order.
These ids replace the explicit parent-child relations as
described in the previous paragraphs.? The pre and
post order assignment of XML element ids provides el-
egant support for processing XPath queries.

<article>
<auX<fnm>Boudewi ju*</fnm> <snm>’Biich’ </snm></au>’
<at1>!0Kleine!! blonde'? dood!®</at1>!4
<bdy>1®
<p>16Een17schrijver ontmoet een oude bekende.</p>
<p>Er ontstaat een liefdesrelatie.</p>
</bdy>
</article>

Figure 8: Example XML document: assigning ids

articlel:32
/ ‘1o,> 15,30
au 29 at| bdy
/3,5\ 6,8
e snm pl6.23 ;24,20

‘4,4 ‘7,7 11,13 ‘17,22 ‘ 25,28
Boudewijn Buch Kleine... Een.. Erontstaat...

Figure 9: Tree representation: assigning ids

Note that pre and post order assignment can be done
almost trivially in XML by keeping track of the order
of respectively the opening and closing tags as shown
in Figure 8 and 9. Both figures also show that position
information is assigned to each word in the data. These
positions will be used in our term position index. This
leads to the relational storage of XML data as shown in
Figure 10 and the relational storage of the information
retrieval positional index as shown in Figure 11.

Note that exactly one ‘join’ (on the condi-
tion: position > pre and position < post, count-

2 Actually, [8] store the id of the parent as well. Similarly, in
[24] a field is added to keep track of the order of XML elements;
here we emphasise different view points.

tags2 pcdata2

pre | post |tag name pre | post | string

1 32 article 4 4 Boudewijn

2 9 au 7 7 Biich

3 5 fnm 11 13 Kleine blonde...

6 8 snm 17 22 Een schrijver...
10 14 atl 25 28 Er ontstaat...
15 30 bdy
16 23 P
24 29 P

Figure 10: Relational storage of XML data

position_index global _stats

word position word P(word)
bekende 22 bekende 0.00321
blonde 12 blonde 0.00013
boudewijn 4 boudewijn | 0.00004
biich 7 biich 0.00001
een 17 een 0.0991
een 20 er 0.0145
een 27

er 25

kleine 11

Figure 11: Relational storage of the IR positional index

ing the positions) will give us a table that is similar to
local stats in Figure 6. Figure 12 expresses this in
SQL.

CREATE VIEW local_stats2 AS
SELECT word, pre
CAST(COUNT (position) AS float) / (post-pre) AS p
FROM position_index, tags2
WHERE position > pre
AND position < post
GROUP BY word, pre

Figure 12: Combining term information and the struc-
tured information in pseudo SQL

Also note that, unlike the approaches in [6, 28], we
are not interested in the total number of times a term
occurs in a certain XML element type (that is, the
so-called ‘document frequency’ of the term). The lan-
guage modelling approach suggests that P(q) is the
probability of a term in “general query English”: It
should be the same for all queries. Furthermore, to
avoid the sparse data problem, it should be estimated
on as much data as possible. In our case, P(q) is de-
fined by the total number of occurrences of ¢ in the
entire INEX collection, divided by the total number of
term occurrences in INEX (i.e. the “collection length”
measured in the number of words).

115

2.4 Optimisation

As an example of a logical optimisation step,
let’s have a look at the fifth query of Fig-
ure 2 again. For the second part of Query 5,
P(books OR journals OR magazines|X) is defined in
Section 2.2 as:

P(books|X) + P(journals| X) + P(magazines|X)

Remember that each P(¢|X) is defined by the ‘join’ of
Figure 12. This suggests that we have to do the ‘join’
for each of the words books, journals and magazines,
and then group them by the XML element id, adding
the probabilities. In [11] it is shown that a more effi-
cient approach would be to first determine the number
of occurrences of either (books OR journals OR mag-
azines) and then compute the probability by dividing
by the length of the XML element. So, we could first
do a selection of (books OR journals OR magazines)
on the position index, and then do the ‘join’ with the
tags table. This way we avoid two of the three joins.
A similar optimisation step is in general not possible
in extended Boolean models [23] and fuzzy set models
[20].

To understand what is happening here, note that
each occurrence of (books OR journals OR magazines)
actually has its own position. At any place in the
XML data where either books, or journals, or magazines
occurs, we actually know its position. We cannot do
a similar optimisation for ‘AND’ queries (Note that all
queries of Figure 2, except for Query 5, are implicit
‘AND’ queries), that is, the words books, journals, and
magazines occur nowhere in the data on exactly the
same position, for the simple reason that each position
contains exactly one word.

The above example shows a simple, almost trivial,
optimisation step. A modern database query optimiser
should be able to reason over queries that contain
clauses over data structures that are typically imple-
mented in different extensions of the DBMS. Current,
state-of-the-art optimiser technology can deal with ex-
tensions in isolation. In future work, we will design an
inter-object optimiser layer that is able to bridge the
typical orthogonality of database extensions. At the
logical level, the query optimiser will be extended to
handle interacting extensions, including e.g. extensions
for other media.

3 Experimental results

In this section we describe the experimental setup and
the evaluation results of the system using the INEX
testbed. We describe the tasks and evaluation pro-
cedure, the system setup and research questions, and
finally the experimental results.

3.1 The INEX evaluation

INEX is the Initiative for the Evaluation of XML Re-
trieval. The initiative provides a large testbed, consist-
ing of XML documents, retrieval tasks, and relevance
judgements on the data. INEX identifies two tasks:
the content-only task, and the content-and-structure
task.

The content-only task provides queries of the form:
//*[. =~ "computational biology"] (“XPath+IR”
for: any element about “computational biology”).
In this task, the system needs to identify the most
appropriate XML element for retrieval. The task re-
sembles users that want to search XML data without
knowing the schema or DTD.

The content-and-structure task provides queries of the

form: //articlelauthor =~ "Smith|Jones" and bdy
=" "software engineering"] (“XPath+IR” for: re-
trieve articles written by either Smith or Jones about
software engineering). This task resembles users or ap-
plications that do know the schema or DTD, and want
to search some particular XML elements while formu-
lating restrictions on some other elements.

For each query in both tasks, quality assessments
are available. XML elements are assessed based on
relevance and coverage. Relevance is judged on a four-
point scale from 0 (irrelevant) to 3 (highly relevant).
Coverage is judged by the following four categories: N
(no coverage), E (exact coverage), L (the XML element
is too large), and S (the XML element is too small).

In order to apply traditional evaluation metrics like
precision and recall, the values for relevance and cover-
age must be quantised to a single quality value. INEX
suggests the use of two quantisation functions: Strict
and liberal quantisation. The strict quantisation func-
tion evaluates whether a given retrieval method is ca-
pable of retrieving highly relevant XML elements: it
assigns 1 to elements that have a relevance value 3,
and exact coverage. The liberal quantisation function
assigns 1 to elements that have a relevance value of
2 and exact coverage, or, a relevance value of 3 and
either exact, too small, or too big coverage.

3.2 Setup and research questions

We evaluate a system that only has limited function-
ality. First of all, we assume that A = 1 in Equation
2, so we do not have to store the global _stats ta-
ble of Figure 11. The system supports queries with a
content restriction on only one XML element, so the
example content-and-structure query in the previous
section is not supported: Either the restriction on the
author tag, or the restriction on the bdy tag has to be
dropped. The system supports conjunction and dis-
junction operators, which are evaluated as defined in

116

the example of Query 5 at the end of Section 2.2. All
queries were manually formulated from the topic state-
ments.

The experiments are designed to answer the follow-
ing research question: Can we use the prior probability
P(X) (see Equation 1) to improve the retrieval qual-
ity of the system? We present three experiments us-
ing the system described in this paper, for which only
the prior probabilities P(X) differ. The baseline ex-
periment uses a uniform prior P(X) = ¢, where c is
some constant value, so each XML element will have
the same a priori probability of being retrieved. A sec-
ond experiment uses a length prior P(X) = number of
tokens in the XML element, where a token is either a
word or a tag. This means that the system will prefer
bigger elements, i.e. elements higher up the XML tree,
over smaller elements. A third experiment uses a prior
that is somewhere in between the two extremes. The
prior is defined by P(X) = 100+ number of tokens
in the XML element. Of course, the priors should be
properly scaled, but the exact scaling does not mat-
ter for the purpose of ranking. We hypothesise that
the system using the length prior will outperform the
baseline system

3.3 Evaluation results

This section presents the evaluation results of three
retrieval approaches (no prior, ‘half’ prior, and
length prior) on two query sets (content-only, and
content-and-structure), following two evaluation meth-
ods (strict and liberal). We will report for each com-
bination the precision at respectively 5, 10, 15, 20, 30
and 100 documents retrieved.

Table 1 shows the results of the three experiments on
the content-only queries following the strict evaluation.
The precision values are averages over 22 queries. The
results show an impressive improvement of the length
prior on all cut-off values. Apparantly, if the elements
that need to be retrieved are not specified in the query,
users prefer larger elements over smaller elements.

evaluation. The precision values are averages over 28
queries. The baseline system performs much better on
the content-and-structure queries than on the content-
only queries. Surprisingly, the length prior again leads
to substantial improvement on all cut-off values in the
ranked list.

precision | no prior ‘half’ prior | length prior
at 5 0.1929 0.2357 0.2857
at 10 0.1964 0.2321 0.2857
at 15 0.1976 0.2333 0.2714
at 20 0.1929 0.2232 0.2589
at 30 0.1786 0.2060 0.2607
at 100 0.0954 0.1107 0.1471

Table 2: Results of content-and-structure (CAS) runs

with strict evaluation

Table 3 shows the results of the three experiments on
the content-only queries using the liberal quantisation
function defined above for evaluation. The precision
values are averages over 23 queries. Again, the results
show a significant improvement of the length prior on

all cut-off values.

precision | no prior ‘half’ prior | length prior
at b 0.1130 0.1391 0.4261
at 10 0.0957 0.1304 0.3609
at 15 0.0957 0.1333 0.3304
at 20 0.1000 0.1152 0.3000
at 30 0.1087 0.1232 0.2812
at 100 0.0896 0.1222 0.2065

Table 3: Results of content-only (CO) runs with liberal
evaluation

Table 4 shows the results of the three experiments
on the content-and-structure queries following the lib-
eral evaluation. The precision values are averages over
28 queries. The length prior again shows better perfor-
mance on all cut-off values. Note that the content-only
task and the content-and-structure task show practi-
cally equal performance if the liberal evaluation pro-

precision | mno prior | ‘half’ prior | length prior
at 5 0.0455 0.0455 0.1909
at 10 0.0364 0.0455 0.1591
at 15 0.0303 0.0424 0.1394
at 20 0.0341 0.0364 0.1318
at 30 0.0364 0.0424 0.1318
at 100 0.0373 0.0559 0.1000

Table 1: Results of content-only (CO) runs with strict
evaluation

cedure is followed.

precision | no prior ‘half’ prior | length prior
at 5 0.2429 0.2929 0.4000
at 10 0.2286 0.2823 0.3750
at 15 0.2262 0.2881 0.3738
at 20 0.2268 0.2821 0.3607
at 30 0.2179 0.2583 0.3595
at 100 0.1279 0.1571 0.2054

Table 4: Results of content-and-structure (CAS) runs

Table 2 shows the results of the three experiments on with liberal evaluation

the content-and-structure queries following the strict

117

4 Discussion and future work

We presented an initial design and implementation of
a system that supports XPath and complex informa-
tion retrieval queries. In the CIRQUID project we will
develop an algebra that allows us to define complex
queries using language modelling primitives, like bi-
grams (proximity) conditional independence, and mix-
ture models.

From the INEX experiments we conclude that it is
beneficial to assign a higher prior probability of rele-
vance to bigger fragments of XML data than to smaller
XML fragments, that is, to users, more information
seems to be better information.

Acknowledgements

The research presented in this paper was funded in
part by the Netherlands Organisation for Scientific Re-
search (NWO).

References

[1] A. Berger and J. Lafferty. Information retrieval as
statistical translation. In Proceedings of SIGIR’99,
pages 222-229, 1999.

[2] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernan-
dez, M. Kay, J. Robie, and J. Simeon. XML Path
language 2.0. Technical report, World Wide Web Con-
sortium, 2002.

[3] H.E. Blok. Database Optimization Aspects for Infor-
mation Retrieval. PhD thesis, University of Twente,
2002.

[4] D. Florescu and D. Kossmann. A performance evalua-
tion of alternative mapping schemes for storing XML
data in a relational database. In Proceedings of the
VLDB’99, pages 105-110, 2001.

[5] N. Fuhr and K. Grossjohann. XIRQL: A query lan-
guage for information retrieval in XML. In Proceed-
ings of SIGIR’01, pages 172-180, 2001.

[6] T. Grabs. Generating vector spaces on-the-fly for flex-
ible XML retrieval. In Proceedings of the SIGIR work-
shop on XML and Information Retrieval, pages 4—13,
2002.

[7] D.A. Grossman, O. Frieder, D.O. Holmes, and D.C.
Roberts. Integrating Structured Data and Text: A
Relational Approach. Journal of the American Society
of Information Science, 48(2):122-132, 1997.

[8] T. Grust, Accelerating XPath location steps. In Pro-
ceedings of ACM SIGMOD’02, pages 109-120, 2002.

[9] D. Hiemstra. A linguistically motivated probabilis-

tic model of information retrieval. In Proceedings

of the 2nd FEuropean Conference on Digital Libraries

(ECDL), pages 569-584, 1998.

D. Hiemstra. A probabilistic justification for using

tf.idf term weighting in information retrieval. Inter-

national Journal on Digital Libraries, 3(2):131-139,

2000.

(10]

[11] D. Hiemstra. Using language models for information
retrieval. PhD thesis, University of T'wente, 2001.

D. Hiemstra. Term-specific smoothing for the lan-
guage modeling approach to information retrieval:
The importance of a query term. In Proceedings of
SIGIR’02, pages 35—41, 2002.

D. Hiemstra and F.M.G. de Jong. Disambiguation
strategies for cross-language information retrieval. In
Proceedings of the 8rd European Conference on Digital
Libraries (ECDL), pages 274-293, 1999.

M. van Keulen, J. Vonk, A.P. de Vries, J. Flokstra,
and H.E. Blok. Moa: extensibility and efficiency in
querying nested data. Technical report 02-19, Centre
for Telematics and Information Technology, 2002.

J. List and A.P. de Vries. CWI at INEX. In Pro-
ceedings of the first INEX workshop, 2003. (in this
volume)

C. Manning and H. Schiitze. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

M.E. Maron and J.L. Kuhns. On relevance, proba-
bilistic indexing and information retrieval. Journal of
the Association for Computing Machinery, 7:216-244,
1960.

D.R.H. Miller, T. Leek, and R.M. Schwartz. A hid-
den Markov model information retrieval system. In
Proceedings of SIGIR’99, pages 214221, 1999.

P. Ogilvie and J. Callan. Language Models and Struc-
tured Document Retrieval. In Proceedings of the first
INEX workshop, 2003. (in this volume)

C.P. Paice. Soft evaluation of Boolean search queries
in information retrieval systems. Information Tech-
nology: Research and Development, 3(1):33-42, 1984.
L.R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition. In
Readings in speech recognition, pages 267-296. Mor-
gan Kaufmann, 1990.

G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing &
Management, 24(5):513-523, 1988.

G. Salton, E.A. Fox, and H. Wu. Extended Boolean
information retrieval. Communications of the ACM,
26(11):1022-1036, 1983.

A. R. Schmidt, M. L. Kersten, M. A. Windhouwer,
and F. Waas. Efficient Relational Storage and Re-
trieval of XML Documents. In The World Wide Web
and Databases — Selected Papers of WebDB 2000,
Springer-Verlag, pages 137-150, 2000.

F. Song and W.B. Croft. A general language model
for information retrieval. In Proceedings of CIKM’99,
pages 316-321, 1999.

A.P. de Vries. Content and Multimedia Database
Management Systems. PhD thesis, University of
Twente, 1999.

J. Xu, R. Weischedel, and C. Nguyen. Evaluating a
probabilistic model for cross-lingual information re-
trieval. In Proceedings of SIGIR’01, pages 105-110,
2001.

R. van Zwol. Modelling and searching web-based doc-
ument collections. PhD thesis, University of Twente,
2002.

[12]

[13]

[14]

[15]

[16]

(17]

18]

(19]

20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

118

The Xircus Search Engine*

Holger Meyer

Ilvio Bruder

Gunnar Weber

Andreas Heuer

University of Rostock
Database Research Group
18051 Rostock, Germany

{hme, ilr, weber, heuer} @ nf ormati k. uni - r ost ock. de

February 19, 2003

Abstract

Nowadays, XML is the document model in favour for
both document- and data-centric web applications. Its
influence in other, more traditional projects and applica-
tions grows as the web and associated techniques be-
come the de-facto standard in user interfaces in such
systems.

We present an XML-sensitive search engine (Xircus)
suited for processing semi-structured queries over large
collections of XML documents. Xircus is based on state
of the art information retrieval techniques. It is a test
bed for research in query processing for XML and semi-
structured data in general.

1 Introduction

Traditional search engines are built upon classical in-
formation retrieval methods. Even though they are en-
hanced by evaluating the hyper-link structure of web
sites, there is little effort made in exploiting the docu-
ment structure itself. Newly built XML-sensitive search
engines should rely more on the XML structure and fa-
cilitate path expression and structured queries based on
a type system.

The application of such XML-sensitive search en-
gines is manifold: digital libraries, (web) content man-
agement, XML-enabled databases, and many other web-
based software projects.

Beside that, there are two reasons why we started the
Xircus project.

e In the first place, we wanted an XML search en-
gine which implements state of the art techniques
for fulltext search, XML indexing and query pro-
cessing.

e Secondly, Xircus should offer a research frame-
work for experimenting with information extrac-

*Xircus is an acronym for XML-based Indexing, Ranking, and
Classification Techniques for Customised Search Engines.

tion from XML document collections, path index-
ing and processing and semi-structured query pro-
cessing in general, that combines information re-
trieval with structured, SQL-like queries.

The software architecture should allow for plug in dif-
ferent methods like language specific stemmers, domain
specific stopword lists, ontologies and thesauri.

The search engine builds upon several basic data
structures. The meta database describes attributes com-
mon to XML document collections and properties of
documents within these collections. Per collection,
there might be different index structures for accelerating
the access to documents and their fulltext, XML struc-
ture, and often queried fragments.

The Xircus search engine should be easily deployed
in a distributed, heterogeneous environment and adopted
to different settings.

The paper is organised as follows. Primarily, we give
an overview of the system architecture. Then, a brief
discussion of query language issues follows. The paper
closes with a look at the first prototype and its user in-
terface. Last but not least, some related work and future
tasks are discussed.

2 Architectural Overview

Xircus has an component-based structure. Figure 1 de-
picts the distributed architecture of the search engine.
The main components are the Xircus Agent, the Xircus
Server and servlets in a web server.

The Xircus Agent gathers information from dis-
tributed XML-collections. It performs several document
analysis and index preparation steps. Finally, it trans-
mits the collected information to the server. The Xircus
Server manages the basic data structures and performs
the query evaluation. The User-interface is built by a set
of servlets. These servlets communicate with the server
using JDBC, as the agents do.

119

Web Web
Browser

Browser

Xircus Agent

XML Parser

Post

Servlet Container

Query Engine

Processing
JDBC

rv
Servlet JDBC

Servlet

Metadata

Link Base
Fulltext Index
Structure Index
Value Index

Xircus Agent

XML Parser

Web Server

Xircus Server

JDBC

Post
Processing

Figure 1: Xircus Architecture

Besides this component-based architecture, the pro-
cess of indexing and querying can be illustrated by the
processing steps necessary (Figure 2). After accessing
the XML document collections the document analysis
step starts in the Xircus agent. The extracted informa-
tion is then handed over to the index preparation step
that takes place in the Xircus server.

Document analysis First, some metadata on the doc-
ument collections are collected by agents. This includes
data like timestamps, document type, document length,
checksum and other. The documents them-self are fur-
ther analysed in two steps. At first, a structure analysis
takes place which includes the extraction of the docu-
ment structure tree and its relations to the content. Sec-
ondly, a content analysis is performed. There are a cou-
ple of analysis tools for the textual content analysis, e.qg.,
linguistic tools, thesauri or ontologies.

There are some dependencies between analysis steps
because some results of the one analysis is helpfully
or even necessary for the other analysis. Term posi-
tion must be determined before stopword elimination
because some terms are not counted and some phrase
search may fail. Stop-word elimination should be pro-
cessed before stemming because stemming is expensive
depending on the number of words. Generally, the meta-
data are collected first because some analysis are depen-
dent on document or schema type.

The storage and index structures Several data and
index structures are managed in the Xircus server:

e Metadata storage: collections, documents, statis-
tics, schemes (DTD, XML Schema, index struc-
tures per collection)

e Fulltext index: words of the fulltext, sentences,
phrases of a natural language, IR based querying

e Structure- or path index for querying the document
structure, evaluating path expressions

o Value index, atomic element and attribute content,
typed values (XPath 1.0 type system), for struc-
tured parts of a document, and SQL-like queries

e Link-base, outgoing and incoming edges per docu-
ment, to analyse the hyperlink structure.

The metadata encompasses information on docu-
ments, e.g., checksum, timestamps, document type,
collection affiliation and term statistics, and informa-
tion on collections like document schema (DTD, XML
Schema), main language, and other document statistics.
Stopword lists or stop context can be defined on a per
collection basis. A stop context is a XML fragment to
be excluded from processing. It can be described by a
path expression.

The data for the fulltext index consist of terms, their
occurrences and the term position. The terms are pro-
cessed from the document words by stopword elimina-
tion, stemming and possible usage of thesauri/ontology.

The term position are determined by sentence and
word recognition. The structure index includes infor-
mation on elements, element-subelement relationships,
attributes, and paths. XML-elements are annotated by a
position number too. Values, like author names or publi-
cation years, in the value index are extracted from XML-
attributes or elements. They are associated with a data
type as defined in XML Schema. Two kinds of links, ref-
erences or citations are distinguished, in-collection and
external hyperlinks and references. The links must be
defined by structured elements in a known way, i.e us-
ing ID/IDREF in a DTD or with XLink/XPointer.

120

Figure 2: Xircus Processing Steps

3 Query Language I ssues

A query language for an XML-sensitive search engine
should support a combination of information retrieval
(IR-like) and structured XML-queries (XML- or SQL-
like), i.e.:

e Vague (IR-like) queries on the concatenated full-
text, regardless of the XML document structure.

e IR-like queries restricted to XML-fragments,
which in turn can be described by path expressions.

o XML-like queries with a vague description of the
content of desired elements or attributes.

o IR-like queries on the XML-structure which is ba-
sically IR on the XML-identifiers, e.g., pattern
matching on element or attribute names. Here, the
structure itself is a search term.

o Exact (SQL-like) queries on certain typed element
or attribute values.

o Queries that allow for an exploration of the hyper-
link structure.

Now we will have a short look at the retrieval lan-
guage XircL, how combined queries can be expressed,
and how the ranking mechanisms of Xircus works.

————{_Linguistic Techniques) Table 1: Information retrieval like expressions
Document | Ontologies, Thesauri) Expression types Mee;ning
; term words
Analysis ———— Document Structure] ‘termterm...’ phrases
\{ Link Structure] {termterm ...} sentences
(expr ...) grouping
Terms, Descriptors] expr 1 op expr boolean operators op: and,
or, not
Index (XML Structure, Paths) expr *factor weighted expressions to influ-
] Hyperlink ence the rankin
Preparation yperinks] g
| searchPattem)
value Index) Table 2: Query Expressions Involving Structure
Expression types M eaning
/{ Boolean Queries] pat h(pexpr) embedded path expression,
Query —— Path Expressions XPath 1.0
Processing Xpressl) pat h(pexpr) path restriction
Retrieval 1 XQuery, FLWOR) cont ai ns expr
expr conp const value-based comparison,
— Ranking) Pexpr comp conp: =, < P
return pexpr unit of interest described by
pexpr, defaults to root-
User Interface [—{_Surface Language element, can be redefined on a
Resul [Customizing per collection basis
Presentation | (" yser Preferences)
3.1 TheQuery Language XircL

At the user level Xircus uses an information retrieval
language (XircL). The user can pose boolean queries
and use concepts like words, phrases, and sentences.
With weighted expressions the ranking can be influ-
enced. To query the structure of the XML documents
path expression can be used in conjunction with fulltext
operations. Tables 1 and 2 summarise the elements of
XircL.

The IR-like part of XircL consists of simple key-
word search, combining keywords within boolean ex-
pressions, or querying for phrases, sentences, and influ-
encing the ranking of results by giving weightings for
terms.

Path expression can be used in two ways:

(1) Embedded paths: expressions like
“pat h(expr)” will qualify all documents
containing the specified path expression (pexpr).

(2) Path restrictions: expressions like
“pat h(pexpr) contains(expr)” will
limit the search for certain concepts, terms or
words expr to the XML document fragments
described by pexpr .

For path expressions pexpr the XML Path Language
is used. The XPath 1.0 implementation in Xircus comes
with some restrictions: only a few of the built-in func-
tions are implemented and solely navigations along the
ancest or and descendant axis are permitted actu-
ally.

Often not the whole XML document should be ref-
erenced in the query result but only a certain fragment.

121

XircL offers a concept to influence the structure of the
returned query result. “r et urn pexpr ” returns ref-
erences to the document fragments matching pexpr .
Per default, references to the root nodes of the matching
documents are returned.

To illustrate querying with XircL we use the topic 21
from the INEX collection: “Which authors of articles
cited recent work by Heikki Mannila?” The query is
expressed in XircL this way:

pat h(//bn bb/ au)
cont ai ns Hei kki

and

pat h(//bni bb/ pdt/yr) >= 1998

return /farticle/fm

and Manni |l a

The back matter of an article is searched for the au-
thor Heikki Mannila. The search is restricted by an ex-
act query term, which selects references from 1998 up
to now. Since we are interested in authors who cited
Heikki Mannila, we just want to return the front matter
stuff (author, title) of the article.

3.2 Ranking

The ranking mechanism of Xircus assigns relevance
measures to documents or fragments based on the statis-
tics stored in the database. The ranking value is calcu-
lated from four measures for similarity between docu-
ments and queries. These similarities are based on (1)
terms, (2) the XML structure, (3) element and attribute
values, and (4) the linking structure. These four mea-
sures can be combined in a ranking function. The com-
bination is controlled by user ratings or by a user defined
ranking function. Computing these similarities involves
processing the related index structures: the fulltext/term
index, the path index, the value index, and the hyperlink
base.

e Ranking for term-based queries based on: ¢f - idf
(term frequency and inverse document frequency).

e Similar ranking for embedded path expressions
based on: ef -if f. Element frequency e f: element
occurrences divided by the number of elements in
the XML fragment. Inverse fragment frequency
if f: logarithm of number of fragments divided by
number of fragments containing the element.

e Ranking of value-based comparison: is mapped to
the boolean values {1, 0}.

Since XircL combines IR-like queries, which result
in a ranking, with structured queries, the challenge is,
how to integrate the result (ranking) of the different sub-
query types? We adopted a technique used in multi-
media database systems [3]. Ranking values for dif-
ferent sub-queries are combined based on graded sets
(Fuzzy sets).

Figure 3: Xircus Search Interface

A graded set is a set of pairs (i,g): where i is an
item (document, fragment, object) and ¢ is a real num-
ber in the interval [0,1]. The following rules hold for
rankg(7), grades/ranks for an item 4 under the query

Q:

e conjuncts:

rankanp(i) = min{rank (i), rankp(i)}

e disjuncts:

rankavp(i) = max{rank, (i), rankp (i)}

e negations:

rank-a =1 —ranka (i)

Based on these rules the query evaluation will return
a combined ranking for queries on both the fulltext and
the structure of an XML document.

4 The Xircus prototype and user interface

The first Xircus prototype was implemented by students
of the Complex Software Systems class at University of
Rostock during the summer term 2002. The prototype
realizes all major concepts except the index structures.
By now, the functionality is provided by an object-
relational database system (IBM DB2) and its extenders.
Most index structures are implemented with user tables
and indexes.

Xircus is implemented in the Java language. It makes
heavy use of free software, e.g. for the checksum tool,
based on the MD5 hash value (RFC 1321), the stem-
mer, based on the Porter stemming algorithm, and the
synonym sets of Wordnet® (a project at University of
Princeton).

The user interface (Figure 3 is realized as a set
of servlets executed in the usual Apache/tomcat web-
server. The servlets issue search queries in the Xir-
cus surface language and inter-operate with the Xircus

Ihtt p: // www. cogsci . pri ncet on. edu/ ~wn/

122

Figure 4: Xircus Result Presentation

search server using a standard JDBC-interface. This
gives much freedom in independently changing the de-
sign of both components. Figure 4 exemplifies the
search form and the search result presentation.

5 Redated Work

We will have a short look at some related products,
projects and research issues that are related to the Xircus
project.

XML search engines. GoXML [10] provides the stor-
age of XML Schema or DTD structure definitions.
When XML content is inserted or updated in a database
it is checked for compliance with a schema and the data
types defined within that schema. The Index System
creates and maintains indexes over attribute and ele-
ment values. These are used by the XPath Query En-
gine, which supports XPath with proprietary extensions.
GoXML DB includes also support for “...a major sub-
set of XQuery (FLWR, SORTBY, distinct) as specified
in the June 2001 public W3C drafts.”

The TEXTML [7] Server processes any well-formed
XML without being constrained by a particular schema
or DTD. Indexes can be created to search for words
(fulltext), dates, strings (whole content of an XML doc-
ument), numerical values, and date and time values. The
server offers fine granular indexes, which can account
for the position of every occurrence of a word within
a document, therefore allowing advanced search capa-
bilities like proximity search. The query language is
expressed as an XML document and provides Boolean
search and fulltext search over whole documents or in-
dividual elements.

XYZFind [11] builds a search-able repository of all
data from all XML documents, indexing values, num-
bers, structural names, namespaces, and content. It
accepts any number of well-formed XML documents.

XYZFind provides a powerful query language called
XYZQL. XYZQL supports path-level queries, Boolean
queries, keyword search, and numeric range queries. An
XYZQL query is a filter specification that constrains
which XML documents are returned as well as which
parts of documents are returned.

Linguistic techniques. An overview on IR-related
text analysis and processing gives [1]. It describes
linguistic-related analysis with a focus on collecting
statistic term information and term preparation for in-
dexing. A robust and fast linguistic analysis tool is rep-
resented in [8] (SMES). SMES is a linguistic tool for the
German language and consists of lexical, morphologi-
cal and syntactical analysis. It can extract linguistic an-
notated word lists and also linguistic relations between
words and word phrases.

Ranking. [6] gives an overview on ranking algo-
rithms. It describes several ranking aspects in the IR re-
search area including a guide to selecting ranking tech-
niques. A survey on general combining ranking algo-
rithms gives [2]. A ranking approach for structural data
using the probabilistic model is XPRES [9] from the
University of Bonn. XPRES describes extensions to
the probabilistic ranking function using given structure
information from XML documents. Another approach
[5, 4] consists of an inference machine for probabilistic
document weights combined with structural data. It de-
fines different contexts for term weightings in different
structural areas.

Using fuzzy sets for integrating scoring values into a
structured query language like SQL was first introduced
by Fagin [3].

6 FutureTasks

Based on the first prototype, future investigations will
go into several directions. We will improve the path in-
dex structures especially if an XML schema for a docu-
ment collection is present. A redesign of the distributed
software architecture is needed to support better index
preparation and distributed query processing. We plan
for using the search engine in digital library projects in
large scale, distributed environments where replication,
caching and distributed query processing is important.

A recently started second student project will re-
implement the fulltext index using compression algo-
rithms and experiment with path index structures. The
user interface will be extended and performance evalua-
tion based on the INEX collection will take place.

Detailed information on the ongoing Xircus project
can always be found on the project homepage?.

2http: // www. xi r cus. de/

123

7 Acknowledgements

The authors would like to thank the students of Com-
plex Software Systems class at University of Rostock
who implemented the first Xircus prototype. These are
Ramona Bunk, Sebastian Dolke, Thomas Lange, Lars
Milewski, Manja Nelius, Mathias Reusch, Gunnar Sél-
lig, Sven Schattat, Matthias Schulz, and Ines Weber.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

R. Baeza-Yates and B. Ribeiro-Neto. Modern In-
formation Retrieval. ACM Press & Addison Wes-
ley, New York, USA, 1999.

W. B. Croft. Combining Approaches to Informa-
tion Retrieval. In W. B. Croft, editor, Advances in
Information Retrieval. Kluwer Academic Publish-
ers, Boston, 2000.

R. Fagin. Combining Fuzzy Information from
Multiple Systems. In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, 1996,
Montreal, Canada, pages 216-226. ACM Press,
1996.

N. Fuhr and K. Gro3johann. XIRQL: A Query
Language for Information Retrieval in XML Doc-
uments. In Proceedings of the 24th Annual In-
ternational Conference on Research and Devel-
opment in Information Retrieval, pages 172-180.
ACM, 2001.

N. Fuhr and G. Weikum. Classification and Intel-
ligent Search on Information in XML. Bulletin of
the IEEE Technical Committee on Data Engineer-
ing, 25(1), 2002.

D. Harman. Ranking Algorithms. In W. B. Frakes
and R. Baeza-Yates, editors, Information Retrieval
— Data Structures & Algorithmns, pages 363—-392.
Prentice Hall PTR, New Jersey, USA, 1992.

IXIASOFT. TEXTML-Server, Nov. 2001.

G. Neumann, R. Backofen, J. Baur, M. Becker, and
C. Braun. An Information Extraction Core System
for Real World German Text Processing. In Proc.
of the 5th International Conference of Applied Nat-
ural Language, Washington, USA, 1997.

J. E. Wolff, H. Floerke, and A. B. Cremers.
XPRES: a Ranking Approach to Retrieval on
Structured Documents. Technical report, Univer-
sity of Bonn, July 1999.

XML Global Technologies, Inc. Choosing The
Correkt Database For XML Content, 2002.

XYZFind Corporation. XYZFind Server User’s
Guide, Version 1.01, Mar. 2001.

124

An XML Retrieval Model based on Structural Proximities

Shinjae Yoo
Department of Digital Contents
Sejong Cyber University, Korea

jolly74@korea.com

Abstract

XML documents differ from general documents in that
they have an explicit structure. Conventional IR mod-
els and structured document retrieval models have
not fully exploited the structure information in rank-
ing. Our retrieval model utilizes structural informa-
tion, especially proximities, in ranking. In addition,
because the complex document structures perplex a
novice composing a structured query, we simplify the
query language but gracefully overcome the expression
power degradation.

1 Introduction

XML is a markup language for describing documents
and for interchanging data among different systems.
The application domain of XML is gradually grow-
ing as Web pages, e-catalogs, e-books, etc. increas-
ingly employ XML for exchanging data. In particular,
many XML systems have been or are being developed
for storing, maintaining, and retrieving XML data or
documents in companies or organizations.

From an information retrieval point of view, an
XML document retains the following two properties
compared with conventional documents and with the
other structured documents :

1. An XML document has explicit structure.

2. The structure may be complex.

When not conforming to DTD(Document Type Def-
inition) or aggregated from several source, XML doc-
uments might maintain irregular structure. Although
some structured document retrieval models utilize
structural information in ranking relevant document
components [6], they do not explicitly consider prox-
imities of the structural components in their weight-
ing. Moreover, end-users in heterogeneous document
collections may encounter problems in querying irreg-
ular structured documents because they do not know
the exact structure or they have difficulty in compos-
ing structured queries.

To resolve these problems, new XML document re-
trieval models may consider the following two ideas.

e XML retrieval models can make the most of struc-
tured information of XML documents in ranking.

</dblp>

e The XML retrieval system should provide the user
with an easy but descriptive structured query lan-
guage.

In this paper, we regard the structure of an XML
document as not a graph but a tree, which is similar
to the DOM (Document Object Model) [1] tree that
treats a link just as an attribute.

We propose a model for XML document retrieval
evaluated in a bottom-up way, as in [8,9,12]. Before
a structural query condition is evaluated, content con-
ditions in the query are evaluated in order to reduce
the document search space. In addition, the weight
of a node may be affected by the proximity of result
nodes and unique query paths.

2 Preliminaries

In this section, we describe our models of documents
and queries and define proximities in the structured
documents.

2.1 XML Document Model

We model XML documents as ordered trees, as shown
in Figure 1. So we can easily build an index of XML
documents, but cannot reflect all the information con-
tained in the XML documents; however, we can ex-
ploit all the information in XML documents if we are
able to analyze and process link information of the
XML document during query evaluation.

<dblp> l dblp
<article key="sample_1">
<title>Sample One</title> O
<author>Authorl</author> i article

<author>Author2</author>
<cite label="sampart2”>
sample_2
<[cite>
</article>

@k

"sample_1" "Sample One” "Authorl” ™“Author2”

“sampart2”

Figure 1: XML document and its document tree

For each node, the label of the incoming edge de-
notes the name of the element or attribute. For leaf

125

nodes, the value of the node is the corresponding PC-
DATA value.

2.2 XML Querying Model

Because a document is modeled as a tree, a query
may be modeled as a tree or an SRP (set of reg-
ular paths). “Retrieve documents which include
‘contents’ in the title” may be translated into the
XPath query //title = ‘contents’. If a user asks
/ /paper|./title=‘contents’][. /journal="‘journal A’], this
query can be modeled as a tree (see Figure 2-(b)),
which contains structural constraints. The informa-
tion need expressed in Figure 2-(b) is more specific
than that of 2-(a). However, it is impossible to for-
mulate complex structural queries when a user is not
familiar with the structure of the documents in the col-
lection. The user may prefer simple queries like e.g.
in Figure 2-(a), but his real information need would
be represented better by Figure 2-(b). For a naive
user, the formulation //title = ‘contents’ //journal =
‘JournalA’ is easier than that of Figure 2-(b). Based
on query conditions such as that Figure 2-(a), we de-
veloped a query model which assumes independence
among query paths. We call this model the SRP (Set
of Regular Paths) query model. In this paper, we use
the SRP query model to develop our retrieval models.
The syntax of SRP is given in to Appendix A. Since
the SRP model assumes independence among paths,
it does not allow for the formulation of constraints
among paths. This problem can be overcome by the
model proposed in Section 3.3.

titl journal

Contents ~ SIGMOD RECORD Contents SIGMOD RECORD

(a) SRP query (b) query tree

Figure 2: querying models

2.3 Proximity

Many retrieval approaches assume that retrieval ef-
fectiveness can be improved by considering the prox-
imity of query terms occurring in a document. [2—4,
7,11,14,16] defined proximity operators for consider-
ing proximity in retrieval, or incorporated proximity
in their weighting formulas. Among these, it was pas-
sage retrieval that showed the most possibility in rank-

ing documents. Passage retrieval approaches retrieve
relevant documents based on the combined weight of
all relevant passages contained in a document or based
on the highest ranking passage of the document. How-
ever, existing passage retrieval approaches have diffi-
culty in combining the weights of passages when they
were retrieving document which may include fixed size
passages or retrieving logical units such as <section>,
<chapter> or <book>. This problem is more se-
rious in XML retrieval as a user may retrieve not
only leaf nodes, but also nodes of varying granular-
ity. To address this problem in the structured docu-
ment retrieval, we make use of proximities in combin-
ing weights using structural relations between nodes
such as vertical ancestor-descendant or horizontal sib-
ling.

In order to define proximity, we need the concepts
of distances. In the structured documents, word dis-
tances between terms in the leaf node or node distance
between nodes may be defined. Node distances can
also be classified by horizontal and vertical distances.
Horizontal distance (H-distance) is the number of sib-
ling nodes between nodes. From a document point
of view, an XML document is an ordered tree. An
ordered list among child nodes of a node has a mean-
ing. For instance, two <paragraph> nodes which are
adjacent are closer semantically than nodes at higher
levels in the structure.

A set or list of logical units can be grouped by a dif-
ferent logical unit. The degree of grouping can be mea-
sured by vertical distance (V-distance). For example,
a series of sentences can be grouped by a paragraph, a
series of paragraphs can be grouped by a section and a
series of sections can be grouped by a chapter. In this
case, V-distance between a paragraph and a chapter
which includes the paragraph is two. From the data-
centric view on XML, H-distance is meaningless but
V-distance is meaningful. For instance, when data ex-
tracted from a relational database is translated into
an XML document, the order among attributes from
a table is meaningless. Therefore, in order to cover
both the document-centric as well as the data-centric
view of XML, a retrieval model should consider both
V- and H-distance.

For defining our distance measures, we use the fol-
lowing notations:

ti]‘ . jth
Nd(t;;) : returns the leaf node containing ¢;;
Njj, : kt" BFS(Breadth First Search)

numbered node in document:

word in the document ¢

lev(Nik) : return the level of Ny
Prnt(N;) : return the parent node of Ny
mazH (1) : maximum number of children of

126

a node in document 3

For trees representing XML documents, we define the

distance measures shown below (in all of these defi-
nitions, if the specified condition is not fulfilled, the
distance is considered to be co).

T—dist(tij, tix) = |j — k| if Nd(t;;) = Nd(ti) (1)
V—dist(Nij, Nix) = |lev(Ni;) — lev(Nig)| (2)
if N;; is a descendant
or ancestor of Ny
H—dist(Nyj, Nix) = |j — k| 3)
if Prnt(N;;) = Prnt(N;)
maxzH(i) — H-disfN;;, Nix)

]HI—d?:St(Nij,Nik) = mamH(z) (4)

Basically, T—dist is the same as word distance

~

W

" Author2” sample 2"
@label>™P'-

H-dist : 3 e

"sampart2”

Figure 3: Distances

between words in an unstructured document, but
here we apply it to the leaf node of XML doc-
uments. For example, T—dist(Sample;q, One;7) is
1 between ‘Sample’ and ‘One’ in a leaf node of
the path “/dblp/article/title” on Figure 3. H-—dist
compares sibling nodes and computes the of BFS
numbers. For instance, H—dist(N;3, Ni) between
‘/dblp/article/@key’ and ‘/dblp/article/author’ is 3 in
Figure 3. Hdist is a normalized version of H—dist.
The reason for the normalization of H—dist is to over-
come the differences due to document length, espe-
cially in horizontal distance.

V—dist is the difference between levels of nodes
in a path. V-dist(N;1,N;5) between ¢/dblp’ and
¢/dblp/article/title’ is 2. Both V—dist and H—dist are
new distance measures for XML documents.

A proximity describes the closeness of two nodes,
yielding a weight of 1 in case two nodes are identi-
cal, and smaller weights for distant nodes. Here, we

consider two kinds of proximities, H—prox(Horizontal
proximity) and V—prox (Vertical proximity), which re-
lates to the corresponding distance measure.

With the following notations

D : H—dist(N;;, Nii,)

lev(Ni)
mazV (i)
p,v : constant (0 < p,v < 1)

C:

mazV (i) : the depth of document i,
we define H—proz as
H—proz(Nij;, Nit) = (p(v + (1 -v)C))" (5)

H—prox exponentially decreases with growing H—dist
D. This definition is based on the assumption that
H—prox should be close to 0 as the two nodes are far
apart. We also considered the product and the sum
of p and H—dist. However, experiment showed that
these functions do not work well, whereas p” yielded
great improvements in terms of precision. The level
factor C' is used to differentiate H—dist according to
the level in the tree. v is the degree of the effect of C'
on p.
Using the notations

t : V—prozfactor (0 <t <1)
V' : V—dist(Ni;, Nix)
N;; : an ancestor or descendant of Ny,
we define

V—prox(N;j, Niy) = tV (6)

. (lev(Nij) lev(Nyg)

V—proxz(N;;, Nix) = mm(lev(Nik)) lev(N,~)> (7)
Like H—prox, V—prox is a decreasing function accord-
ing to V—dist. V—proz is decreased by t ratio accord-
ing to V—dist V. The normalized version V—prox also
considers the level of the nodes. V—prox has the same
effect as in terms of assigning proximity to nodes but
the proximity is normalized through the level.

3 XML Document
Model

Retrieval

In this section, we propose a new model for XML
document retrieval, based on XML document model,
querying model and proximity. Retrieval approach
is bottom-up which is similar to [8,9,12]. Firstly,
content based queries are performed to reduce search
space. Then, the nodes that satisfy content based
queries are verified by the structure based query.

127

3.1

We defined a leaf node’s weight using TF*IDF weight.
More specifically, using the notations

idf;
tfn...; : tf of query term on the j** query path
in the Ny
Wik : the weight of Ny

A leaf node’s weight

. idf of query term on the j* query path

we compute

|SRP|

Wik = Y idfj - tfn,.-e ®)
j=1

1 if query path is exactly matched

where e = { 0 otherwise

The Equation 8 represents the weight of a leaf node
N, computed by the naive TF-IDF weights when a
query path matches its tree path from the root to the
leaf node. However, other weighting functions could
be used as well [10,13].

3.2 An internal node’s weight

The previous subsection’s weighting is equal to logi-
cal unit passage retrieval. To compute internal node’s
weight, [5, 14] accumulated a document weight ac-
cording to the following general weighting formula :
W; = 37, 0.5~ - j"weight in document 4. How-
ever, these weighting schemes produce no great im-
provement when we retrieve only documents because
they could not utilize structural proximities. For in-
stance, if a user wishes to find “a paper, book or
related materials whose title contains ‘contents’ and
published in 1996”, the query may be //title = ‘con-
tents’ //year = ‘1996’. In this case, nodes matched to
the title or year are in closer proximity, the document
has more important meaning. On the other hand, if
the matched nodes are further apart, then the docu-
ment is less important. But [5,14] can not differentiate
these two case. However, we might acquire better re-
sults when we calculate relative proximity using V and
H-proximity.

Formally, we define H-sum operator(Z) between two
sibling nodes based on H—proz, V—sum operator(Y)
between ancestor-descendant nodes based on V—prox
and the weight of an internal node using = and Y.

Wiq = WijEWik defined as
Wiq = mam(Wij, Wzk)

+H—prox(N;j, Ni) - min(W;;, Wi) (9)
where ¢ = J* Wi kx Wi
Wi + Wi~ Wij + Wi
Wii = WiiTWik defined as
Wii = Wii + V—prox(Ni, Nik) - Wik (10)
where N;; is an ancestor of N
Wii = WiiTmam{WijEWikE = m} (11)
where N;; is parent of Ny, N, -+, Nip

We design E to preserve the weight of better one but
decrease the weight of the other based on H—prox.
When the weights of two nodes reside in a node, H—
sum of these two node produce the sum of these two
node with no loss; however, when the one is far apart
from the other, H—sum of these two node is nearly
equal to the weight of the one whose weight is greater
than the other. The position of a horizontally summed
node(q of Equation 9) for the further H—sum is the
centroid of these two node. On the contrary with =, T
use V—proz directly applied to only descendant node.
Because associative law for = is invalid, we employ
max{---}.

3.3 Heterogeneity

In Section 2.2, we proposed the SRP querying model.
Although the SRP querying model is easy to use, the
expression power of an SRP query is worse than that of
an XPath query because we assume the independence
among query paths. To overcome this disadvantage,
we adopt structural proximity among query paths in
the ranking. For instance, formulating an SRP query,
a user prefers a document which encompasses all kinds
of query paths which are structurally adjacent. More
specifically, if a user asks //article/title= ‘system’
//article/year = ‘2000’ which may be translated from
an XPath query //article[./title = ‘system’][./year =
¢2000’], we should give higher weight to a document
fulfilling both conditions than documents satisfying
only one of them. Moreover, more paths with more
structural proximities, more weight we assign to the
document,which result in a best matching policy of
an XPath query. we define the degree of structural
matches and proximities of unique query paths as a
heterogeneity.

We devise the heterogeneity of a node like the weight
of an internal node. Firstly, we define the heterogene-
ity value (H;) of a leaf node (N;), which requires two
attribute for a leaf node — H, is,“ ;» the level of a leaf node
to j** query path for the later computation of V—proz;

H. ;, the heterogeneity value to j** query path. Hj

128

is a vector for these two attribute of all kinds of query
path. Our formal definition is as follows :

1 if j** query path is matched

Hiy; = { 0 otherwise (12)

sz,] = lev(Ny) (13)
|SRP|

Hy, = Z sz/;J (14)
j=1

e L

i Hi, Higo - Hij skp)
The heterogeneity value of a leaf node for j** query

path represents the existstence of exactly matched 5

query path. If j** query path is exactly matched,
H} ; is 1. When no query term of the j** query path

matches in node Ny, H, ij is 0.

For the heterogeneity of an internal node, we de-
fine the heterogeneity sum operator (®) between two
sibling nodes Ny, and N;, and define H, the hetero-
geneity of an internal node(Ni).

Hj = H}®H) wlog. Let Hy > H;; (16)
for each j
_ if sz 4
Hi;s {Hﬂ y otherw1se (17)
Hj; g Hl?l i

N; : may be a sibling node or the parent
node of N;; and N,

lev(Nik)
v ik
T 5

(i‘Lj >

Hj = maz{H;®H}®---®H, }

where N;; is parent of N;;, Nij

(18)
) Nzn
In Equation 16, 7 adopts V—prox. If h is 0, then we
count only the number of unique paths; however, if h is
greater than 1 or equal to 1, V—dist will affect hetero-
geneity. When h = 1 and two query paths are joined
in a root node, 7 will be The Tevel f I e But
e level of a leaf node
if h > 1 and two query paths are merged in a node
whose level is adjacent to leaf node, 7 will be nearly 1.
Equation 18 computes the heterogeneity of an inter-
nal node. Since ® is not associative, we also employ
max{---}. Like internal node’s weight, we may com-
pute the heterogeneities of internal nodes from leaf
nodes up to the root.
The weight of a node
follows :

Nij (W;;) reflecting H;; is as

|SRP| + k- Hy;

W;; = LWy
! |SRP| 7

(19)

When k£ = 0, W;; yields the same results of W;;,
which means that only reflects proximitis among query
terms. But if k& > 0, the heterogeneity will affect a
node’s weight.

For the structured query, we can measure the degree
of the structural matching by heterogeneity. On the
contrary, for the unstructured query, the heterogene-
ity of a node represents the degree of best matching
boolean ‘and’ query among terms.

Theorem 1 When some XPath query is translated
into SRP query, the heterogeneity of the more exact
match is greater than that of less exact match if there
are no duplicate tags from root to leaf in the document
i.

Proof : The proof is reserved for the reader.

In accordance with Theorem, the heterogeneity can
approximate most XPath queries. Therefore, we may
say that an SRP query can represent most of the ex-
pression power of XPath.

3.4 Document length normalization

Since = and Y operators reduce the weight of sibling
or child nodes, we utilized structural proximity oper-
ators as a our length normalization method. By using
= operator, we may sum up sibling nodes’ degraded
weights to one node’s weight according to H—prozx,
which serve as a sibling node length normalization.
With an iterated application of the = operator from a
leaf node level to the root node level, we can compute
a normalized weight of the root node of a document.
However, according to this, the level is closer to the
root, the weight of an internal node will increase and
not decrease. To solve this problem, we make use of
T operator, which reduces the weight of an internal
node for each level, to select best weight’s level.

4 Experiments

We tested our proposed model on the INEX 2002 test
collection. For the CO (Contents Only) topics, we
generate CO queries automatically but for the CAS
(Contents And Structure) topics, we slightly modified
automatically generated queries.

4.1 Results

Figure 4-7 employed naive TF * IDF weighting
scheme, p(H—prozx factor) = 0.5 and & = 100000000 if

129

k is required [15]. For the Figure 4 and 5, we consid-
ered only title element of topics but we used title and
keyword in the Figure 6 and 7

With'Heterog'eneity —
0.23 - without Heterogeneity ---------- 7
Vector-Space model -+
—
0.22
c r .
=} o T e
& 021 e
o
g
N
o 02
> ;
< 7
0.19 ’;'. ..
0.18

0 0.2 0.4 0.6 0.8 1
t(V-prox factor)

Figure 4: ¢ variation graph for the CAS topics(strict)

0.1 . ; .
with Heterogeneity
without Heterogeneity ----------
0.08 Vector-Space model -
s |
‘s 0.06 7 —
Q K
g
a
2 0.04
<
0.02
0

0 0.2 0.4 0.6 0.8 1
t(V-prox factor)

Figure 5: ¢ variation graph for the CO topics(strict)

4.2 Result Analysis

Figure 4 and 5 showed average precision variations
according to t. These two graph showed that our re-
trieval model outperformed Vector-Space model which
used normalized TF*IDF when ¢ > 0.6 for the CO
topics and ¢ > 0 for the CAS topics. With the Het-
erogeneity, we could obtain better average precisions,
which may not changed when ¢ > 0. We recommend
t = 0.9 for the CAS topic and ¢ > 0.6 for the CO topic.

Since our run produced 1500 maximum results for
each topic, we could not directly compare our run with
official runs. But compared with the other partici-
pants’ official runs, our run, in the Figure 6 and 7,
showed good retrieval performances on CO topics and
reasonable retrieval performances on CAS topic.

5 Conclusion and Future work

The characteristics of our XML retrieval approach can
be summarized as follows: (1) Tags describe the struc-
ture of a document and (2) this structure of the docu-
ments in a collection may be complex. (3) These two
properties cause that users have difficulties in query
formulation. Current approaches for XML retrieval
do not provide appropriate solutions for this problem.
For this reason, we proposed a new XML retrieval
model, which considers proximities of query terms as
well as heterogeneity of query paths, and we defined
appropriate weighting schemes. For the problem of ir-
regular document structures, we proposed SRP query-
ing model, which facilitates the formulation of struc-
tural queries for end users. Through the experiment
we showed that our retrieval model has good retrieval
performance on contents only topics and reasonable
performance on contents and structure topics.

Our further work is the extension of our query
model. So far, the logical query structure is linear
but we may extend this structure, e.g. by grouping.
In addition, we will also consider hyperlink structures
or Boolean connectives, e.g. by applying the p-norm
model.

References
[1] http://www.w3.0org/DOM/.

[2] J.P. Callan. Passage-Level Evidence in Document
Retrieval. In W. Bruce. Croft and C.J. van Ri-
jsbergen, editors, Proceedings of the Seventeenth
Annual International ACM SIGIR Conference on
Research and Development in Information Re-
trieval, pages 302 — 310, Dublin, Ireland, July
1994. Spring-Verlag.

[3] C. Clarke, G. Cormack, and F. Burkowski. Short-
est substring ranking (MultiText experiments for
TREC-4). In D. K. Harman, editor, Proceedings
of the 4th Text Retrieval Conference(TREC-/,
Washington, D.C., Nov.), pages 295-304, 1995.

130

INEX 2002: GT-II-TKy2t0.9 INEX 2002: GT-II-TKy2t0.9

quantization: strict; topics: CAS guantization: generalized; topics: CAS
average precision: 0.241 average precision: 0.212
rank: 7 (42 official submissions) rank: 7 (42 official submissions)

(a) Strict quantization (b) Generalized quatization

Figure 6: Precision/Recall graph for the CAS topics

INEX 2002: GT-1I-TKy2t0.9 INEX 2002: GT-1I-TKy2t0.9
quantization; strict; topics: CO quantization: generalized; topics: CO
average precision: 0.106 average precision: 0.146
rank: 1 (49 official submissions) rank: 1 (49 official submissions)

(a) Strict quantization (b) Genralized quatization

Figure 7: Precision/Recall graph for the CO topics

131

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Charles L. A. Clarke and Gordon V. Cormack.
Shortest-substring retrieval and ranking. TOIS,
18(1):44-78, January 2000.

G.V. Cormack, C.L.A. Clarke, C.R. Palmer, and
S.S.L. To. Passage-based refinement (MultiText
experiments for TREC-6). In E. M. Voorhees and
D. K. Harman, editors, Proceedings of the 6th
Text Retrieval Conference(TREC-6, Gaithers-
burg, Maryland, Nov.), pages 303-320, 1997.

N. Fuhr, N. Goevert, G. Kazai, and M. Lal-
mas (eds). Proceedings of the First Workshop
of the Initiative for the Evaluation of XML Re-
trieval(INEX), Dagstuhl 9-11 Dec. 2002, ERCIM
Workshop Proceedings. March 2003.

D. Hawking and P. Thistlewaite. Proximity op-
erators - so near and yet so far. In D. K. Har-
man, editor, Proceedings of the 4th Text Retrieval
Conference(TREC-4, Washington, D.C., Nowv.),
pages 131-143, 1995.

S. H. Myaeng and et. al. A Flexible Model for
Retrieval of SGML Documents. In SIGIR, pages
138-145, 1998.

Gonzalo Navarro and Ricardo Baeza-Yates. Prox-
imal nodes: a model to query document
databases by content and structure. TOIS,
15(4):400-435, 1997.

S. E. Robertson and S. Walker. Some simple ef-
fective approximations to the 2-Poisson model for
probabilistic weighted retrieval. In SIGIR, pages
232-241, 1994.

G. Salton and C. Buckley. Automatic text struc-
turing and retrieval: Experiments in automatic
encyclopedia searching. In ACM/SIGIR Confer-
ence, pages 21-31, 1991.

D. Shin, H. Jang, and H. Jin. BUS: An Effec-
tive Indexing and Retrieval Scheme in Structured
Documents. In Digital Libraries, pages 235-243,
1998.

Howard R. Turtle and W. Bruce Croft. Eval-
uation of an Inference Network-Based Retrieval
Model. TOIS, 9(3):187—222, 1991.

Ross Wilkinson. Effective retrieval of structured
documents. In SIGIR 94, pages 311-317, 1994.

[15]

[16]

A

Shinjae Yoo, Kyung-Sub Min, and Hyung-Joo
Kim. XML Document Retrieval Models for Het-
erogeneous Data Set by using Independent Reg-
ular Paths. JKISS(to be appear).

Justin Zobel, Alistair Moffat, Ross Wilkinson,
and Ron Sacks-Davis. Efficient retrieval of partial
documents. Information Processing and Manage-
ment, 31(3):361-377, 1995.

SRP Query Syntax

term id
tag name := term
|
path elem := / tagmname filter
| // tagname filter
path := pathelem path
| /7
| €
query._path := path ‘=’ term
| term
query := query_path query
| query._path
filter := [query] filter
| €

132

CWI at INEX2002

Johan List and Arjen P. de Vries

Center for Mathematics and Computer Science (CWI)
P.0.Box 94079, 1090GB Amsterdam, The Netherlands
{j.a.list, a.p.de.vrigg@cwi.nl

Abstract the retrieval model and query formulation. Document
representation defines the logical and physical represen-
This paper describes our participation in INEX (the Initation of documents in a retrieval system. ‘Flat’ doc-
tiative for the Evaluation of XML Retrieval) and dis-uments are mostly represented with techniques such as
cusses several aspects of our XML retrieval system: therted lists, but in the case of structured documents we
retrieval model, the document indexing and manipulaeed to represent the structural aspects of documents as
tion scheme and our preliminary evaluation results afell.
the submitted three runs. The use of structure plays a possible role as well in
In our system, we have used a probabilistic retrievalddressing the second component, the definition of the
model where we magimensions of relevande (possi- retrieval model. The basis for our model is a probabilis-
bly structural) properties of documents and use these tle retrieval model, the statistical language model devel-
mensions of relevance for retrieval purposes. The studped by Hiemstra [11].
concentrates onoverage a measure reflecting how fo- The third component deals with query formulation.
cused the component is on the given topic while corFhe extra dimension of structure in XML documents
sidering that it should serve as an informative unit tplays a role here as well: how is structural information
be retrieved by itself. We also discuss an efficient angdtegrated in the query possibilities and in what sense do
database-independent indexing scheme for XML docyuery formulation possibilities depend on user knowl-
ments, based on text regions and discuss region opegége of the structure(s) present in the collection?
tors for selection and manipulation of XML document The main contributions of this paper are twofold. We
regions. present an efficient and database-independent indexing
scheme for XML documents based ¥ML document
. regions We then describe a probabilistic retrieval model
1 Introduction where we map (structural) properties of documents to di-
mensions of relevance and use these dimensions of rele-
This paper describes our participation in INEX (the Iniyance for retrieval purposes. The study concentrates on
tiative for the Evaluation of XML Retrieval). We partic- coveragea measure describing how much of the docu-
ipated with our XML retrieval system, built on top of ament component is relevant to the topic of request while
research database kernel, MonetDB. also considering that it should serve as an informative
The primary goals for participation in the XML Re-ynit to be retrieved by itself.
trieval Initiative were 1) to gain experience in informa-
tion retrieval of documents possessing various degrees
of semantic structure, 2) to look for possibilities to in2 The Retrieval Model
troduce structural properties of documents into proba-
bilistic retrieval models and 3) to examine whether thResearch in the user modeling and concept of rele-
use of structure information can improve retrieval pefsance areas (see e.g. [3, 4, 5, 2]) suggests that rele-
formance. vance is a multidimensional concept of whitdpical-
The construction of any information retrieval systenity (i.e. content-based relevance) is only a single one.
(and as such an XML retrieval system) can be thought bfizarro [16] hames other, possible non-topical dimen-
to address three components: document representatisionsabstract characteristics of documermsnstructed

133

independently from the particulars of the database or < oy
collection at hand. In other words: other, non-topical i /‘

dimensions are constructed independently from the lan- @
guage models present in the documents of a collection, @

suggesting orthogonality between the topicality dimen-

sion and any additional dimensions. Examples of oth
y P ‘?‘—rigure 1: Encoding of additional relevance dimensions.

non-topical dimensions include comprehensibility (styl . . ;)
or difficulty of the text) and quantity (how much infor- ﬁote thatermsandQsizedenote information given by

mation does the user want; measured by e.g. the sizeﬂ%ﬁ:P query (query terms and preferred component size).
documents and the number of documents returned to the
user).

Additional dimensions of relevance become more im-
portant for structured document retrieval. Retrieval units
can vary in granularity and hence vary in the amount of
information offered to the user. This varying amount™
of information highly likely causes a user to judge the
relevance of document components on more properties
besides topicality alone.

We model dimensions of relevance with a set of
independent probabilities (assumed independent given Figure 2: Running example XML syntax tree.

a document instantiation) in a probabilistic retrieval

model. The research question is whether we can effec-

tively map dimensions of relevance to document proprovided by the full sections or body may be more de-
erties (structural or otherwise) that in turn can be repreirable for a user than the individual two subsections in
sented by (probabilistic) entities in the retrieval modelsolation.

The results reported here investigate a combination ofyye approach the problem of chosing the best accept-

quantity and topicality, visualized in Figure 1; aiming tgp|e retrieval unit by optimizing on both topicality and
capture the notion of coverage used in the evaluationgjze of document components:

2.1 A Motivating Example e the shorter the document component, the more
likely it will not contain enough information to ful-

fill the information need (the component may be
less exhaustive, e.g. relevance level 1 or 2, and 'too
small’, coverage grade S);

In INEX, retrieval results are judged on two aspects:
relevance and coverage. Relevance is aimed to reflect
how exhaustively a topic is discussed within a doc-
ument component; coverage reflects how focused the
component is on the given topic, considering that it also ® the longer the document component, the more
serves as an informative unit. The INEX relevance as- likely that distilling the topically relevant informa-
sessment guide [1] defines relevance and coverage on a tion will take substantial more reader effort (the
four degree scale: relevance levels of O (irrelevant), 1 component may be more exhaustive, e.g. relevance
(marginally relevant), 2 (fairly relevant), and 3 (highly ~ level 3, but 'too large’, grade L on the INEX cov-
relevant), and coverage of N (no coverage), E (exact), S €erage scale).
(too small) and L (too large). With the combination of
these measures it is possible to identify document com-We therefore rank the documents in a collection
ponents that satisfy both topicality and quantity. against a combination of topicality and quantity (where
Consider the example document in Figure 2. Sahe user uses document component size as a representa-
that the system that estimates topicality identifies oi®n of quantity). In probabilistic terms, we calculate the
relevant subsection in the first section and one relevgmiobability of complete relevance of a document com-
subsection in the second section. The open questiorpiznent, given its probability of relevance on both the
then whether to return the two separate subsections,topicality and the quantity dimensio#s.
the separate sections or single body containing these as
well as the remaining (possibly irrelevant) subsections 1pere, ‘complete relevance' covers all dimensions of relevance,
(i.e. what is the retrieval unit?). The additional contexinlike the ‘exhaustiveness only’ notion of relevance used in INEX.

134

D — able for a user than a more homogeneous compo-
0ss |-] nent.

1 2.3 Modeling Topicality

P(RqID=d)
o
S

The model used for describing topicality of documents
is a probabilistic model, the statistical language model
described by Hiemstra [11]. The main idea of this model
] is to extract and to compare document and query models
o ww ww mm mm mm m0 a0 w0 w0 and determine the probability that the document gener-
R ated the query. In other words, the statistical language

Figure 3: The log-normal distribution used for modelmodel extracts linguistic information and is suited for
ing the quantity dimension modeling of the topicality dimension of the information
need.

In deriving document models for all of the documents
in the collection, we regarded every subtree present in
the collection as a separate document. The probability

The model in Figure 1 leads to the following. WherPf topical relevance”(R;| Dy, Qterms) Where Qserms

2.2 Modeling Relevance Dimensions

P(Ry|Dy) is the probability of topical relevance givenconsists of the set of query terig’; , - -, T, } is cal-

documentd and P(R,|D,) is the probability of quan- culated with:

tity relevance given document, then we can calculate P(R.\D — P(R\D..Ts - T

a joint probability of ‘complete’ relevance or user satis- (el Da,Qterms) B (BelDa, T, -+ T)

faction as: = P(Dy) HP(Ii)P(TiNiaDd)
P(DdaRta Rq, thrmsa Qsize) = =t

P(R¢|Dg, Qterms)P(Rq|Da, Qsize)P(Dgq) whereP(I;) is the probability that a term is important
i o)) (the eventl has a sample space i, 1}).
Looking at the motivating example in subsection 2.1 and\yse follow the reasoning of Hiemstra [11] to relate the

especially the user reasoning for modeling the quantiffggel to a weighting scheme (tf.idf-based). After some
dimension, we decided to use a log-normal distributiogmanipulation of the model we get:

as in Figure 3. The steep slope at the start reflects the

pruning we want to model for (extremely) short docu- P(Dy,Th,--- ,T),) x

ment components since short components are unlikely to n AP(Ti|Dy)
be good retrieval units. The long tail reflects that we do P(Dy) H(l 4 A
want to prune out very long document components, but i=1 (1= XP(T)

not as rigorously as extremely short ones. Long com-)
ponents might be useful, even while taking more readér e:_sumators forP(Dg), P(Ti|Dq) and P(T;) we
effort to distill the relevant information. used:

We also need a modeling parameter for the distribu- 1
tion itself. We have chosen component size, but other P(Dq) = ~ @)
possibilities include: ;
_ tfid
e the depth of the document component in the tree P(Li|Da) = > tid @

structure, where we want to penalize component . .
present deep in the trees (generally small comp S_heren is the number of documentsf; ; is the term

nents and too specific) or components present hi frauency of term in documentd and_; #f(s, d) is

: e length of document.
the t Iy 1 t dt
in the trees (generally large components and to For P(T,) we used:

broad);
e the number of children of a document component. df;
A short document component containing a large (Th) = S df; ©)

amount of children highly likely contains a diver-
sified mix of information and a could be less desirwheredf; is the document frequency of terin

135

Filling in the likelihood estimators gives us the fol- <article><fno>fno</ino><fm><til>Til</til>

lowing model for topicality (with a constant for all <au>Author</au></fm><bdy><abs>Abs</abs>
<sec>Sec</sec></bdy></article>

terms):
P(Ry|Da, Querms) = P(Re|Da, T, -+, Tp) A text regiona can bg |d.ent|f|ed by |ts' star’qng pom
n and ending point, within the entire linearized string.
3 log(1+ A tfia Y dﬁ) Figure 4a visualizes the start point and end point num-
P L—=A>tfia dfs bering for the example XML document and we can see,

for example, that thédy-region can be identified with
We used a very simple query model resulting in quegfe closed intervall2..37). We have visualized the com-
term weights represented witfy ,, the term frequency piete region set of the example XML document in Fig-
of termi in queryg. ure 4b. The index terms present in the content text of
the XML document are encoded as text regions with a
: length of 1 position and stored in a separate relation, the
3 XMI__ Doc_ument Indexing and ° "0
Manlpulatlon For completeness, we give the formal definition for
an XML data region as used in our system below.

3.1 Document Model - S ,
Definition 3.1. An XML data regionr is defined as a

Generally, XML documents are represented as rootgide-tuple(o,, s, e,, t.., p,,), where:

(syntax) trees and indexing schemes focus on the stor-

age of the edges present in the syntax tree, combined® ©r € oid denotes a unique node identifier for re-
with storage of the text present. One of these approaches 91onr;

is described by Schmidt [17], which we used as a start-e s, ande, represent the start and end positions of
ing point for our own indexing scheme. In Schmidt's the text region respectively;

approach, each unique path is stored in a set of binarye t, c string is the node name of regian

relations where each binary relation represents an edgq§ . < oid is the identifier of the parent region of
present in the path. Furthermore, multiple instances of regjonr.

the same path (even if they are present in different syn-

tax trees) are stored in the identical set of relations. Thie also define the node indéX as the projection o,
system also maintains a schema of the paths present amer the set of all indexed regions.

their corresponding relations: tipath summary

The advantage of Schm|dts approach is that f[h_e ex§;2 Document Manipulation
cution of pure path queries can be performed efficiently;
selecting the nodes belonging to a certain path preverTtse linearized string view enabled us to use theory and
a forced scan of (large) amounts of irrelevant data, reractice from the area of text region algebras [7, 8, 9,
quiring only a fast lookup in the path summary to getta3, 15, 14] for selection and manipulation of (sets of)
the relation required. The disadvantage is that the gengxt regions. Table 1 summarizes the operators in our
ation of the transitive closure of a node is an expensigystem. Theontainmenbperationa O b determines if
operation. In database terms: the transitive closuretlse regiona contains some other regidn length gives
the union of the separate paths present in the comphe length of a region including markup ane:tlength
nent. The reconstruction of each path is performed witfives the length of a region excluding markup. Anal-
join operations, where the number of join operations degous join operators are defined on region sdtsufd
pends on the number of steps presentin the path. B).

Since we need fast access to the component text forThe use of text regions shows us efficient implemen-
determining statistics, we pursued another approach. tation possibilities. Generating the transitive closure of
stead of seeing an XML document instance as a syategiona requires a contains-operation, a selection on
tax tree, we see each XML document instance as a lithe word indexXV with lower and upper bounds, and
earized string or a set tbkeng(including the document ¢,. Generating the original XML structure of a (sub-)
text itself). Each component is then a text region or documentd encompasses:
contiguous subset of the entire linearized string. The
linearized string of the example document in Figure 2 is ¢ a containment operation on the node index
shown below: N to retrieve all descendant nodes af:

136

article [0.38]

fno [1.3] fm [4.11] by [12.37)

Gl15.7] au[8.10] 6 [13.17] sec [18.28] sec [29.36]

abs [14..16] ss[19.21] 55 125.27] 55 (33.35)

I author 55122241 5[30.32)

(a) Start point and endpoint assignment (b) Region representation

Figure 4: Region indexing of XML documents

Table 1: Region and region set operators (the set oper- Table 2: Experimentation scenarios
ators are given in comprehension syntax [6]). Note that
s, and e, denote the starting and ending positions of Scenario | Retr. Unit | Dimension(s) \
regionr. i {tr("article’)} | topicality
Vs {tr(’«")} topicality
[Operator | Definition R {tr("¥)} top., quant.(500)
a2b true <= sy > Sq Nep < €q Vi {tr(’s"} top., quant.(2516)
a>b true <= sp > saNep < €q Vs {tr('+")} top., quant.(5106)
length(a) eq — Sq +1
textlength(a) | [{a} x> W|
Ax> B {(0a,0p)] a — A, b+— B, a Db}
Awx5 B {(0as0p)| a— A, b— B, aD>b} | document retrieval, i.e. retrieval of documents which
length(A) {(04, length(a))|a «— A} possess no structure. After examination of the document
textlength(A) | {(oa, testlength(a))| a «— A} collection, we decided to perform retrieval of article-

components. The second scenario regarded all subtrees

or transitive closures in the collection as separate docu-

ments. For the third scenario we re-used the result sets
of the second run and used a log-normal distribution to
as well model the quantity dimension. To penalize thg rgtrieval

' , , of extremely long document components (this in con-

* a (proper) containment operation on gt with the language model that assigns a higher prob-
word index W to retrieve all context text: gty to longer documents), as well as extremely short
text := {d} m5 W document components, we set the mean at 500 (repre-

e a union ofdesc andtext, followed by sorting and senting a user with a preference for components of 500
some string manipulation for finalization. words). We summarized our experimentation scenarios

. . . . in Table 2. Also note that we focused on content-only

Note that the approach outlined in this subsectio

. . X (ﬂjeries only (i.e. we used the same approach for content-
is similar to the preordering and post-ordering aP3d-structure queries)

proach for acceleration of XPath queries, proposed by . .

Grust [10] (we consider Grust's approach a specific,The official recall—preC|S|.on graphs of our three sub-

instance of general text region algebras, as is ours). mitted runs are presented in Figures 5a through 5f. The
recall-precision graphs are constructed after mapping

relevance/coverage combinations to a binary scale. The
4 Experiments mapping function for strict evaluation is:

desc :=={d} x5 N. The containment is non-
proper since we want the root elemehin the set

We designed three experimentation scenarios. The 1 if3E
first scenario represents the baseline scenario of ‘flat- Fstrice (1, €) = 0 otherwise

137

INEX 2002: Article run (V1) INEX 2002: Component run (V2) INEX 2002: Cov. modified run (V3)

quantization: strict; topics: CO quantization: strict; topics: CO quantization: strict; topics: CO
average precision: 0.054 average precision: 0.006 average precision: 0.033
(empty topic results ignored) (empty topic results ignored) (empty topic results ignored)
1 1 1
0.8 0.8 0.8
& 06 & 06 & o8
3 3 3
L 04 L 04 a 04
0.2 /\\\\\x 0.2 0.2
0 0 0 k"
0 0.5 1 0 0.5 1 0 0.5 1
Recall Recall Recall
(a) Scenario 1 (Article retrieval) (b) Scenario 2 (Component retrieval) (c) Scenario 3 (Cov. modified compo-
nent retrieval)
INEX 2002: Article run (V1) INEX 2002: Component run (V2) INEX 2002: Cov. modified run (V3)
quantization: generalized; topics: CO quantization: generalized; topics: CO quantization: generalized; topics: CO
average precision: 0.058 average precision: 0.020 average precision: 0.044
(empty topic results ignored) (empty topic results ignored) (empty topic results ignored)
1 1 1
0.8 0.8 0.8
& 06 & 06 & o8
g \ 3 3
L 04 \ L 04 a 04
0.2 \R 0.2 0.2 \\&
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
Recall Recall Recall
(d) Scenario 1 (Article retrieval) (e) Scenario 2 (Component retrieval) (f) Scenario 3 (Cov. modified compo-

nent retrieval)

Figure 5: Recall - precision graphs for our experimentation scenarios, CO-topics only (first row: strict evaluation,
second row: generalized evaluation).

INEX 2002: Modified Quantity (V4) INEX 2002: Modified Quantity (V5)
quantization: strict; topics: CO quantization: generalized; topics: CO
average precision: 0.052 average precision: 0.056
(empty topic results ignored) (empty topic results ignored)
1 1
0.8 0.8
& 06 & o8
0 2
3 3
T 04 & 04 \
02\ 0.2
0 0
0 0.5 1 0 0.5 1
Recall Recall
(a) Additional runVy (strict), with (b) Additional run Vs (generalized),
preferred component size set at 2516 with preferred component size set at
words 5106 words

Figure 6: Recall-precision figures for additional runs 4 and 5.

138

The mapping function for generalized evaluation is:

Table 3: Top 5 of node types present in the judgements

1.0 if3E for the assessed 25 CO-topics only (strict evaluation
0.75 if3{L,S}, 2E function). The * denotes the any-element type.
foeneratizea(r, ¢) = < 0.50 if 1E, 2L, 2S i i
g 0.25 if1S. 1L [Node type | # relevant | #in collection [P(D) |
0.00 ifON P 371 762.223 0.0004
article 308 12.107 0.025
. sec 273 69.735 0.0039
4.1 An Informal Analysis o1 111 61492 0.0018
A more detailed analysis of the evaluation results forbdy 90 12.107 0.0074
all three runs showed us two observations that triggergd \ 1360 \ 8239997 \ 0.0001 \

our curiosity. The first observation was that for many
topics, far more relevant components exist than the re-
sult set size could fit. Traditional retrieval collections

constructed in the Cranfield tradition contain a smalfable 4: Top 5 of node types present in the judgements
amount of relevant documents in the collection (at lead@r the assessed 25 CO-topics only (generalized evalua-
the amount of relevant documents per query is mudin function). The *’ denotes the any-element type.

smaller than the result set size). This small amount
relevant documents enables a ‘perfect’ retrieval syste

f
Node type | # relevant [# in collection [P(D) |

to retrieve all relevant documents in the result set, which P 4198 762223 0.005
in turn enables the calculation of system (and run) com-sec 2781 69735 0.039
parable recall-precision graphs. article 2606 12107 0.21
However, with a large discrepancy between number bdy 1555 12107 0.12
of relevant documents and the result set size, higher perssl 1096 61492 0.017
centages of recall could never be reached, causing mean- | 18686 | 8239997 | 0.002]

ingless recall-precision curves. To illustrate this effect
further, consider the following example. Let us assume

we have a query that has 1000 relevant documents in

the collection. The result set size is set at 100 doc@GO-topics only showed us the results in Tables 3 and
ments. When we determine a precision-recall graph fdr Note that the probability in the fourth column is not
this query, we will see that after 0.1 recall we get precihe probability of a node type being relevdat all top-
sion values which say nothing meaningful about the pdes, but the probability of a node type being relevémt
formance of a system. Even if all results in the result sehe of the assessed 25 CO-topiBsth tables show that
are relevant (we will reach maximum precision at 0.1 rerticle-components have a much higher probability of
call), the precision values at higher levels of recall wilbeing relevant for one of the CO-topics, when we would
always decrease, simply because no more documedtaw document components randomly from the collec-
have been retrieved (resulting in an average precisiont@n. Knowing this, it is not surprising the article run
33% instead of 100%). performs very well.

For fair evaluation, we can follow two possible paths. We make one last remark regarding our second run,
Firstly, we can use a measure that is invariant with rgvhere each component was regarded as a document.
gard to the difference between 1) the number of relevanhe result sets of our second run were saturated with
documents in the collection (for a given topic) and 2) théhort document components. Looking at the language
result set size. A possibility would be to use precisiomodel used for estimating topical relevance, the cause
at various document cutoff levels, instead of precisiosf this saturation is clear: (query) terms occurring in
at various levels of recall [12]. short components will receive a higher weight than

The second observation we made was the obseryguery) terms occurring in longer components, result-
tion that, even with the strict evaluation that is moshg in higher overall rankings for short components. To
demanding coverage-wise, the article run (Figure Segmove this bias for short components, additional nor-
still outperformed all other runs. We had expected thatalization will be necessary.
many article components would have been judged as too
large. Examination of the judgements for the assessed?At the time of writing this paper, 25 CO-topics had been assessed.

139

4.2 Preferred Component Length

(3]

In order to see whether our subjective guess of 500

words for acceptable document components was valici4
we calculated the average length of relevant componen

S

(relevant according to the strict and generalized eval-

uation functions): 2516 terms (strict) and 5106 termsg

(generalized). We used these two means for updating

the log-normal in two additional runk, andVs. The

recall-precision graphs of these two additional runs are

shown in Figures 6a and 6b, which also show that us

in@]

the new averages does improve retrieval performance,

but not radically. In short, using just document comp
nent length seems too naive for estimation of compon
coverage.

5 Conclusions and Future Work

O_
ent]

(8]

Our participation in INEX can be summed up as an ex-
ercise in applying current and state of the art informa-
tion retrieval technology to a structured document col-
lection. In hindsight, we have not looked deeply into[9]

the possibilities for integrating structure, apart from d

e_

scribing a simple model with which structural properties
of documents can be injected into the retrieval proced30]

The experimental results and analysis of the assessments

and additional fourth and fifth run showed us that using

document component only is too naive an approach
estimation of component coverage.

Future work includes more extensive experimentati
with the model described in this paper, especially in t

o]

on

N.J. Belkin, R.N. Oddy, and H.M. Brooks. ASK for
Information Retrieval: Part 1. Background and Theory.
Journal of Documentatiqr88(2):61-71, 1982.

] N.J. Belkin, R.N. Oddy, and H.M. Brooks. ASK for

Information Retrieval: Part 2. Results of a Design Study.
Journal of Documentatiqr88(3):145-164, 1982.

] H.W. Bruce. A Cognitive View of the Situational Dy-

namism of User-centered Relevance Estimatidaur-
nal of the American Society for Information Science
45(3):142-148, 1994.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and
L. Wong. Comprehension Syntax. 8iGMOD Record
1994,

F.J. Burkowski. Retrieval Activities in a Database
Consisting of Heterogeneous Collections of Structured
Texts. InProceedings of the 15th ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, pages 112-125, 1992.

C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An
Algebra for Structured Text Search and a Framework for
its Implementation. The Computer Journal38(1):43—
56, 1995.

M. Consens and T. Milo. Algebras for Querying Text
Regions. InProceedings of the ACM Conference on
Principles of Distributed Systemgages 11-22, 1995.

T. Grust. Accelerating XPath Location Steps. Rro-
ceedings of the 21st ACM SIGMOD International Con-
ference on Management of Dagaages 109-120, 2002.
D. Hiemstra. Using Language Models for Information
Retrieval PhD thesis, University of Twente, Twente,
The Netherlands, 2000.

2] D. Hull. Using Statistical Testing in Evaluation of Re-

area of relevance feedback and research into a fair nor-
malization mechanism for removing the bias of the lan-

guage model for short components.

Acknowledgements

(13]

[14]

Gabriella Kazai has greatly improved our understanding

of the definitions of relevance and coverage in INEX.

References

[15]

[1] Inex relevance assessment guide. In N. Fuhr, N. Gétel

evert, G. Kazai, and M. Lalmas, editorBroceedings

of the First Workshop of the Initiative for the Evalua-
tion of XML Retrieval (INEX), Dagstuhl 9-11 Dec. 2002[17] A.R. Schmidt, M.L. Kersten, M.A. Windhouwer, and

ERCIM Workshop Proceedings, March 2003.

[2] C.L. Barry. User-defined Relevance Criteria: An Ex-
ploratory Study. Journal of the American Society for

Information Scienced5(3):149-159, 1994.

140

trieval Experiments. IrProceedings of the 16th ACM
SIGIR Conference on Research and Development in In-
formation Retrieval1993.

J. Jaakkola and P. Kilpelainen. Nested Text-Region Al-
gebra. Technical Report C-1999-2, Department of Com-
puter Science, University of Helsinki, 1999.

P. Kilpelainen and H. Mannila. Retrieval from Hierar-
chical Texts by Partial Patterns. Rroceedings of the
16th ACM SIGIR International Conference on Research
and Development in Information Retrieyab93.

R.C. Miller. Light-Weight Structured Text Processing
PhD thesis, Computer Science Department, Carnegie-
Mellon University, 2002.

S. Mizarro. How Many Relevances in Information Re-
trieval? Interacting With Computers10(3):305-322,
1998.

F. Waas. Efficient Relational Storage and Retrieval of
XML Documents. Innternational Workshop on the Web
and Databases (in conjunction with ACM SIGMQD)
pages 47-52, 2000.

ETH Zirich at INEX: Flexible Information Retrieval
from XML with PowerDB-XML

Torsten Grabs Hans-Jorg Schek
Database Research Group Database Research Group
Institute of Information Systems Institute of Information Systems
ETH Zurich ETH Zurich
8092 Zurich, Switzerland 8092 Zurich, Switzerland
grabs@inf.ethz.ch schek@inf.ethz.ch
ABSTRACT for information retrieval from XML [3]. Currently, the

When searching for relevant information in XML docu- framework provided by the INEX organizers comprises a
ments, users want to exploit the document structure whencollection of about 12,000 XML documents with scientific
posing their queries. Therefore, queries over XML docu- publications of the IEEE Computer Society as well as a set
ments dynamically restrict the context of interest to arbi- of 60 topics with queries against the collection.
trary combinations of XML element types. State-of-the-art
information retrieval (IR) however derives statistics such as
document frequencies for the collection as a whole. With Important research questions that need to be addressed for
contexts of interest defined dynamically by user queries, meaningful and flexible retrieval from XML are function-
this may lead to inconsistent rankings with XML documents ality of query languages and suitability of retrieval models.
that have heterogeneous content from different domains. ToWith respect to query languages, users want to exploit the
guarantee consistent retrieval, our XML engine PowerDB- structure of XML documents to perform fine-grained and
XML derives the appropriate IR statistics that consistently flexible retrieval. This is in contrast to conventional IR
reflect the scope of interest defined by the user query on-where the retrieval granularity usually is restricted to pre-
the-fly, i.e., at query runtime. To compute the dynamic IR defined entities such as ‘title’, "abstract’, or "fulltext’. With
statistics efficiently, our implementation relies on underly- XML instead, users may want to pose queries on arbitrary
ing basic indexes and statistics data. This paper reports oncombinations of XML element types. Hence, more flexible
our experiences from participating in INEX, the INitiative mechanisms to define the context of interest are required.
for the Evaluation of XML retrieval.

With respect to retrieval models, information retrieval sys-

tems should exploit the XML document structure for better
1. INTRODUCTION relevance ranking. Moreover, conventional information re-
trieval systems so far have made the assumption that all the
contents of a collection is from the same domain. With XML
documents however, even a single document may have het-
erogeneous content from different domains in different parts
of the document. With weighted retrieval models, this may
lead to inconsistent rankings if term weights differ between
domains, as the following example illustrates.

Since it became a recommendation of the World Wide Web
Consortium (W3C) in 1998, the eXtended Markup Lan-
guage (XML [12]) has been very successful as a format
for data interchange. A common distinction regarding pro-
cessing of documents marked up in XML is betwekta-
centric processin@gnddocument-centric processindpata-
centric processing stands for processing of highly structured
XML content with workloads using exact predicates similar

to those of database systems. Document-centric processin% _—

;) o xample 1: Figure 1 shows an exemplary document from
in turn denotes processing of less rigidly structured content,cfe INpEX dom?ment collection (left) aFr)1d i>t/s representation
and users compose queries with vague predicates and expecis’, yree-structure (right). Consider a user who is interested
ranked results in the sense of information retrieval. Surpris- in database transaction processing. Assume that he com-
ingly, XML so far has mainly been used aslataformat in poses a query that searches for the most specific XML ele-
data-centric settings, although its primary intention was as & yantin the document collection using the keyword ‘transac-
documenformat for document-centric applications. There- . * opyiously, the paragraph elemefatticle/bdy/sec/p

fore, little support for information retrieval from XML doc- in the example,document could be a promising candidate
uments has been available until recently. since it comprises the term ‘transaction’. But, the journal
title element/article/fm/ti also contains the term ’'transac-
tion’. Nevertheless, it is intuitively less relevant than the

is a joint internationalheffor)t(mft a;jgresls'es this is.T,ug. Next section paragraph since many documents have a journal title
0 promoting research on retrieval in general, it aims L :)
at developing appropriate testbeds and evaluation methodsthat starts with "IEEETransactionson". Consequently,

INEX, the INitiative for the Evaluation of XML retrieval,

141

<article>
<fm>

<ti>|EEE Transactions on ...<ti>
<atl>Construction of ...</atl>
<au>
<fnm>John</fnm>
<snm>Smith</snm>
<aff>University of ...</aff>
</au>
<au>...</au>
fm
</fm>
<bdy>
<sec>
<st>Introduction</st>

<p>... transactions ...</p> "
</sec> atl
ssec> fam
<st>...</st>

<ssl>...</ss1>

article

bdy bm

au sec sec @ bib

aff

snm bb

<ssl>...</ss1> IEEE

. John |
Transactions |

| Smith |

</sec>

</bdy>
<bm>
<bib>
<bb>
<au>...</au>
<ti>...</ti>

Construc-
tion of ...

</bb>

</bib>
</bm>
<larticle>

Introduction ... au

transactions

Figure 1: Sketch of an XML document from the INEX collection

the user expects the section paragraph to be ranked highe2. EXTENDING XML QUERY

than the journal title element. However, conventional ap-
proaches to weighted and ranked information retrieval derive
term weights for the collection as a whole and may therefore
rank the journal title higher than the paragraph. o

Our current work at ETH Zurich aims at addressing the
problem of inconsistent rankings for flexible retrieval from
XML. We are currently building PowerDB-XML, an XML
engine that supports both data-centric and document-centr
processing of XML in an effective and efficient way with
a scalable platform implemented on top of a cluster of
databases. On the one hand, our approach relies on ex
tending state-of-the-art XML query languages such as W3C
XPath with document-centric functionality. Section 2 re-
ports on these current efforts. On the other hand, relevanc
ranking with PowerDB-XML derives term weights for re-
trieval from XML at a much finer granularity than conven-
tional retrieval. This prevents from inconsistent rankings
that would occur with conventional IR term weighting, as

Example 1 has illustrated. We discuss our approach that we

currently evaluate within the INEX initiative in Section 3.
Section 4 explains our implementation of IR functionality
with PowerDB-XML. Section 5 discusses the experimen-
tal evaluation of PowerDB-XML within the INEX initiative.
Section 6 covers related work, and Section 7 concludes.

IC

LAN-

GUAGES WITH IR FUNCTIONALITY

Previous efforts to come up with query languages for XML
were mainly driven by the database community. There, the
focus has been on functionality for data-centric process-
ing. This has led to the development of query languages
such as XPath and XQuery [13, 14]. Recently, extensions
of these languages have been proposed in order to cover
document-centric processing as well. XIRQL for instance
extends XPath with functionality for ranked retrieval, rele-
vance-oriented search, vague predicates and semantic rel-
ativism [5, 9]. PowerDB-XML takes over much of these
ideas. We have also decided in favor of XPath because it
is widely accepted in particular in practical systems after it
became a recommendation of the W3C in 1999. A further

€eason is that XPath is part of other ongoing standardization

efforts of the W3C such as XQuery — the prospective stan-
dard query language for XML. Furthermore, XPath comes
with an intuitive and easy-to-understand syntax.

However, XPath lacks of the functionality to pose IR-queries
to search for relevant content which is needed with docu-
ment-centric processing. The only XPath functionality avail-
able in this respect is the functieantains(.). It allows to
check for occurrences of a given character string in XML
content. Clearly, this does not suffice to cover the require-
ments for meaningful and flexible retrieval from XML doc-

142

uments in the sense of information retrieval. For instance,

term weighting and relevance ranking are not available with
XPath. Hence, our approach is to extend XPath with infor-
mation retrieval functionality.

XPath already provides data-centric constructs for selec-

tion and projection by structure constraints. With XPath,

'database transaction processing’, TFIDF, 0.3, 10)]. The
guery searches for articles whersex element has ansv of

at least 0.3 and is among the top 10 hits under the query text
'database transaction processing’ using TFIDF vector space
retrieval. o

With the INEX initiative, retrieval functionality for XML has

structure constraints are formulated as path expressions thato cover both so-calledontent-only querie€CO queries for
select those nodes of the graph representation of a doc-short) andcontent-and-structure querig€AS queries for

ument that match the expression.
the syntax/step/stepl/.../step. Starting at the root node,
eachstep moves the current context through the XML ele-
ment hierarchy. Eachtep has the formAxisSpec::Node-
Test[Predicate] and its evaluation depends on the current
context. Different axis specification&xisSpec allow to
navigate through the document. For instance cthitel axis

Path expressions haveshort) [3]. Content-and-structure queries refer to the docu-

ment structure in order to restrict the context of IR search
to those nodes that match a structural pattern provided with
the query. The result of such a query is a ranking of XML
elements that match the structural constraints of the query.
Elements are ranked higher the more relevant they probably
are to the query text. Content-only queries in turn do not

and theparent axis denote the children nodes and the parent have constraints with respect to document structure. Similar

node of the current context, respectively. WitNadeTest
in turn, only those nodes qualify for a step that are of a given
type. For instance, the XPath stdpscendant::firstname

to conventional IR, they only comprise off a query text or
a set of keywords. However, the result of such a query is a
ranking of XML elements with potentially different element

returns only those descendants of the context node that ardypes such that the elements are ranked higher the more spe-

firstname elements. The joker sigh serves as a wild-
card for node testsdescendant::* yields all descendants
of the context nodePredicates can pose further constraints

cific and the more relevant they are. This is in contrast to
conventional IR where the granularity of the resulting hits is
the same for all hits returned.

on the content of nodes. The usual comparison operators

<,<,=,... and Boolean operatoSND andOR are avail-
able with predicates. Take the XPath expresgidascen-
dant::auction[price < 20] as an example. It returns all auc-
tions whose price is less than 20.

The current workload of the INEX testbed consists of 30 CO
topics and 30 CAS topics. Each topic comes with a topic ti-
tle, a description, a narrative, and a set of keywords. With
CAS topics, the topic title specifies the structural patterns.
With both CO topics and CAS topics, the topic title also

As the previous example illustrates, XPath already covers specifies the query text. We have taken the information from
important requirements for data-centric XML processing, the topic title to transform the topics to XPathIR expressions.
namely projection and selection. Therefore, XPath has beenThe following example illustrates this for a CO topic and two

adopted widely as a query language for data-centric process-CAS topics taken from the INEX workload.

ing. However, XPath does not cover document-centric pro-

cessing since it is not possible to formulate IR-style queries.
Our approach thus is to take over the data-centric function-

ality of XPath and to extend it with the functionality that
is required for document-centric processing, namely flexible
and meaningful ranked retrieval on XML content.

Example 3: INEX topic 31 is a content-only query with
the query text 'computational biology’. We transform the
topic to the XPathIR expressidff[contains(., 'computa-
tional biology’, TFIDF, 0.0, 100)] that returns the top 100
XML elements that are most specific and most relevant to
the query text using vector space TFIDF ranking. INEX

To do so, our path expression matching language calledtopic 02 in turn is a content-and-structure query. Its topic

XPathIRoverloads the XPath functiatwntains(.) to intro-
duce information retrieval functionality. With XPathIR, the
following signatures are available:

e The signatureontains(expr, string) — boolean cor-
responds to the standard one from the original XPath
recommendation. The function returhse if the tex-
tual content of the match texpr contains the string
given by the second patameter.

contains(expr, query, irmodel, rsv, k) — boolean is

an XPathlR-specific extension of the XPath Recom-
mendation. It returngrue for an element or attribute
that matcheszpr only if its content has a retrieval sta-
tus value of at leastsv and is among the top hits
under the query texguery when using the information
retrieval modelirmodel.

Example 2: Consider again the XML document in Fig-
ure 1 and the XPathIR-quetarticle[contains(./bdy/sec,

title is '<cw> research funded americalcw> <ce> ack
</ce>'. The contents of thew element is the query text
and thece element specifies the structural pattern. We have
mapped this topic to the XPathIR queffack[contains(.,
‘research funded america’, TFIDF, 0.0, 100)]. Using
again TFIDF ranking, it returns thosack elements that
are most relevant to the query text. Topic 01 with the ti-
tle '<cw>description logics:/cw><ce>abs, kwd/ce>’

in turn maps to the XPathIR expressi@fabs|//kwd) [con-
tains(., 'description logics’, TFIDF, 0.0, 100)]. o

The previous example illustrates three basic retrieval op-
erations that are needed for flexible retrieval from XML,
namely single-category retrieval, multi-category retrieval,
and nested retrieval. Topic 31 representsted retrieval
since the query is evaluated against all elements and their
sub-elements. Topic 02 in turn is an examplesoigle-
category retrieval since it only considers elements from
the ack element type. Finally, topic 01 stands forraulti-
category quensince the context of interest of this query is
composed from the union of the instances of the two element

143

STAT:] au p
IL: Iﬁl.em Iterm I tf I IL: Iﬁl,em [term I tf |
staT:fem L et srar:frerm | el
p
erm
]
[ef |
[
Figure 2: Example of basic indexing nodes for the INEX document collection
types 'abstract’ and 'keywordsaps and kwd). It is im- e An alternative is that the user or an administrator de-
portant to note, that with weighted retrieval models a multi- cides how to assign element types to basic indexing
category query has different semantics than a sequence of nodes.
single-category queries. For instance, the XPathIR expres-
sion for topic 01 given in Example 3 is different from expres-
sion //abs[contains(., "description logics’, TFIDF, 0.0, These approaches can further rely on an ontology that, for in-
100)]|//kwd[contains(., ‘description logics’, TFIDF, 0.0, stance, suggests to group element types 'title’ and 'abstract’
100)]. The following section explains this in more detail. ~ jnto the same basic indexing node. With the INEX frame-
work, we have worked with two alternatives. The first alter-
3. RELEVANCE RANKING FOR WEIGH- native applies basic indexing nodes defined by an adminis-
TED RETRIEVAL FROM XML trator. The second approach in turn relies on basic indexing

nodes that have been derived automatically. With the latter
approach, different basic indexing nodes have been gener
ated for different XML element types. Figure 2 illustrates
this for a part of the element type hierarchy of the INEX doc-
ument collection (cf. Figure 1). IR pre-processing such as
term extraction, Porter stemming, and stopword elimination
on the textual content of the instances of the element type
yields the information which the basic indexing node ma-
terializes. For our experiments with the INEX framework,
we have generated basic indexing nodes with inverted lists

Flexible retrieval for XML first requires to identify the ba- o) !
sic element types of an XML coII?action that congin textual (/L) and statistics{TAT) for vector space retrieval. Build-

content. We denote them basic indexing node§here are N9 0N the notion of basic indexing nodes, we describe in
several alternatives how to derive the basic indexing nodes!h€ following how PowerDB-XML implements flexible and
from an XML collection: consistent retrieval on the INEX document collection using

single-category retrieval, multi-category retrieval and nested
retrieval.
e The decision can be taken completely automatically
such that each distinct element type at the leaf level Single-Category Retrieval. Single-category retrieval with
with textual content is treated as a separate indexing XML works on the element type that corresponds to a basic
node. indexing node. The granularity of retrieval are all elements

Following the approach outlined in the previous section,
we have mapped all INEX topics to XPathlR expres-
sions. To implement query processing for these expres-
sions, PowerDB-XML relies on our previous work on single-
category retrieval, multi-category retrieval, and nested re-
trieval [8]. In the following, we briefly review the approach
and explain how we have deployed it to the INEX frame-
work.

144

RSV (e, q)

2 2

se€SE(e) teterms(q)

> (C 11

secSE(e) lepath(e,se)

awl)

tf (¢, se) (

I

l€path(e,se)

Z tf(t5 56) iefcat(se)(t)Q tf(ta q))

awl) iefcat(se) (t)z tf(t.q)

teterms(q)

Figure 3: Retrieval status value with TFIDF ranking and nested retrieval

of that category. Topic 02 in Example 3 is an example of

a single-category query. With single-category retrieval, we

take over the usual definition of retrieval status value with
the vector space retrieval model: As usualenotes a term,
and tf (¢, e) is its term frequency with an elemeat Let
N.q: andef ., (t) denote the number of elements at the sin-
gle categorycat and the element frequency of ternwith

the elements ofat, respectively. In analogy to the inverted

document frequency for conventional vector space retrieval,

we defineinverted element frequencief) as
Ncat
efcat (t)

The retrieval status value of an elementfor a single-
category query; is then

Z‘efcat (t) = 1Og

RSV(B, Q) = tf(t7 6) iefcat (t)2 tf(t7 q) (1)

>

teterms(q)

Multi-Category Retrieval. In contrast to single-category
retrieval, multi-category retrievalwith XML works with
multi-categories Formally, a multi-category is given by a

path expression that may contain choices. As with single-

category retrieval, the granularity of retrieval with a multi-

category are all elements that match the path expression.

Topic 01 in Example 3 is an example of a multi-category
query. When it comes to retrieval from a multi-category,

RSV (e,q) =

>

teterms(q)

tf(t,€) ief pear () tf(tq) (2)

This definition integrates the frequencies of several single
categories to a consistent global one. It equals Definition 1 in
the trivial case with only one category in the multi-category.

Nested Retrieval. Another type of requests are those that
operate on complete subtress of the XML documents. Topic
31 in Example 3 is an example of a nested-retrieval query.
However, there are the three following difficulties with this
retrieval type:

e A path expression may define a context of interest
that comprises different categories in its XML subtree.
Hence, retrieval over the complete subtree must differ-
entiate between these element types to provide a con-
sistent ranking.

e Terms that occur close to the root of the subtree are typ-
ically considered more significant for the root element
than ones on deeper levels of the subtree. Intuitively:
the larger the distance of a node from its ancestor is, the
less it contributes to the relevance of its ancestor. Fuhr
et al. [4, 5] tackle this issue by so-calladgmentation
weightswhich downweigh term weights when they are
pushed upward in hierarchically structured documents
such as XML documents.

statistics such as element frequencies for vector space re-
trieval and especially thesv must reflect this. Otherwise,
inconsistent rankings are possible. Our approach to guaran-
tee consistent retrieval results is similar to integrating statis-
tics for queries over different document categories with con-

e Element containment is at the instance level, and not at
the type level. Consequently, element containment re-
lations cannot be derived completely from the element
type nesting.

ventional retrieval [6, 7]. We extend this notion for flexible
XML retrieval such that statistics for multi-category retrieval

depend on the statistics of each single-category that occursi
the query. As the subsequent definitions show, our approac
first computes the statistics for each single-category as de-

fined in Definition 1 and then integrates them to the multi-
category ones as follows. Le#! denote the set of basic in-
dexing nodes of the multi-categor,,,cq; =

stands for the number of elements of the mul/\f
With multi-category retrieval, we define the

chat
antEM efcat (t)
where ef .. (t) denotes the single-category element fre-
quency of termt with categorycat. The retrieval status

value of an elemenrd for a multi-category query is then
using again TFIDF ranking:

(af

ti-category.

Z.efmcat(t) = IOg

ipMore formally, lete denote an element that qualifies for the
Hpath expression of the nested-retrieval query. $Ete) de-

note the set of sub-elements ofincludinge, i.e., all el-
ements contained by the sub-tree rootedeby For each

€ SE(e), I € path(e,se) stands for a label along the
path frome to se, andaw; € [0.0;1.0] is its augmentation
weight. cat(se) denotes the category to whighk belongs.
ief cat(se) (t) Stands for the inverted element frequency of

termt¢ with the categoryat(se). The retrieval status value
rsv Of an element under a nested-retrieval quegyusing

the vector space retrieval model then yields the expression
shown in Figure 3.

As the definitions in Figure 3 show, nested retrieval is a
weighted sum of constrained single-category retrieval re-
sults. The constraintis such that an elemerdnd its textual

145

Algorithm MULTICATEGORY Algorithm NESTEDRETRIEVAL
Parameters: Query g, path expression p Parameters: Query g, path expression p
var hits := 0; M := 0; var hits := 0; N :=();
begin begin
/I Step 1: Determine the single-categories and /I Step 1: Determine the single-categories
M = LookUp(p) N = LookUp(p)
/I Step 2: Collect and integrate statistics /I Step 2: Compute integrated statistics with augmented weights
for each single-category cat € M do in parallel IW(STAT cat, [Ticpath(vase(p),cat) GW1) denotes the
Get per-category statistics (efcat (t), Neat); €nd; I weighted projection of the per-category statistics
Compute multi-category statistics statmcat I base(p) denotes the element type of the query root
(ief ppear @Nd Npycar for Def. 2); for each category cat € N do in parallel
STAT temp = STAT temp
/I Step 3: Execute query for each category UW(STAT cat, Hzepath(base(p),caz) awp) end;
for each category cat € M do in parallel
/I process the query with the integrated statistics /I Step 3: Process the query on each category
hits := hits U Querymcat(cat, g, statcat); €nd; I/ with the augmented statistics
for each category cat € N do in parallel
/I Step 4: Post-processing and output of results hits := hits U QUeryneat(q, STAT temp); €nd;
Sort hits by RSV; Return the ranking (element id and RSV);
end; /I Step 4: Post-processing and output of results
Sort hits by RSV; Return the ranking (element id and RSV);
Figure 4: Algorithm MULTICATEGORY end;

))) Figure 5: Algorithm NESTEDRETRIEVAL
content only contribute to the retrieval status value fse

is in the sub-tree rooted by. Moreover, both definitions

in the figure revert to the common TFIDF ranking for con- erly. This makes processing of this query type more complex
ventional retrieval on flat documents when all augmentation than with the other types. Our algorithm to process nested
weights are equal t0.0. In the trivial case where a nested queries is calledNESTEDRETRIEVAL , and it comprises
query only comprises one single-category, the definitions in four steps, as shown in Figure 5. The first step computes

Figure 3 equal Definition 1. the categories that qualify for the path expression defining
the scope of the nested query. The second step then iterates

4. IMPLEMENTING FLEXIBLE over the categories, their underlying basic indexing nodes,

RETRIEVAL FROM XML and dynamically generates the statistics for the appropriate

vector space of the scope of the query. Note that the dynam-
ically generated statistic§TA T ..,,, comprise different in-
verted element frequencieg() for the same term depend-
ing on the category where the term occurs and the weight of
the category. The weighting functiofY augments each term

t € ¢ from the statisticsSTAT ., with its proper augmen-
tation weights regarding the context node of the query. This
ensures that the properly augmentefls are used to com-
pute thersv. The last step of the algorithm then computes
the overall ranking.

In the following paragraphs, we explain how to implement
multi-category retrieval and nested retrieval using the data of
the basic indexing nodes.

Multi-Category Retrieval. Using the statistics of the ba-
sic indexing nodes directly for multi-category retrieval is
not feasible since statistics are per element type (cf. Fig-
ure 2). Hence, query processing must dynamically inte-
grate the statistics if the query encompasses several cate
gories. Using single-category statistics directly may lead to
wrong rankings with multi-category queries. Multi-category
queries compute the correct multi-category statistics during>. EVALUATION RESULTS

guery processing. AlgorithiMULTICATEGORY shown Experimental Setup. As outlined previously, our XML en-

in Figure 4 reflects this. First, it determines the basic in- gine PowerDB-XML runs on top of a cluster of database
dexing nodes contained in the path expression of the multi- systems. A cluster of database systems is a cluster of work-
category query. Its second step is to retrieve the statistics forstations interconnected by a standard network where each
each such basic indexing node and to use them to computecluster node runs a commercially available database sys-
the integrated ones. The third step executes the lookup intem. The PowerDB-XML middleware organizes distributed
parallel at the inverted lists. The inverted list lookup takes query processing over the nodes and integration of the re-
the integrated multi-category statistics as input parametersults. Moreover, PowerDB-XML implements the differ-
and computes the partial ranking. The fourth step of the al- ent retrieval types discussed above, namely single-category,
gorithm integrates the partial results from the third step and multi-category and nested retrieval for flexible retrieval from
returns the overall ranking. XML.

Nested Retrieval. As with the previous retrieval type, With INEX, we have used a cluster of 8 off-the-shelf PC

nested retrieval requires integrating statistics and process-nodes. Each node is equipped with one 400 MHz Pen-
ing queries over different indexes. In addition, it must also tium processor and an interface to switched duplex Ether-
reflect element containment and augmentation weights prop-net with a data transmission rate of 100 Mbits/sec. Each

146

INEX 2002: Augmentation0.8 INEX 2002: Augmentation0.8

quantization: strict quantization: generalized
1 1
CAS topics (av. precision 0.048) CAS topics (av. precision 0.045)
CO topics (av. precision 0.010) -----====- CO topics (av. precision 0.013) --=--=rr=-
0.8 0.8
c c
IS 0.6 s 0.6
0 k2]
o [}
3] Qo
a 04 a 04

0 0.5 1 0.5 1
Recall Recall

Figure 6: Evaluation results with PowerDB-XML.: strict quantization (left) — generalized quantization (right)

node runs the Microsoft Windows 2000 Advanced Server ered by previous efforts on text retrieval. Another obser-
operating system. The database system at each cluster nodeation is that PowerDB-XML yields better retrieval quality
is Microsoft SQL Server 2000. The INEX document col- with CAS queries than with CO queries. This corresponds
lection has been striped over all cluster nodes using hashto the observation for INEX results in general: retrieval per-
partitioning over the (internal) document identifier. In other formance of CAS queries is typically better than the one of
words, each cluster nodestores document texts, IR statis- CO queries. The reason for this is that the path expressions
tics, and index data of the XML documents assigned to node with CAS queries restrict the scope of retrieval to the target
1. PowerDB-XML stores the original XML document textas elements given by the query, and only target elements may
a character-large-object, a model-mapping of the documentqualify for the result. This is not the case with CO queries
using the EDGE approach [1], and the IR index and statistics where an arbitrary document component may qualify as a
data of the basic indexing nodes as described above usingesult of a given query. The difficulty with CO queries there-
the relational database systems as storage managers. Thi®re is to find the document component that is most specific
yields a total database size of about 10 GB (accumulatedand most relevant to the information need expressed by the
over all cluster nodes) including database indexes. With the query. This makes retrieval for CO queries more challeng-
runs submitted to INEX, augmentation weights @& ing than for CA queries, and the results with PowerDB-XML
reflect this general difficulty.
Two different quantization functions have been applied to
assess the retrieval resulgdrict quantizatiorfocuses on re- 6. RELATED WORK
trieving the highly relevant document components with ex- As a first measure to enhance functionality for document-
act coverage. In other words, the quantization of a documentcentric processing of XML, Florescu et al. realize search-
component is 1.0 for highly relevant components with ex- jng for keywords in textual content of XML elements [2].
act coverage and 0.0 otherwisgeneralized quantizatioim However, the mere capability to search for keywords does
turn also takes less relevant document components with lessyot suffice to address the requirements for document-centric
coverage into account and assigns them weights between 0.@rocessing: support for state-of-the-art retrieval models with
and 1.0. relevance ranking is needed. To tackle this issue, Theobald
) .) . et al. propose the query language XXL and its implemen-
Outcome and Discussion.Figure 6 shows precision/recall tation with the XXL Search Engine [11]. Similar to our
curves for the runs using the complete INEX XML doc- approach with XPathIR, Fuhr and GroRjohann et al. extend

ument collection and all 60 INEX topics with the exper- the \WW3C XPath Recommendation with operators needed for
imental setup of PowerDB-XML as outlined above. Fig- document-centric processing of XML [5, 9].

ure 6 (left) shows the curves for strict quantization. Fig-

ure 6 (right) in turn graphs the outcome with the generalized Regarding IR statistics such as term frequencigy Euhr
quantization function. Both charts distinguish between CAS et al. have already argued in [4, 5] that treating documents
queries and CO queries. A first observation is that the level as flat structures comes too short for XML. They propose to
of the curves is less than with other text retrieval confer- downweigh term weights by so-called augmentation weights
ences such as TREC. This corresponds to a general resulfyhen terms are propagated upwards in the document hierar-

for all INEX participants and relates to the challenges of the chy. However, [5] derive IR statistics such a# for the
semi-structured XML format which have not been consid- collection as a whole. But, retrieval in different contexts re-

147

quires a more dynamic treatment of term weights. Hiemstra
comes to a similar conclusion for query term weights used in
different query contexts [10]. Therefore, our approach pro-
posed in [8] keeps different IR statistics for each basic index-
ing node. This allows for consistent retrieval with arbitrary

guery granularities, i.e., arbitrary combinations of element

types.

[4]

7. CONCLUSIONS

Flexible retrieval is an important requirement with docu-
ment-centric processing of XML. Flexible retrieval means
that users define the scope of their queries dynamically,
i.e., at query time. The different topics developed within
the INEX framework reflect this requirement, defining both
content-and-structure queries and content-only queries. To
cover this requirement, the XML engine PowerDB-XML
currently being developed at ETH Zurich extends the W3C
XPath path expression language to XPathIR, a path expres-
sion language that allows for flexible retrieval from XML
documents. The difficulty with flexible retrieval on XML

is to treat statistics such as document frequencies properly [7]
in the context of hierarchically structured data with possibly
heterogeneous contents: the common assumption to derive
IR statistics such as document frequencies for the collection
as a whole does not necessarily hold with XML. To tackle
this issue, PowerDB-XML integrates vector spaces on-the-
fly, i.e., during query processing, to a consistent view of the
statistics that properly reflects the scope of the query. Our
implementation is based on the three basic retrieval opera-
tionssingle-category retrievaimulti-category retrievaland
nested retrievathat form the building blocks for processing
information retrieval queries on XML content. PowerDB-
XML currently deploys vector-space TFIDF ranking. Proper
treatment of statistics with flexible retrieval from structured
documents however is an issue that similarly arises for all
weighted retrieval models. With these retrieval models as
well, integration of statistics according to single-category,
multi-category, and nested retrieval is necessary to guaran-
tee consistent ranking. The collection of XML documents
as well as the set of topics provided with the INEX testbed
serves as our framework to further evaluate PowerDB-XML
regarding both retrieval quality and retrieval efficiency. The
main objective of this future work is to compare retrieval
quality with PowerDB-XML to other approaches which do
not rely on computing IR statistics on-the-fly according to [11]
the scopes of the queries. Another important issue that war-
rants further investigation is retrieval quality on XML doc-
ument collections with a semantically rich document struc-
ture.

[5]

[6]

[8]

[9]

[10]

8. REFERENCES
[1] D. Florescu and D. Kossmann. Storing and Querying
XML Data using an RDMBSIEEE Data Engineering [12]
Bulletin, 22(3):27-34, 1999.

D. Florescu, D. Kossmann, and |. Manolescu.
Integrating Keyword Search into XML Query
Processing. IfProceedings of the International WWW

Conference, Amsterdam, May 20@sevier, 2000.

N. Fuhr, N. Gvert, G. Kazai, and M. Lalmas. INEX:
Initiative for the Evaluation of XML Retrieval. In
Proceedings of the ACM SIGIR Workshop on XML

(2]
[13]

[3] (14]

148

and Information Retrieval, Tampere, Finlanahges
62—70. ACM Press, 2002.

N. Fuhr, N. Givert, and T. Rlleke. Dolores: A system
for logic-based retrieval of multimedia objects. In
Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 1998, Melbourne, Australia
pages 257-265. ACM Press, 1998.

N. Fuhr and K. GroB3johann. XIRQL: A Query
Language for Information Retrieval in XML
Documents. IrProceedings of the 24th Annual ACM
SIGIR Conference on Research and Development in
Information Retrieval, New Orleans, USpages
172-180. ACM Press, 2001.

T. Grabs, K. Bhm, and H.-J. Schek. PowerDB-IR -
Scalable Information Retrieval and Storage with a
Cluster of Database3o appear in: Knowledge and
Information Systems

T. Grabs, K. Bhm, and H.-J. Schek. PowerDB-IR —
Information Retrieval on Top of a Database Cluster. In
Proceedings of the 10th International Conference on
Information and Knowledge Management
(CIKM2001), November 5-10, 2001 Atlanta, GA,

USA pages 411-418. ACM Press, 2001.

T. Grabs and H.-J. Schek. Generating Vector Spaces
On-the-fly for Flexible XML Retrieval. In

Proceedings of the ACM SIGIR Workshop on XML
and Information Retrieval, Tampere, Finlanghges
4-13. ACM Press, 2002.

K. GroRRjohann, N. Fuhr, D. Effing, and S. Kriewel.
Query Formulation and Result Visualization for XML
Retrieval. InProceedings of the ACM SIGIR Workshop
on XML and Information Retrieval, Tampere, Finland
pages 26—-32. ACM Press, 2002.

D. Hiemstra. Term-specific smoothing for the
language modeling approach to information retrieval:
the importance of a query term. Rroceedings of the
25th Annual ACM SIGIR Conference on Research and
Development in Information Retrieval 2002, Tampere,
Finland, pages 35-41. ACM Press, 2002.

A. Theobald and G. Weikum. The Index-Based XXL
Search Engine for Querying XML Data with
Relevance Ranking. IAdvances in Database
Technology - EDBT 2002, 8th International
Conference on Extending Database Technology,
Prague, Czech Republigolume 2287 ot ecture
Notes in Computer Scienggages 477-495. Springer,
2002.

World Wide Web Consortium. Extensible Markup
Language (XML) 1.0http://www.w3.0rg/TR/
1998/REC-xml-19980210 , Feb. 1998.

World Wide Web Consortium. XML Path Language
(XPath) Version 1.0.
http://www.w3.org/TR/xpath , Nov. 1999.

World Wide Web Consortium. XQuery 1.0: An XML
Query Language.

http://mww.w3.org/TR/xquery , Nov. 2002.

Bayesian Networks and INEX

Benjamin Piwowarski
LIP 6, Paris, France
bpiwowar@poleia.lip6.fr

Abstract

We present a bayesian framework for XML doc-
ument retrieval. This framework allows us to
consider content only and content and structure
queries. We perform the retrieval task using in-
ference in our network. Our model can adapt to a
specific corpora through parameter learning.

Keywords Bayesian networks, INEX, XML, Fo-
cused retrieval, Structured retrieval

1 Structured Documents and
Information Retrieval

The goal of our model is to provide a new generic
system for performing different IR tasks on col-
lections of structured documents. We take an IR
approach to this problem. We want to retrieve
specific relevant elements from the collection as
an answer to a query. The elements may be any
document or document part (full document, sec-
tion(s), paragraph(s), ...) indexed from the struc-
tural description of the collection. We consider con-
tent only (CO) queries and content and structure
(CAS) queries. We use a probabilistic model based
on bayesian networks (BN), whose parameters are
learnt so that the model may adapt to different cor-
pora. For CO queries, we consider the task as a
focused retrieval, first described in [5] [13].

The organization of this paper is as follow. We
introduce our model in section 2. We describe the
three modes in which our model can be used: re-
trieval with CO and CAS queries and learning. Fi-
nally, in section [3| we describe related works.

2 Model

Our work is an attempt to develop a formal model
for structured document access. Our model relies on
bayesian networks instead of evidence theory in [11]
or probabilistic datalog in [7] and thus provides an
alternative approach to the problem. We believe
that this approach allows casting different access in-
formation tasks into a unique formalism, and that

Georges-Etienne Faure
LIP 6, Paris, France
faure@poleia.lip6.fr

Patrick Gallinari
LIP 6, Paris, France
gallinar@poleia.lip6.fr

these models allow performing sophisticated infer-
ences, e.g. they allow to compute the relevance of
different document parts in the presence of missing
or uncertain information. Compared to other ap-
proaches based on BN, we propose a general frame-
work which should adapt to different types of struc-
tured documents or collections. Another original
aspect of our work is that model parameters are
learnt from data, whereas none of the other ap-
proaches relies on machine learning. This allows
to rapidly adapt the model to different document
collections and IR tasks.

The BN structure directly reflects the document
hierarchy (figure (1), i.e. we consider that each
random variable is associated to a structural part
within that hierarchy. The root of the BN is thus
a ”corpus” variable, its children the ”journal col-
lection” variables, etc. In this model, due to the
conditional independence property of the BN vari-
ables, relevance is a local property in the following
sense: if we know that the journal is (not) relevant,
the relevance value of the journal collection will not
bring any new information on the relevance of one
article of this journal.

Three different models were considered.

Model T A simple model that computes a score for
each element. Its only parameters are statistics
on words contained in this element and in its
parent.

The other two models correspond to two different
sets of values S for the BN variables:

Model IT Relevant (R), too generic (G), not rele-
vant (I);

Model III Relevant (R), too generic (G), too
specific(S) or not relevant (I)

This definition of relevance is related to several
definitions of what should be information retrieval
with free text queries on structured documents, as
proposed by Chiaramella et al. [5] and Lalmas [13].

In order perform the inference steps in the BN,
needed for retrieval or learning, we need to compute
P(e|p, q) where e is a structural element (document,
body, section, paragraph and so on), p its parent
and ¢ the query. For a given @), we first compute

149

Journal collection 1
books[1] (1995)

Journal collection 2
books[2] (1996)

Figure 1: The document collection: each structured
document is located in a specific part of the hier-
archically organized collection. Here, each docu-
ment is a collection of journals, each journal con-
tains structured articles. The query ¢ is added to
this network while retrieving or learning. Below ar-
ticle[1], we have indicated some tags used in the
INEX collection. fm, bdy and bm respectively hold
for ”front matter”, "body” and ”back matter”, each
being composed of sub-elements not represented on
the figure.

a score F, 4 for each structural element e. In this
instance of the model, this score will depend on the
element e type (a tag in the XML document) and
on the value a and b (among R, G, S, I according to
model IT or III) of the element e and of its parent:
con

Froap(q) = Qeap F2y(€)+Bean Pl (€)4Yean FrLy (€, a,b)

where Fr<>el is the relevance of e content measured by
a given flat retrieval model - in the experiments pre-
sented here, we have used a slightly modified version
of OKAPI [21] as well as two other simple models.
The peculiar form of F(e, a,b) has been chosen em-
pirically and the two models have been chosen and
tuned empirically.

This score is then used for computing a condi-
tional probabilities P(e = a|p = b,q) using a soft-
max function that gives values between 0 and 1.

1

Ple=alp=b,9) x %~

For each possible value a of e, we then get a score
which is interpreted as a probability. as, 8s and s
are to be learnt by the BN.

This model operates in three modes, training, CO
and CAS retrieval, which we now describe.

2.1 Retrieval with CO queries

Answering CO queries was considered as focused re-
trieval. Focused retrieval consists in retrieving the
most relevant structural elements in a document for
a given query. Retrieval should focus on the small-
est units that fulfill the query [5]. This unit should
be the most relevant and should have a higher score
than more generic or more specific units in the doc-
ument.

When a new query @ has to be answered, we first
compute Fe o 5(q) score for each element e and val-
ues a and b. The tree structure of this BN allows to
use a fast and simple inference algorithm. We com-
pute the relevance P(e; = R|q) for each element
e;. P(e; = R|q) can be computed using dynamic
programming methods. We begin at the top of the
hierarchy and use recursion to compute RSV (Re-
trieval Status Value) for each e;:

>

pe{l,R,G[S]}

P(e; = .q) = P(e; = .|¢, parent; = p)

The score of one element is then given by
RSV (e;,q) = P(e; = R|q). Elements with high-
est values are then presented to the user.

2.2 Retrieval with CAS queries

INEX queries were composed of different parts (tar-
get element, relative context element and absolute

150

context elements) or subquery needs. For CAS re-
trieval, we extend our bayesian network to handle
multiple subqueries and use one sub-network for
each one. Those networks are then connected in
order to form one large network that represents the
whole CAS query.

Example In order to describe CAS query process-
ing, we make use of an example (figure 2). Each
CAS query is first decomposed into elementary sub-
queries (here Qp, @1 and Q2). Each of those sub-
queries refers to a structural entity and an informa-
tion need. Each information need is modeled by a
BN constructed as for CO queries.

Qo ... Q1 Q2
article art:icle article
v |
ack secH secli]
/ AN
p[2] p[3]

\\/

Figure 2: An example of BN for a CAS query:
retrieval of sections on information retrieval (Q1)
in an article with an acknowledgment referring to
INEX (Qo). The section must have paragraphs on
XML retrieval. The article must contain an ac-
knowledgment (ack) relevant to query (. This
is an absolute context element, it does not depend
on the section but on the document. The retrieved
section (target element) must be relevant to query
1. This section has paragraphs relevant to query
2. Those paragraphs are relative context element
as they change for every target element (for every
section). Here only the network part involved in the
relevance scoring of one section element is shown.

Those elementary BNs are then connected for
each target element in order to give this element
a global score. Two different subquery type were
distinguished:

1. Absolute subqueries that were relative to the
article element (Qo);

2. Relative subqueries that were relative to the
section element (@1 and Q2).

Relative subqueries networks are constructed after
finding a target element (here sec[il]) while ab-
solute subqueries network are constructed for each
document.

General algorithm Two different types of infer-
ence are used to connect bayesian networks between
them, namely "or” (V) and "and” (A) functions.
For A nodes we have:

0 if one parent is # R
P(A = R|parents) = { 1 otherwise

and for V nodes we have:

1 if one parent is R
P(V = Rlparents) = { 0 otherwise
In order to compute the score for one target ele-
ment e;, we follow the following steps:

e For each target element e; and for each sub-
query Q;, let ce(i,j,1),...,ce(i,j,n; ;) be the
context element fulfilling structural constraints
(e.g. in figure 2, when e; is section[il,
ce(i,0,1) is ack, ce(i,1,1) is section[i],
ce(i,2,1) is pl1l, ce(i,2,2) is p[2] and
ce(i,2,3) is p[3]).

e Compute the j**
for the element e;:

subquery score RSV, (e;,q)

RSV, (ei,q) = 1—

(1 - RSV(Ce(ivj7 1)a QJ))

x(1— RSV (ce(i, j,ni;),q;))

Note that when there is only one context ele-
ment (like ack for subquery @), this subquery
score is reduced to RSVee(1,5,1),q;-

e Compute the global score for element e;:
RSV (ei,q) = RSV, (ei,q) X ... x RSV, (e, q).

2.3 Training

In order to fit a specific corpus, parameters are
learnt from observations using the Estimation Max-
imization (EM) algorithm. An observation O®)
is a query with its associated relevance assess-
ments (document/part is relevant or not relevant to
the query). EM [0] optimizes the model parameters
© with respect to the likelihood £ of the observed
data :

£(0,0) = log P(0|0©)

In INEX, documents were everything below the article
tag

151

where O = {O(l), ceey O(‘O‘)} are the IV observa-
tions.

Observations may or may not be complete, i.e.
relevance assessments need not to be known for each
structural element in the BN in order to learn the
parameters. Each observation O can be decom-
posed into E(® and H® where E® corresponds to
structural entities for which we know whether they
are relevant or not, i.e. structural parts for which
we have a relevance assessment. E(*) is called the
evidence. H corresponds to hidden observations,
i.e. all other nodes of the BN.

In our experiment, we used for learning about 200
assessments from CO queries that were obtained by
taking only the browse keywords of CAS queries.

3 Related works

In this section, we make a short review of previous
works in IR related structured retrieval and on BN
information retrieval systems.

One of the pioneer work on document structure
and IR, is that of Wilkinson [22] who attempted
to use the document division into sections of dif-
ferent types (abstract, purpose, title, misc., ...) in
order to improve the performances of IR engines.
For that he proposed several heuristics for weight-
ing the relative importance of document parts and
aggregating their contributions in the computation
of the similarity score between a query and a doc-
ument. He was then able to improve a baseline IR
system.

A more recent and more principled approach is
the one followed by Lalmas and co-workers [11], 12}
13), [14]. Their work is based on the theory of evi-
dence which provides a formal framework for han-
dling uncertain information and aggregating scores
from different relevance scores. In this approach,
when retrieving documents for a given query, evi-
dence about documents is computed by aggregating
evidence of sub-document elements.

Another important contribution is the HySpirit
system developed by Fuhr and colleagues which was
described in a series of papers, see e.g. [7]. Their
model is based on a probabilistic version of datalog.
When complex objects like structured documents
are to be retrieved, they use rules modeling how
a document part is accessible from another part.
The more accessible this part is, the more it will
influence the relevance of the other part.

A series of papers describing on-going research
on different aspects of structured document stor-
age and access, ranging from database problems to
query languages and IR algorithms is available in
the special issue of JASIST and in the proceedings
of two SIGIR XML workshops|4, [T}, [2].

Since Inquery [3, 20], bayesian networks have
proved to be a theoretically sounded IR model,
which allows to reach state of the art performances
and encompasses different classical IR models. The
simple network presented by Croft, Callan and Tur-
tle computes the probability that a query is satis-
fied by a document. More precisely, the probabil-
ity that the document represents the query. This
model has been derived and used for flat docu-
ments. Ribeiro and Muntz [19] and Indrawan et
al. [8] proposed slightly different approaches also
based on belief networks, with flat documents in
minds. An extension of the Inquery model, de-
signed for incorporating structural and textual in-
formation has been recently proposed by Myaeng
et al. [I6]. In this approach, a document is repre-
sented by a tree. Each node of the tree represents
a structural entity of this document (a chapter, a
section, a paragraph and so on). This network is
thus a tree representation of the internal structure
of the document with the whole document as the
root and the terms as leaves. In order to keep com-
putations feasible, the authors make several simpli-
fying assumptions. Other approaches consider the
use of structural queries (i.e. queries that specifies
constraints on the document structure). Textual in-
formation in those models is usually boolean (term
presence or absence). Such a well known approach
is the Proximal Nodes model [I7]. The main pur-
pose of these models is to cope with structure in
databases. Results here are boolean: a document
matches or doesn’t match the query.

4 Conclusion

We have described a new model for performing IR
on structured documents. It is based on BN whose
conditional probability functions are learned from
the data via EM.

The model has still to be improved, tuned and de-
veloped, and several limitations have still to be over-
come in order to obtain an operational structured
information retrieval system. For example, we chose
to discard textual information from the bayesian
network (we use external models). A wiser choice
would be to include terms within the bayesian net-
work in order to give more expression power to our
model. Other limitations are more technical and
are related to the model speed.

Nevertheless some aspects of this model are
interesting enough to continue investigating this
model. Bayesian networks can handle different
sources of information. Multimedia data can be
integrated in our model by the mean of their rel-
evance to a specific user need. Interactive naviga-
tion is also permitted. Our model is also able to
learn its parameters from a training set. Since the

152

relevance relationship between structural elements
may change with the database, this seems to be an
important feature.

References

[1]

R. Baeza-Yates, D. Carmel, Y. Maarek, and
A. Soffer, editors. Journal of the American So-
ciety for Information Science and Technology
(JASIST), number 53(6), Mar. 2002.

R. Baeza-Yates, N. Fuhr, and Y. S. Maarek,
editors. ACM SIGIR 2002 Workshop on XML,
Aug. 2002.

J. P. Callan, W. B. Croft, and S. M. Harding.
The INQUERY Retrieval System. In A. M.
Tjoa and I. Ramos, editors, Database and FEz-
pert Systems Applications, Proceedings of the
International Conference, pages 78-83, Valen-
cia, Spain, 1992. Springer-Verlag.

D. Carmel, Y. Maarek, and A. Soffer, editors.
ACM SIGIR 2000 Workshop on XML, July
2000.

Y. Chiaramella, P. Mulhem, and F. Fourel. A
Model for Multimedia Information Retrieval.
Technical report, IMAG, Grenoble, France,
July 1996.

A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum Likelihood from incomplete data via
de EM algorithm. The Journal of Royal Sta-
tistical Society, 39:1-37, 1977.

N. Fuhr and T. Rolleke. HySpirit - a Proba-
bilistic Inference Engine for Hypermedia Re-
trieval in Large Databases. In H.-J. Schek,
F. Saltor, I. Ramos, and G. Alonso, ed-
itors, Proceedings of the 6th International
Conference on Extending Database Technol-
ogy (EDBT), Valencia, Spain, 1998. Springer,
Berlin.

M. Indrawan, D. Ghazfan, and B. Srinivasan.
Using Bayesian Networks as Retrieval Engines.
In ACIS 5th Australasian Conference on In-
formation Systems, pages 259-271, Melbourne,
Australia, 1994.

F. V. Jensen. An introduction to Bayesian Net-
works. UCL Press, London, England, 1996.

P. Krause.
1998.

Learning Probabilistic Networks.

M. Lalmas. Dempster-Shafer’s Theory of Evi-
dence Applied to Structured Documents: Mod-
elling Uncertainty. In Proceedings of the 20th

[16]

[17]

153

Annual International ACM SIGIR, pages 110—
118, Philadelphia, PA, USA, July 1997. ACM.

M. Lalmas. Uniform representation of con-
tent and structure for structured document re-
trieval. Technical report, Queen Mary & West-
field College, University of London, London,
England, 2000.

M. Lalmas and E. Moutogianni. A Dempster-
Shafer indexing for the focussed retrieval of
a hierarchically structured document space:
Implementation and experiments on a web
museum collection. In 6th RIAO Confer-
ence, Content-Based Multimedia Information
Access, Paris, France, Apr. 2000.

M. Lalmas, I. Ruthven, and M. Theophy-
lactou. Structured document retrieval using
Dempster-Shafer’s Theory of Evidence: Imple-
mentation and evaluation. Technical report,
University of Glasgow, UK, Aug. 1997.

K. P. Murphy. A Brief Introduction to Graph-
ical Models and Bayesian Networks. web:

http://www.cs.berkeley.edu/ murphyk/Bayes/bayes.html,

Oct. 2000.

S. H. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-
C. Zhoo. A Flexible Model for Retrieval of
SGML documents. In W. B. Croft, A. Moffat,
C. van Rijsbergen, R. Wilkinson, and J. Zo-
bel, editors, Proceedings of the 21st Annual
International ACM SIGIR Conference on Re-
search and Development in Information Re-
trieval, pages 138-140, Melbourne, Australia,
Aug. 1998. ACM Press, New York.

G. Navarro and R. Baeza-Yates. Proxi-
mal Nodes: A Model to Query Document
Databases by Content and Structure. ACM
TOIS, 15(4):401-435, Oct. 1997.

J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

B. A. N. Ribeiro and R. Muntz. A Belief Net-
work Model for IR. In Proceedings of the 19th
ACM-SIGIR conference, pages 253-260, 1996.

H. R. Turtle and W. B. Croft. Evaluation of
an Inference Network-Based Retrieval Model.
ACM Transactions On Information Systems,
9(3):187-222, 1991.

S. Walker and S. E. Robertson.
Okapi/Keenbow at TREC-8. In E. M.
Voorhees and D. K. Harman, editors, NIST
Special Publication 500-246: The Fighth Text
REtrieval Conference (TREC-8), Gaithers-
burg, Maryland, USA, Nov. 1999.

[22] R. Wilkinson. Effective retrieval of structured
documents. In W. Croft and C. van Rijsbergen,
editors, Proceedings of the 17th Annual Inter-
national Conference on Research and Develop-
ment in Information Retrieval, pages 311-317,
Dublin, Ireland, July 1994. Springer-Verlag.

154

Extreme File Inversion
Shlomo Geva
School of Software Engineering and Data Communication
Faculty of Information Technology
Queensland University of Technology
GPO Box 2434 Brisbane Q 4001 Australia
s.geva@qut.edu.au

Abstract

In this paper we describe the implementation of an
extreme variation to the inverted file scheme. The
scheme supports a comprehensive set of Boolean search
operators, down to the single character level. When
combined with a heuristic document ranking algorithm
it supports retrieval of raw XML data, using the
embedded tags as search arguments. We tested the
system against a set of XML queries and the entire set
of IEEE Computer Society publications 1995-2002, in
XML format.

Keywords: XML Retrieval, Text Retrieval, Pattern
Matching, Partial Match Search, Proximity Search.

1. Introduction

Associative Memory, a memory that is accessed by
content rather than by address, is an idea that has been
a subject of research by the computer industry for many
years. Access methods for text retrieval and for partial
match search have also been the subject of intensive
research. Such systems usually provide adequate
performance in keyword based searches. However, in
recent years there has been an increased effort to extend
the support to Information Retrieval in a broader sense
and to support higher level search operations. For
example, when searching for partially matching
documents, when ranking documents according to user
information needs, or when processing natural
language queries.

Most existing database systems are designed to handle
commercial applications, where the types of queries are
anticipated and the data itself is well structured and
very carefully controlled. The emphasis is almost
always on database Integrity. Physical data
organization techniques are designed to handle queries
with suitable speed. With the advent of the Internet
and the World Wide Web much less control over data
organization and integrity can be exercised.
Furthermore, there is an ever-increasing requirement
for systems to handle queries or produce reports that
were not anticipated in detail. Text retrieval systems
were the immediate and natural technology to address

the problem. However, despite great advances in the
past decade in the technology of search engines and
text retrieval, a truly satisfactory solution is still
unavailable. The annual TREC conference proceedings
provide ample evidence of the difficulty involved when
text retrieval systems are extended to support
Information Retrieval.

The XML scheme provides a compromise between the
fully structured predetermined database schema, and
the unstructured and unpredictable nature of
heterogeneous documents and collections. While the
physical structure of the XML document remains only
loosely defined, the XML document is not
undisciplined - it contains self-identifying data
elements (in the form of XML tags). Neither
conventional database systems nor text retrieval
systems were designed to handle such data
organization. Therefore, considerable effort is
currently undertaken to come up with information
retrieval systems for XML collections that are able to
take advantage of the XML tags.

Most database systems support multiple access paths to
records or relations by the use of indexes or other more
sophisticated text retrieval techniques. A query
language such as SQL supports powerful search
capabilities. The difficulty with such systems in the
context of distributed data repositories is the rigid
requirement with respect to a database schema. The
recent trend, to move towards XML representation,
does not altogether lend itself to treatment with
conventional database technology, nor is it fully
supported by text retrieval systems. Almost invariably
there will be some ad hoc queries which will not be
supported to a satisfactory level by the data structure or
hardware with regard to functionality or response time.
This paper describes an attempt to combine the
functionality of an inverted file system, pushed to the
extreme (as will be explained in detail in the following
section), with higher level heuristic search algorithm,
to support complex queries on a large XML database.

The remainder of this paper is organized as follows:
Section 2 describes the extreme file inversion method

155

and how it differs from the conventional approach.
Section 3 describes the basic principles of extreme file
inversion. Section 4 describes how the file store
requirements are minimized. Section 5 describes how
EFI was used to evaluate the INEX XML topics.
Section 6 presents results of evaluation during INEX
2002. In section 7 we discuss the results and draw
conclusions.

2. Extreme File Inversion

Inverting a file is an old and proven technique to
facilitate fast access to records using inverted lists. A
fully inverted file is a file for which inverted lists exist
for each field (or each word). Such a file structure
facilitates access to records based on any (attribute,
value) pair and complex queries using Boolean
operators can be efficiently implemented. File
inversion is common in Text Retrieval applications,
where word locations within documents are also
maintained to facilitate proximity text searching
operations on free-text fields, such as phrase searching
or context searching.

Our Extreme File Inversion (EFI) data structures and
algorithms were developed in 1985 as a response to a
specific pattern matching need of a user with large text
collections. Conventional text retrieval systems do not
support sub-word search arguments (at least not
efficiently). EFI is a conceptual variation of the
inverted file designed to overcome this problem. EFI is
based on two major modifications. The first deviation
from conventional methods is the total separation of the
semantics of content and internal record structure from
the structure of the index (inverted lists). Each record
is simply regarded as an array of characters. For the
purpose of file inversion a record of k characters is
regarded as consisting of k one-character long
attributes. For each character an inverted list is created
such that all the pointers to records having a given
character value in a given character position, may be
found by obtaining the corresponding list. With a
character set of m characters the total number of
inverted lists for the file is k * n. To summarize, rather
than invert the file by the values of the attributes, the
file is inverted by the values contained in character
positions. This representation is almost devoid of any
knowledge about the records (documents) contents and
structure.

The second deviation from the conventional method (at
least back in 1985 when it was devised) is the
implementation of the inverted lists. Rather than
maintain a pointer array, (a list of record keys in each
list), an array of bits, or a bitmap, where one bit is

associated with each record in the file, is maintained.
Although the use of bitmaps was hardly new even then,
the application of bitmaps together with file inversion
by character provided a very powerful tool for data
searching.

3. Search Operators

In this section we describe retrieval algorithms. In
passing we mention a full set of efficiently
implemented search operators; however, for the sake of
brevity we restrict ourselves to a more detailed
description of only a few operators that are relevant to
XML retrieval at INEX 2002.

For each character position in the data record one bit
map is maintained for every character in the character
set. To refer to a specific bitmap the notation X.n is
used throughout this paper, where X is a character
value in the implementation character set, and » is a
character position within the data record. For example,
A.12 identifies the bitmap for the character “A' in
position 12 within the data record.

For a given bitmap, X.n , Those bits which are set to 1
are associated with records which contain the character
value X in the character position n. Bits that are set to
0 are associated with those records that do not contain
that value in that position. The ordinal position of any
bit in a bitmap is the ordinal position of the record it is
associated with, in the file. In order to access a given
bitmap we generally require one direct disk access.

Clearly, users express queries in terms of field names
rather than in terms of character positions. Therefore,
the internal structure of data records is defined in a
dictionary. For each record a number of fields are
defined. Each field is characterized by the following
parameters:

{ name, position, length, word-size }

The meaning and usage of each of the field definition
parameters is explained in detail later on in this
section. This simple definition of fields, giving sections
of the data record - identified by start position and
length — a name by which they can be referenced in
queries, allows the user to select on elementary fields,
group fields, arrays or the entire record.

The implementation of the following list of selection
operator types is facilitated by the data structure:

156

Equal, Starts With, Ends With
Greater Than, Greater Than or Equal
Less Than, Less Than or Equal
Within Range

Contains

Min, Max, Total

The selection specification rules also allow the use of
some “special' characters: ? - the wild card character,
and * - the elastic wild card. In addition to these, the
logical operators AND, OR, and NOT are easily
implemented in the query syntax to allow complex
Boolean conditions to be specified.

3.1 The Startswith operator

The simplest selection criterion to evaluate is the
selection on a single character. The field name and
value are entered in the query, e.g.

GENDER SW M

The field name is used to look up the dictionary record
description to determine the field position in the data
record. The field position parameter specifies the
position of the first character of the field within the
record. If the character position of the gender field
within the data record is 324, then the bitmap is
identified as M.324

To select all the records for the query above, the bit
map identified as M.324 is obtained. Those bits in the
bitmap that are set to 1 correspond to data records that
contain the character M in character position 324.

The process of evaluating the SW condition is only a
little more complex where selection is applied to fields
which are more than one character long, e.g.
COLOUR SW RED

If the COLOUR field starts in position 732 within the
data record, and is 3 characters long, then R.732,
E.733, and D.734 identify the bitmaps for the literal
RED. The next step is a bit-wise AND operation,
performed in a serial fashion on the bitmaps, to
produce a result bit map, expressed as :

R=R732 & E.733 & D.734
where the & represents the bit-wise AND operator.

Any bit in R that is set to 1 points to a data record in
which the COLOUR field starts with the value RED.

When the character ?, the wild card character, appears
in a literal, it masks out a single character, in the
corresponding character position, e.g.

NAME SW SM?T

This leads to selection, for example, of records where
NAME starts with SMITH, SMYTH, SMET etc. The
implementation of this feature is straight forward: the
character position masked by the wild card is ignored.

Multiple key queries are also easily implemented as in
the query:

COLOUR SW WHITE OR GREEN

The implementation of the OR and AND operators
requires the application of the corresponding bit-wise
operator to the bitmaps resulting from each of the
individual queries. In this example only 10 I/O
operations are required to satisfy the query (one I/O per
bitmap).

To make the query language even more powerful, the
“elastic' character, *, is easily implemented. When the
elastic character appears in a literal, it is interpreted as
zero or more occurrences of a wild card, for example,
the query:

NAME SW R*D

is interpreted, by expanding up to a predefined field
width, as:

NAME SW RD OR R?D OR R??D OR R???D ...

3.2 The Equal operator

The EQUAL operator is similar to the SW operator but
also checks for trailing spaces in a field. When the
EQUAL operator is applied to an alphanumeric field,
the literal specified in the query is padded with trailing
spaces before evaluation begins. For example, the

query
NAME EQ SMITH

where NAME is a 12 characters field , is evaluated by
adding trailing spaces :

NAME EQ “SMITH "

157

and the bitmaps corresponding to the trailing spaces are
used during evaluation to ensure that records where
names like "SMITHY" or "SMITH JOHNS" appear are
not selected.

3.3 Text Searching

Fields of type text, are fields which may contain more
than a single word. The idea behind the
implementation process described here is that a text
field can be treated as if it were an array of words.

3.3.1 Word Alignment

In an array, all elements start on an element boundary.
Text fields can be transformed to exhibit a similar
property, by ensuring that words in the text start on a
“word-boundary'. The transformation is aligning words
in text fields, on a word boundary, such that every word
in a text field starts in a particular character position,
which is an integer multiple of a predefined word-size,
and by doing so, generating a “word aligned' field.

The word-size is a small integer, related to the average
size of a word in the language used in the text. It is the
equivalent of the size of an array element except that
words in the text are only required to start on a
predefined alignment, but may extend into the next
“element' and cross a word-boundary.

3.3.2 The Startswith Operator and Text
Applying word-alignment to text fields allows a more
efficient search for records where the text field contains
a word which STARTSWITH the specified search
string.

For example, , if NAME occupies character positions 1-
300, aligned on a S5-character boundary, then the
condition

NAME STRATSWITH MAC
is expressed as

R=(M.1&A2&C3)I
(M6 & AT &C.8) |

(1.\/[.296 & A.297 & C.298)
4. File Structures

Ideally the data is stored in a relative or direct file,
where each record is identified by it's ordinal position

in the file. The data may however reside on any other
type of direct access file.

The bitmaps file requires a direct access mechanism
and several options are available. Because of the
intensive 1/O operations on bitmaps during query
evaluation it is essential to minimize access time. Any
record access mechanism that requires considerably
more than one physical I/O to retrieve a record is not
attractive.

A memory resident index, which is loaded into main
memory at system start-up, allows for direct access to
bitmaps without incurring any additional I/O at run
time. This provides for exactly 1 physical to 1 logical
I/O, However, one may question if this is a feasible
solution, as the main store requirements may be
prohibitive. To answer that question we can calculate
the size of the index

I=1%m*4

where [is the (fixed) record length in the data file, m is
the size of the character set employed, and we assume
that 4 bytes are sufficient to hold a bitmap address.

For a file of 1,000,000 records, having record size of
512 characters, and the ASCII character set of 64
displayable characters, the file size will be about 500
Mbyte, and the index table size will be 320 Kbyte. For
an application running on a PC this is a feasible figure,
and the assumption of 1 physical to 1 logical I/O is
realistic.

4.1 Bitmaps file store requirements

During the bitmaps load process, n bit maps are created
for every character position in the data record, where n
is the number of characters in the character set. With a
character set of 64, each character in a data record is
reflected in 64 bitmaps (as a 1-bit in one bit map, and
as a 0-bit in all the other.) Each character in the data
file requires only & bits storage (assuming no
compression.) Therefore the overhead in file store is 8
times the size of the data file. This seems rather
expensive, but after compression, discussed in the next
section, the overhead is reduced to an acceptable level.

4.2 Bitmap compression

The Zero-run-length technique is used to compress a bit
map by creating an array of bytes, where a run-length
of 0-bits separating 1-bits is encoded by a single byte.
The value of 255 is reserved to indicate a zero only run

158

of 255 bits not followed by a 1-bit. This allows for zero-
runs of more than 255 bits to be encoded on several
bytes.

Note that compression of bitmaps with a ratio of less
than /:8 of 1-bits to O-bits, will result in having a
compressed version which is in fact larger in size than
the original. In such cases, of course, compression is
not applied. We have addressed the possibility of using
more or less than one byte to encode a run-length, but it
turns out to provide only marginal compression gains,
and increases the CPU load.

This compression scheme reduces the size of the
bitmaps considerably. In fact, for a random character
distribution in the data records, the size of the
compressed bit maps file is approximately equal to the
size of the data file. Consider a character set of
cardinality 64 and a random character distribution. On
average, only one bit in 64, in each of the bit maps, will
be set to 1. Since encoding of a zero-run of length 63
requires only one byte, the compression will produce a
reduction in size by a factor of 64 /8 = 8. Therefore,
the size of the bitmaps file would be the same size as
the original data file. This result is not surprising; the
bitmaps represent a lossless transformation of the data
file itself and contain exactly the same information.

How does the zero-run-length scheme perform in
practice? Our INEX2002 data file in word-aligned
uncompressed ASCII representation occupies 750Mbyte
while the Bitmaps file occupies 650Mbyte. The
overhead is about 87%.

While fixed length records are required for file
inversion, there is no reason to actually store the data
file itself in a fixed length record format. It is only
during file inversion that a temporary file with fixed
length records is needed, so that this overhead cannot
be put onto the account of EFL. It allows one to de-
normalize a database file structure to generate an
extract file for the purpose of efficient searching by
EFI, without the need for costly join operations. This
technique is obviously more suitable to static databases.

4.3 INEX XML File Structure

Since the INEX data set contains Journal articles of
various formats, record lengths, and sizes, we had to
convert it to a suitable format for EFI. For lack of time
we applied brute force — each of the articles was
scanned and transformed into a flat file of 500
characters wide records. Lines were split pretty much

arbitrarily, except that we did take care not to split
atomic units - where possible. So, an <author> XML
unit, for instance, was kept on the same line, and words
were not split. However, some paragraphs exceeded
500 characters, and were split into several lines. Text
was also word-aligned during this process.

This arbitrary split is not ideal, but it still allowed the
search engine to search effectively, as our results
demonstrate. We hope to improve on this with more
time on our hands.

In addition to the above, each line was also prefixed
with document details corresponding to the text line.
Specifically, we kept the full document path, thereby
preserving journal, year, and article information.

It is important to note that we inverted the entire XML
collection, tags and all. With this we were able to issue
queries which take into account embedded XML tags.
For instance, to find instances of the surname Geva we
issue the query:

Text equal "<snm> geva'

5. Document Retrieval and Ranking

The INEX 2002 XML retrieval task consists of 60
XML Topics. An XML Topic could not be evaluated as
such by our search engine. Each topic had to be
transformed into a set of EFI search engine queries.
Furthermore, the results of the corresponding set of
queries had to be consolidated to provide a ranked list
of documents, as described in the following sections.

5.1 Transforming Topics into EFI Queries
Each of the INEX XML Topics consists of four
elements: <title>, <description>, <narrative>, and
<keywords>. We have only used the <title> and
<keywords> in our system. The basic strategy was to
extract keywords and word-phrases from the <title>
and <keywords> elements, and apply a separate search
for each word-phrase and keyword. Our
transformation preserved context information by
explicitly including XML tags as search arguments.
Note that all the transformations were done by a single
computer program in a pre-processing step, with no
manual intervention. All topics were pre-processed by
the same program.

Consider the following topic <title> element
<Title>
<cw>description logics</cw>
<ce>abs, kwd</ce>

</Title>

159

This topic was transformed to produce the following
queries:

1) text = "description logics' and text =
"<abs"|"<kwd"

2) text ="description'' and text = "<abs''l"<kwd"
3) text="logics" and text = "'<abs"'|'"'<kwd"’

The reason that we obtained 3 separate queries is that
the INEX topic specification does not support the
specification of a word-phrase as distinct from a set of
keywords. In this instance we had to try all
possibilities. Where the topic specified word phrases
explicitly, we did not expand the search to single

keywords. For example, the element <cw>software
engineering survey, programming survey,
programming tutorial, software engineering

tutorial</cw> produced only 4 word-phrase queries
because commas were used to separate phrases (our
parser looks for commas, quotes, and other cues for
phrases).

During query evaluation however, if a word-phrase is
found to occur more than once, the component keyword
queries for the phrase are not executed. This is an
automated run-time decision. The assumption that we
made is that if a word-phrase is frequent then chances
are that the user meant the phrase rather than a list of
keywords.

The <keywords> element is treated in a similar manner
to <title>, except that there is no explicit XML context
element.

5.2 Ranking Documents

The results of all EFI queries for a given topic
correspond to raw XML text lines in the articles. It is
necessary to combine all the topic’s query results in
order to rank a given document. We apply a simple
heuristic weighting to query results to produce a
weighted sum rank for each document. The documents
are then sorted by descending rank. We have used the
following heuristic approach:

e Each query’s score is computed as the inverse of
the number of lines that it matches. More selective
queries are thereby more heavily weighted.

e Query scores are totaled for each document to
produce its rank. Note that documents may have
many scored lines.

e Documents are ranked in descending order. The
highest ranked document is that matching more of
the (combined score) queries than any other
document.

e Two variations to weighting were tested. One set
of results was produced whereby queries that were
generated from the <Title> element of a topic were
weighted 100 times more heavily than queries
generated from the <Keywords> element of a topic.
This effectively implies that <Ttitle> terms
dominate the ranking and <keywords> terms are
only used to fine tune the ranking, or where less
than 100 documents are selected by <title> queries.
A second set of results was based on equal weight
queries.

e Our system did not identify target elements.
Retrieval was at the document level. It is possible
of course to identify and extract target elements
after document identification, but this functionality
was not implemented. The system therefore
always returned the /article[1] element, for both
the CAS and CO topics.

6. Experimental Results

The EFI system was tested on both CAS and CO
elements. Two results files were submitted. In the
first, queries generated from the <Title> element were
more heavily weighted. In the second, the <Title>
queries and <Keywords> queries had equal weight.

Result files were generated for both the CAS and CO
topics, but in both cases the returned elements were the
/article[1] elements.

6.1 Content Only topics

The best results were obtained with the CO queries and
with strict quantization. Assigning equal weight to
queries from <Title> and <Keywords> of a topic
produced better results (Figure 2). The EFI results
were ranked 4™ (equal weight <Title> and <Keyword>)
and 24™ (<Title> weighted 100 times more than
<Keywords> (Figure 1). Clearly, the <Keywords>
elements of topics were significant in selecting and
ranking documents.

160

IMEX 2002 inexresults1. xmi

quantization: strict; topics: ©O
avaraga precision: 0.037
rank: 24 (49 official submissions)

Figure 1: EFI retrieval for Content Only
topics, higher weight to <Title> than to
<Keywords> elements of topics.

IMEX 2002 inexresult2. xml

quantization: shict; topics: CO
avar@age precision: 0.055
ank: 4 (48 ofticial submissions)

Figure 2: EFI retrieval for Content Only
topics, equal weight to <Title> and
<Keywords> elements of topics.

6.2 Content and Structure topics

CAS topics performance is difficult to judge from the
Precision-Recall curves of the CAS topics because
assessment was done against the <te> of topics while
the EFI system returned entire documents, ignoring the
<te> element.

Nevertheless, it is evident (from inspecting the actual
relevance assessments), that the EFI system was just as
effective with CAS topics in selecting the right
documents. It is deficient in that it did not extract
elements from within the selected articles.

7. Discussion

There are two aspects of performance which are note
worthy. The first is the small size of the system and the
other is its functionality. The size of the executable file
inversion component of EFI is 45KB. The size of the
EFI search engine is 62KB. These are extraordinary
small files considering the magnitude of the task at
hand. The index file (bitmaps) is only about the size of
the data file itself (600MB) so the indexing overhead is
about 1:1. A single query is usually evaluated within a
few seconds, on a PC running at 1.2GHz clock speed.
The topics, employing multiple queries, were evaluated
in about 2 minutes each. The system is fast enough and
small enough to run on a stand-alone PC as a console
application (under either Windows or UNIX) and
requires no database system to support it.

Future work will look at post-processing of selected
documents to zoom in on the components which are
most relevant to the topic, or are explicitly required in
the <te> element of a topic.

In terms of functionality the EFI system was
surprisingly effective in tackling the problem of
document retrieval. It is surprising because of the brute-
force approach that was adopted — the entire set of
about 12,000 articles was converted (arbitrarily) into a
set of about 11,000,000 lines of about 500 characters
each. The XML tags were left intact, and indexing was
performed at the single character level. There was no
attempt at using XML knowledge (e.g the DTD) in the
solution design process. Queries were constructed to
search for both the keywords and the XML tags in the
large set of text lines. Simple heuristics were used to
rank documents.

The system performance could be improved if a more
disciplined approach was taken to structuring document
fragments. The arbitrary split of documents to lines of
500 characters was far from optimal and was merely
imposed by resource constraints (mostly time) that we
had to work with. Future work will also look at a more
suitable representation to enable exact selection of
XML elements.

REFERENCES

[1] Geva, S., "Implementing a Software Associative
Memory", Thesis (1987), Queensland University of
Technology (QUT), Australia

161

Integration of IR into an XML Database

Cong Yu
Department of EECS
University of Michigan
congy@eecs.umich.edu

ABSTRACT

Structure matching has been the focus and
strength of standard XML querying. However,
textual content is still an essential component of
XML data. It is therefore important to extend the
standard XML database engine to allow for “In-
formation Retrieval” style queries, namely, “key-
word” based retrieval and “result ranking”. In
this paper, we describe our effort in integrating
information retrieval techniques into the Timber
XML database system being developed at the Uni-
versity of Michigan, and our participation in the
INitiative for the FEvaluation of XML Retrieval
(INEX).

1 Introduction

With the growing popularity of XML, it is ex-
pected that more and more information will be
stored and exchanged in XML format. Part of
the information will be contained in the struc-
ture of the document. Another part, however,
will be contained in a textual format within the
elements (i.e, document components) of the XML
documents. While boolean style querying is use-
ful in some circumstances, there is a growing de-
mand for querying both the textual information
and the structure information in a non-boolean
way. There are two general approaches to this
problem. One is to start with a traditional IR sys-
tem and augment it with the ability to recognize
and extract the document structure. The other
approach is to integrate IR facilities for querying
textual content into a standard XML database en-
gine, which handles structured queries well. We
follow the second, database-oriented, approach,
starting with Timber [13], a native XML database
we have been developing.

There are four main challenges to this database-
oriented approach. First, how to fit keyword based
retrieval of the document components into the
pipelined query evaluation of the database engine.
Second, how to efficiently calculate the score of the
matching elements to allow for future ranking of

Hong Qi
School of Information
University of Michigan

hqi@Qumich.edu

H. V. Jagadish
Department of EECS
University of Michigan

jag@eecs.umich.edu

those elements. We developed PhraseFinder and
TermJoin algorithms [3] to address both issues.
The PhraseFinder algorithm uses a sort-merge
based method to allow for pipelined retrieval of
elements containing specified phrases (e.g., “in-
formation retrieval”, instead of “information” and
“retrieval”). The TermJoin algorithm is a stack-
based algorithm that allows efficient retrieval of
elements, at multiple granularities, that have a
non-zero score according to a user-defined score
function.

Third, how to aggregate the query results (i.e.,
a set of document components at different levels)
such that users are not presented with redundant
information, especially when they do not specify
which type of elements to return (e.g., a content-
only query). To address this so-called result re-
dundancy issue, we have been working on the Pick
algorithm which scrutinizes the result set accord-
ing to a user-defined pick function and eliminates
redundant elements using a stack based strategy.

Yet another main challenge in integrating IR
into XML query is the specification of the query.
We have devised a bulk algebra, TIX, for query
Text In XML, and several extensions to the
XQuery language that give a framework on how
IR style queries can be expressed at both the al-
gebra level and the language level. Both TIX and
the XQuery extension are out of the scope of this
paper, interested readers are encouraged to take a
look at [3].

The rest of the paper is organized as follows.
Section 2 describes the Timber system and how it
deals with structured queries. Section 3 describes
the extensions to Timber that make the evaluation
of IR style XML queries in Timber possible. In
Section 4, we report our experience in using the
Timber system to answer the set of INEX queries.
Finally, we conclude in Section 5.

2 The Timber System

Timber [13] is a native database system currently
being developed at the University of Michigan.
The objective of the Timber system is to build

162

an efficient database engine for storing and query-
ing XML data. It is based upon the TAX (Tree
Algebra in XML) algebra [14] as its theoretical
foundation for manipulating tree structures. Sev-
eral access methods have been developed to re-
trieve the natively stored XML elements and a
comprehensive pipelined query processing engine
is implemented in the system to evaluate queries
in the XML context.

The overall system architecture of Timber is il-
lustrated in Figure 1. The whole system is built
on top of the Shore object-oriented storage man-
ager [20] (we are also developing another version
that is built on top of the Berkeley DB backend
store [7]), which is responsible for buffer manage-
ment and concurrency control. The rest of Timber
is composed of several components. XML doc-
uments are first parsed by the Data Parser to
produce parse trees as inputs to the Data Man-
ager. The Data Manager then transforms the
nodes of those parse trees into an internal repre-
sentation and stores them into the Storage Man-
ager. Index Manager and Metadata Manager, as
their name suggest, builds indices on the data and
stores statistics about the data, respectively. At
the heart of Timber is the Query Evaluator. It ex-
ecutes evaluation plan, which is produced by the
Query Parser and optimized by the Query Opti-
mizer, by interacting with the Data Manager and
Index Manager. The details of the Timber system
can be found in [13]. In particular, the attributes
of an element are combined together and stored
as a child element to the original element. Sim-
ilarly, the textual content of an element is also
represented as a child element to the original ele-
ment. Therefore, nodes stored in Timber can be
mainly classified into three types: element, text,
and attribute, each has a slightly different format.

Structural queries can be efficiently processed
by Timber. Each node in an XML document is
represented by a triple (startkey, endkey, level),
where the startkey uniquely identifies the node in
the database. In the case of multiple documents,
the startkey of nodes in subsequent documents are
incremented by an offset to make them unique in
the entire database. A very important property of
this coding scheme is that all the descendent nodes
of a particular node n will have a startkey larger
than ngiarikey and an endkey smaller than Nepakey -
With this property, whether two nodes fit the an-
cestor /descendent or parent/child relationship can
be determined in constant time by examining the
two triples. It allows for efficient processing of
structural joins (i.e., containment queries) using a
stack based algorithm [2].

The Query Evaluator currently is able to pro-
cess most of the XQuery expressed in the format of

XQuery

" Guery 1 Resui
| ; Result XML Data
| Parser Evaluation
-2 | Plan ,’
/]
v
______ . Data
|l Query | Parser
I Optimizer :\ Query /
S —— Evaluation Evaluator /
Plan i
/
/
P A Data
Metadata Manager
Manager s
Index
Manager

7
/
/
¥

Storage Manager

Figure 1: Timber System Architecture. Dashed
lines represent loading data flow, solid lines represent
retrieval data flow. Dashed rectangles represent com-
ponents not used in INEX, solid rectangles represent
components in Timber being used in INEX unmodi-
fied, bold solid rectangles represent components mod-
ified for integration of the IR extensions.

Timber Evaluation Plan, while the Query Parser
and Query Optimizer can handle a smaller sub-
set of the XQuery. In participating in the INEX,
we have primarily used the Evaluation Plan inter-
face instead of the XQuery interface because the
XQuery interface was still under development at
that time. However, in the future, we expect to
be primarily using the XQuery interface so as to
utilize the automatic query optimization provided
by the Query Optimizer.

3 IR Extensions of Timber

To allow efficient processing of IR style query on
the XML data, several components of the Timber
system need to be extended. First, an IR-style in-
verted index is required to process keyword based
search. Second, some extra information (e.g., how
many words a text element contains) needs to be
maintained by the Metadata Manager. Third,
a score function needs to be integrated into the
Query Evaluator to calculate relevance scores (i.e.,
return status value, rsv) to the matching elements.
Fourth, an extra module is needed for eliminat-
ing redundant nodes in the final output set in the
case when the user does not specify the type of el-
ements to be returned. We describe the first two

163

XML Database
and XML Querying

John Koffman Morgan Koffman

Figure 2: A Simple XML Document: ellipse in-
dicate element nodes and rectangle indicate text
nodes. The numbers on the shoulders of each node
are the startkeys and endkeys respectively. The
startkey and endkey for a text node are the same
because it does not contain any child nodes.

extensions in this section and the latter two in
Section 4.

3.1 Indexing INEX Data

Indices have been an integral part of Timber from
the very beginning. Timber maintains several ma-
jor types of indices. The most important ones in-
clude: 1) element tagname index, which maps a
string s1 to a set of element nodes (in the form
of (startkey, endkey, level) triples) with tagname
equal to s1; 2) attribute name index, which maps a
string so to a set of element nodes that contain an
attribute with the name equal to so; 3) attribute
content index built on the element nodes with a
specific attribute attr, which maps either a string
s3 or a number ng (floating-point number or inte-
ger number) to a set of element nodes that contain
the attr attribute and have a value of s3 or ngz in
attr; 4) element content index, which maps either
a string s4 or a number n4 to a set of text nodes
that have s4 or n4 as their value.

The aforementioned indices, however, are inad-
equate in supporting keyword based searches as
required by IR style queries. An IR style query
usually asks for document components related to
a certain topic, which is frequently described as a
set of terms (keywords) that, in the user’s view,
best capture the concept of the topic. Therefore,
the results of an IR query are those elements that
have the related terms in their textual content.
The frequency and position of the term occur-
rences indicate the relevance of the element to the
query.

To allow fast retrieval of elements that contain
certain keywords, we extended the Timber Index
Manager to include an inverted index on the text
nodes. The index structure maps a word to the
set of text nodes that contain the word. It also
keeps track of the word offset in the textual con-
tent to allow matching of phrases (being used by

| keyword | (startkey, level, offset) |

john 3,3, 0)
koffman (3,3,1), (8,3, 1)

xml ,3,0), 5,3, 3)
database (5,3,1)

query (5, 3, 4)
morgan (8, 3,0)

Table 1: Sample Inverted Index Entries Based on
Figure 2. Note that only startkey is needed since
for text nodes, startkey is the same as the endkey.

PhraseFinder). Using the simple XML document
in Figure 2 as an example, a total of six entries will
be added to the inverted index, which are listed
in Table 1.

A few strategies are employed to reduce the
space requirement of the inverted index and to
improve its accuracy. First, we compiled a list
of most frequent used words in the INEX data
set. Based on this list, we generated a list of 322
stop words for which we do not index, thereby re-
ducing the index size significantly. Second, we do
stemming of the words to index only the original
form of the word (e.g., “query” instead of “query-
ing”). The first stemming strategy we tried was
the Porter’s algorithm [16]. However, we found
that Porter’s algorithm is sometimes too aggres-
sive (i.e., changing a word into its root instead
of its original form). Instead, we decided to use
WordNet’s dictionary [22] to search for the orig-
inal form of a word. This increases the time to
build the inverted index, but it has the advantage
of being more reliable than the Porter’s algorithm.

3.2 Indexing Metadata

Another important extension is to the Timber
Metadata Manager. As we will see in Section 4.2,
for each node to be scored by the score function,
not only the keyword occurrences in its textual
content are needed, but also some extra statistics
(metadata) related to the node in the context of
the database. We have kept two main pieces of
metadata information. First, the number of child
nodes an element node has. Second, the total
number of words a text node contains. Both are
created by the Metadata Manager at the time the
INEX data is loaded into the Timber. They can
also be created after the loading in one pass over
the entire database. We call them metadata in-
dices to distinguish them from the normal indices
that are maintained and accessed through the In-
dex Manager. As a special variation to the first
metadata index, we also maintain a separate in-
dex for <article> and <sec> element nodes that

164

is tuned for the INEX data. For an <article>
node, we index how many <sec> nodes in its en-
tire subtree, and for <sec> nodes, we index how
many <p> and <pl> nodes in its subtree. This
special variation is employed because we have dis-
covered that <article>s, <sec>s, and <p>s are
frequently the most reasonable return units in re-
sponse to an INEX query. Having this special in-
dex can significantly reduce the time it takes to
perform the redundancy elimination as described
in Section 4.3.

3.3 Integration of Scoring and
Redundancy Elimination into
Query Evaluator

Scoring of each matched node is integrated into
the query evaluation engine. Adopting a tree
structured view toward XML document, the score
function in our framework maintains a localiza-
tion property: i.e., all the information needed by
the score function in order to determine the score
of a particular node is contained in the subtree
rooted at that node or can be obtained via the
Metadata Manager using one of the metadata in-
dices. This allows the scoring of each node to be
pipelined using the stack based TermJoin algo-
rithm and therefore integrated into the evaluation
engine (discussed in Section 4).

The coverage issue as highlighted in the INEX
result assessment documentation [12] has two im-
portant aspects. First, there will be nodes cover-
ing only a subset of the information content being
queried, so called small coverage or partial cover-
age. Second, there will be nodes covering infor-
mation content not related to the query, so called
large coverage. It is notable that the two aspects
are orthogonal, i.e., a node can be covering only
a subset of the requested information while hav-
ing some information not related to the query. A
node with a small coverage can be penalized by
engineering the score function so that nodes with
complete coverage or full coverage are assigned a
higher score even though the absolute volume of
information they contain is less. A node with a
large coverage can be penalized by taking the size
of the node into consideration in the score func-
tion. However, the introduction of structures in
XML poses problems to this approach of attacking
the large coverage problem. Imagine a query that
matches a node with five child nodes, four of them
are relatively small but not related to the query,
only the relatively large child is related. Both the
parent node and the related child node are likely
to be returned to the user. However, the parent
node should not because all the information it can
give to the user is present in its child node. There

are also cases where the parent node instead of the
child nodes should be returned (see Section 4.3).
We call this the result redundancy issue.

We utilize the pick function, which implements
the Pick algorithm [3], to address the result re-
dundancy issue. It is added as a module at the
end of each query evaluation. The input to this
module is a set of scored nodes. User defined cri-
teria are employed by the module to select those
nodes at the appropriate granularity level. Meta-
data indices are also being used to help remove the
redundancy. A default selection criterion is always
provided in case user does not provide one. The
output of the module is a set of nodes at, hope-
fully, the right granularity level.

The detailed description of both score function
and pick function can be found in [3] and in the
following section.

4 IR Query Evaluation

There are three phases in processing each INEX
topic. First, the topic is translated into an eval-
uation plan that the Query Evaluator can under-
stand. Second, the plan is executed to produce
a set of nodes, each with a score indicating how
relevant it is to the query. Third, in the case of a
content-only query, a final result redundancy elim-
ination procedure is performed. The final result
can then be sorted and a certain number of the
top results are returned to the user. Throughout
this section, we will use the two query topics in
Figure 3 as our running examples.

4.1 Topic Translation

The topic translation accomplishes two important
tasks: one is translating the XPath expression in
the original topic into ewvaluation plan; the other
is categorizing keywords into several classes to be
used by the score function. The first task can be
accomplished relatively easily because Timber al-
ready supports most of the XQuery, a superset of
XPath. Essentially, each “/” is translated into a
parent/child join, each “//” is translated into an
ancestor /descendent join, and each <cw>/<ce>
pair is translated into a term join. Figure 4 shows
the evaluation plan of Topic 12 (a content-and-
structure query) in its tree format. The ellipse
nodes labeled with tag names are retrieved via
the element tagname index. The rectangle nodes
represent text nodes retrieved via the inverted in-
dex. The content in those nodes dictates how they
should be scored by the score function and is ex-
plained later in this section. Finally, the edges
between two nodes indicate the join algorithms be-
ing used to fetch them, including parent/child join

165

<INEX-Topic topic-id="12" query-type="CAS" ct-no="069">

<Title>
<te>article/bdy/sec</te>
<cw>2001 2002</cw><ce>article//pdt/yr</ce>
<cw>internet search engine</cw>
<ce>article/bdy/sec</ce>

</Title>

<Description>
Retrieve sections of articles published in 2001
or 2002 on the topic of internet search engines.

</Description>

<Narrative>
To be relevant, the article should talk about
the current status of internet search engines,
problems associated with current technologies,
and future developments.

</Narrative>

<Keywords>
internet search engine information retrieval

< /Keywords>

</INEX-Topic>

<INEX-Topic topic-id="31" query-type="C0" ct-no="003">

<Title>
<cw>computational biology</cw>

</Title>

<Description>
Challenges that arise, and approaches being
explored, in the interdisciplinary field of
computational biology.

</Description>

<Narrative>
To be relevant, a document/component must either
talk in general terms about the opportunities
at the intersection of computer science and biology,
or describe a particular problem and the ways it is
being attacked.

</Narrative>

<Keywords>
computational biology, bioinformatics, genome,
genomics, proteomics, sequencing, protein folding

< /Keywords>

< /INEX-Topic>

Figure 3: Two Example INEX Query Topics

(PC Join), ancestor/descendant join (AD Join),
and the IR specific Term Join. The translation of
a content-only query (e.g., Topic 31) to the eval-
uation plan is also easy. As shown in Figure 4,
it involves term-joining matching text nodes with
all their ancestor element nodes regardless of the
tag name. The actual evaluation plan is in text
format and is omitted here.

The second task is to separate the set of key-
words provided in the <Keywords> part of the
topic into three categories: REQ, HIGH, and
LOW. A keyword appears in the REQ category
if it is listed in the <Title>/<cw> part of the
original topic. A keyword appears in the HIGH
category if: 1) it is not in the REQ category and 2)
it appears in the <Description> or <Narrative>
part of the topic. Finally, a keyword is in the LOW
category if it appears only in the <Keywords>
part. Keywords falling into different categories
will have different weights in contributing to the
overall score of the element. More importantly,
a node with all the REQ keywords is always as-
signed a higher score than one missing some of

the REQ keywords, regardless of the other two
categories. This means a node with full coverage
of the information is always ranked higher than a
node with partial coverage. In addition to catego-
rizing keywords, we also try to identify keyword
phrases by scanning through the <Description>
and <Narrative> parts of the topic. A keyword
phrase is identified if two or more consecutive
words occurring in the <Keywords> part also oc-
cur in <Description> and <Narrative> parts in
the same consecutive order. For example, the
phrase “internet search engine” can be identified
in Topic 12. It is worth mentioning that in some
topics, the author specifies the phrases in cer-
tain format (e.g, Topic 31), which means this ex-
tra phrase identification step is not required in
all topics. We do find that phrase identification
has a very significant impact on the result accu-
racy, which suggests that some better mechanism
for specifying or identifying phrases in the set of
provided keywords is worth further investigation.
The search engine www.alltheweb.com has made
some efforts in this direction. It is also worth not-
ing that some <cw>s are actually exact boolean
matches rather than keyword based matches (e.g.,
Topic 12 specifies that the publication year of the
article must be 2001 or 2002). However, there
seems to be no easy way for the topic translation
script to automatically recognize this. We there-
fore may have to manually notify the score func-
tion of this. The result of this keyword categoriza-
tion is the content in the rectangle text nodes as
shown in Figure 4.

The evaluation plan is then provided to the
Query Evaluator for execution and the result of
keyword categorization is supplied to the score
function inside the Query Evaluator, which uses
it to calculate scores for each matched node.

4.2 Score Generation

Score generation is accomplished by the score
function inside the Query Evaluator. For INEX,
we use a default score function based on the fol-
lowing formula:

score =

N;
(% Z 1Og Nk'ey'wordi,)

S1Z€node

by

j=req,high,low

(1)

[

where W; is the weight assigned to one of the
three categories, IV; is the total number of key-
words (a phrase is counted as one keyword) in
that category, Nieyword, is the number of occur-
rences of a certain keyword in the current node,
and finally, size,oqe is the total number of words
in the current node. For INEX, we have used

166

Topic 12

AD Join

PC Join

Term Join

PC Join LOW: bioinformatic, genome, genomics,

Topic 31

Term Join

REQ: computational biology
HIGH:

proteomics, sequence, protein fold

Term Join

REQ: internet search engine

| REQ: 2001 || 2002

HIGH: internet, search, engine
LOW: information, retrieval

Figure 4: The evaluation plan of Topic 12 and Topic 31 in Tree Format.

Wieq = 0.6, Whign = 0.25, and W, = 0.15. As
mentioned before, for nodes with all the REQ key-
words, we add to it a constant that is large enough
to make its score higher than any node without all
the REQ keywords.

For a content-and-structure query, only the el-
ement nodes satisfying the structure requirement
are processed by the score function. For a content-
only query, all the element nodes that are ances-
tors of a text node, containing at least one of the
keywords, are processed. For certain content-and-
structure queries with, for example, <au> as the
target element, we recognize that the real inten-
tion of the user is to rank <article>s while retriev-
ing <au>s of the matched <article>s. In those
cases, the <article> elements are processed by the
score function instead of the <au> elements.

4.3 Redundancy Elimination

For content-only queries, the set of results pro-
duced by the score function can contain many re-
dundant information. For example, it is possible
that an <article> and all its five <sec>s have
high scores. But the user should really be only
presented with the <article> since that is the one
that contains all the information. The example
in Section 3.3 also illustrates the case where a
child component, rather than the parent compo-
nent, should be returned.

This redundancy elimination is accomplished by
the pick function. For INEX, we have employed a
special pick function that operates only on three
major types of element nodes: <article>, <sec>,
and <p>. The basic idea is as follow. To decide
whether to return an <article> or a <sec> under-
neath it, we check how many <sec>s under that
<article> are relevant (a node is considered rele-

vant if it has a score that ranks it in top 500 when
all the nodes being processed by the score func-
tion are considered). If above a certain percentage
(we default it to 50%) of the <sec>s (among all
the <sec>s underneath that <article>) are rele-
vant, the <article> is picked and the <sec>s are
discarded. Otherwise, the individual <sec>s are
returned. Nodes of other types fall into two cate-
gories: one that is underneath an <article>, the
other that is not. Nodes in the first category are
discarded since the information contained in them
is captured in one of the above three types. Nodes
in the second category are kept because the infor-
mation within them can not be captured in any of
the above three types.

After redundancy elimination, all the remaining
nodes are sorted and the top 100 are then returned
back to the user.

4.4 Performance

We briefly discuss the performance of our system
in terms of two measurements: storage space and
querying time.

The entire INEX data occupies about 5GB (a
roughly ten-time increase from the original data)
disk space to accommodate both the raw data
and the extra structural information needed (e.g.,
startkey, endkey, etc.). All the auxiliary indices
(e.g., element tag index) are quite small. The only
exception is the inverted index, which is consider-
ably large compared to the other indices. The
problem is made worse due to the fact that we are
using GiST [10] as our physical level index man-
ager, which leaves us no control over how things
are organized on the disk. We are currently inves-
tigating ways to control the size of the inverted
index without loss of efficiency.

167

Once the INEX topic gets translated into the
evaluation plan, its execution time depends on
how frequent the keywords are in the data set and
how many structure constraints are in the query.
The complexity of TermJoin is O(> (T;)), where
T; is the number of how many times keyword T;
occurs in the data set. Therefore, the more fre-
quent the keywords are, the longer it takes to eval-
uate the query. Structural constraints also plays
an important role here because the Query Eval-
uator can quickly discard elements that do not
satisfy the structural condition without trying to
score them. On average, content-and-structure
queries can be evaluated within a few seconds of
CPU time. While content-only queries can take
from several seconds to over a minute to finish.

Another component of querying time is the time
it takes to translate the INEX topic into evalua-
tion plan. As discussed in Section 4.1, although
the topic translation is automated, the ambigui-
ties in the topic specification mandate some man-
ual work to ensure the resulting evaluation plan
can be correctly executed by Timber. This step,
which involves reading through and understand-
ing both the topic and the plan, usually takes a
few minutes.

5 Conclusion

In this paper, we described our participation in
INEX. In particular, we described how we have
extended Timber, a native XML database system,
to query structured text in the format of XML.

The official assessment results from INEX in-
dicate that, when equipped with IR extensions,
Timber performs quite well in querying XML data
(with regard to the topics whose assessments are
finished). We believe the success comes from two
aspects. First, as an XML database engine, Tim-
ber is able to handle structure constraints with
ease. For content-and-structure queries, Timber
can significantly reduce the number of document
components to be scored based on the structure
conditions. Second, the integration of the score
function and pick function into the Query Evalua-
tor allows Timber to efficiently assess a component
based on keywords (score function) and structural
containment (pick function), which makes it suit-
able to process IR style non-boolean queries.

ACKNOWLEDGEMENT

This work is supported in part by National Sci-
ence Foundation under Grant No. IIS-0208852.
We would like to thank members of the Timber
research group at the University of Michigan for
their technical assistance and helpful advice.

References

[1] Rakesh Agrawal and Edward L. Wimmers.
A framework for expressing and combining
preferences. In International Conference on
Management of Data (SIGMOD), 2000.

[2] Shurug Al-Khalifa, H. V. Jagadish, Nick
Koudas, Jignesh Patel, Divesh Srivastava,
and Yuqing Wu. Structural joins: A primitive
for efficient XML query pattern matching.
In International Conference on Data Engi-
neering (ICDE), Heidelberg, Germany, April
2001.

[3] Shurug Al-Khalifa, Cong Yu, and H. V. Ja-
gadish. Querying structured text in an XML
database. In International Conference on
Management of Data (SIGMOD), San Diego,
CA, June 2003.

[4] Nicolas Bruno, Luis Gravano, and Amelie
Marian. Evaluating top-k queries over web-
accessible databases. In International Con-
ference on Data Engineering (ICDE), 2002.

[5] Kevin Chen-Chuan Chang and Seung won
Hwang. Minimal probing: Supporting expen-
sive predicates for top-k queries. In Inter-
national Conference on Management of Data
(SIGMOD), 2002.

[6] William Cohen. Integration of heterogeneous
databases without common domains using
queries based on textual similarity. In Inter-
national Conference on Management of Data
(SIGMOD), 1998.

[7] Berkeley DB. http://www.sleepycat.com/.

[8] Norbert Fuhr and Kai Grofjjohann. XIRQL:
A query language for information retrieval in
XML documents. In International Confer-
ence on Information Retrieval (SIGIR), 2001.

[9] Norbert Fuhr and Thomas Rolleke. A prob-
abilistic relational algebra for the integration
of information retrieval and database system.
ACM Transactions on Information Systems

(TOIS), 15(1), January 1997.
[10] GiST. http://gist.cs.berkeley.edu/.

[11] Vagelis Hristidis, Nick Koudas, and Yan-
nis Papakonstantinou. PREFER: A system
for the efficient execution of multiparametric

ranked queries. In International Conference
on Management of Data (SIGMOD), 2001.

[12] INEX: Initiative for the evaluation of XML
retrieval. http://qmir.des.qmul.ac.uk/inex/.

168

[13]

[14]

[15]

[19]

H. V. Jagadish, Shurug Al-Khalifa, Adriane
Chapman, Laks V.S. Lakshmanan, Andrew
Nierman, Stelios Paparizos, Jignesh M. Pa-
tel, Divesh Srivastava, NuweeWiwatwattana,
Yuqing Wu, and Cong Yu. TIMBER: A na-
tive XML database. The VLDB Journal,
11(4):274-291, 2002.

H. V. Jagadish, Laks V.S. Lakshmanan, Di-
vesh Srivastava, and Keith Thompson. TAX:
A tree algebra for XML. In International
Workshop on Database Programming Lan-
guages (DBPL), Marino, Italy, September
2001.

Andrew Nierman and H. V. Jagadish.
ProTDB: Probabilistic data in XML. In Very
Large Data Bases (VLDB) Conference, Hong
Kong, China, August 2002.

M.F. Porter. An algorithm for suffix strip-
ping. Program, 14(3), 1980.

G. Salton and M.J. McGill. Introduction to
Modern Information Retrieval. McGraw-Hill,
New York, 1983.

Torsten Schlieder and Holger Meuss. Result
ranking for structured queries against XML
documents. In DELOS Workshop on Infor-
mation Seeking, Searching and Querying in
Digital Libraries, 2000.

Albrecht Schmidt, Martin Kersten, and
Menzo Windhouwer. Querying XML docu-
ments made easy: Nearest concept queries.
In International Conference on FExtending

Database Technology (EDBT), 2001.
Shore. http://www.cs.wisc.edu/shore/.

Anja Theobald and Gerhard Weikum. The
index-based XXL search engine for querying
XML data with relevance ranking. In Inter-

national Conference on Extending Database
Technology (EDBT), 2002.

WordNet. An electronic lexical database.
http://www.cogsci.princeton.edu/ wn/.

C. Zhang, J. Naughton, D. Dewitt, Q. Luo,
and G. Lohman. On supporting contain-
ment queries in relational database manage-

ment systems. In International Conference
on Management of Data (SIGMOD), 2001.

169

EXIMA™ Supply at INEX 2002: Using an Object-relational DBM Sfor
XML Retrieval

Heesop KIM *, Daesik JANG **, Gi Chai HONG***, Jong Cheol SONG***, Seong Yong LEE***,
Hyun Soo CHUNG***, Jae Hwan LEE***, Byung Ju MOON***
* Department of Library and Information Science, Kyungpook National University, Daegu, 702-701, KOREA
heesop@knu.ac.kr
** INCOM 1&C Co. Ltd. R&D Center, 996-1, Daechi-dong, KangNam-Gu, Seoul, 135-280, KOREA
dgang@duli.incom.co.kr
*** |T Information Center, ETRI, 161 Ggjeong-dong, Yuseong-gu, Dagjeon, 305-350, KOREA
{ gchong, jcsong, leesy5, hsjung, jeahlee, bjmoon} @etri.re.kr

Abstract

In this paper we report our approach using an object-relational DBMS for INEX collection. EXIMA™ Supply is
akind of native XML DB and supporting X path Standard to search elements in XML documents, however, it is
not offer any functionality of intelligent searching techniques. We briefly describe the test collection preparation,
indexing, retrieval processes, and the evaluation results. Although EXIMA™ Supply has many benefits, for
example, no delay in storing and searching XML documents, it showed relatively poor performance in overall
evauation at INEX 2002. This result may be caused since the given topics had to be decomposed and modified
to be processed by the Xpath processor in EXIMA™ Supply, and during this modification the original meaning
of topics can be changed inevitably and some important information may missing. Furthermore, EXIMA™
Supply targets only for Korean documents, and we were not able to implement any aid tools for construction of
indices, knowledge bases for INEX 2002 test collection.

Keywords
XML Retrieval; EXIMA Supply; Object-relational DBMS; UniSQL; IR Evaluation

1. Introduction

The topics provided by INEX (Initiative for the Evaluation of XML retrieval) were deployed and tested by the
native XML DB named EXIMA™ Supply developed by Incom [&C Co. Ltd.

EXIMA™ Supply isakind of native XML DB to store and manage XML documents effectively. It can
store and retrieve XML and its related documents (e.g., DTD, XSL) fast enough to process XML information.
EXIMA™ Supply is supporting Xpath Standard to search elements in XML documents. However, it is not
provide any functionality of a searching engine. This means that it cannot search information as intelligently as
most searching engines do. As aresult, the given topics had to be decomposed and modified to be processed by
the Xpath processor in EXIMA™ Supply. The modified topics were expressed in one or several Xpath queries.
Some complicated topics had to be decomposed into several Xpath queries. During this process of
modification, the origina meanings of topics were changed inevitably and some information was lost.

2. System environments

2.1. Software
The topics provided by INEX were tested under the following software environment.

170

- OS: Windows 2000 Professional

- XML Server: EXIMA™ Supply 1.0

- DBMS: UniSQL 5.1

- Web Server: Tomcat

- Searching client: Web application devel oped with JSP,

2.2. Hardware
- Server
: Machine - Pentium |11 PC
: Memory — 256 MB
- Client
: Machine - Pentium [11 PC
: Memory — 256 MB

3. Experimental Design

3.1. Test collection preparation

3.1.1. Preparing of test collection

The XML documents in test collection are stored in EXIMA™ Supply. EXIMA™ Supply is a native XML DB
based on object-relational DBMS technol ogies. Therefore, it can preserve the native features of XML documents
by representing and storing them in object-oriented structures. This is one of the important features of EXIMA
™ Supply. Thanks to this feature, the data and hierarchical information of XML documents can be stored
without modification or distortion.

Besides, EXIMA™ Supply helps manage and utilize XML documents with ease by providing the
standard Xpath query language. With EXIMA™ Supply, there is no need to transform XML documents into
other formats such as relational tables of commercial DBMS (many XML servers are using relation DBMS and
therefore XML documents must be transformed into relational tables), because it can treat the hierarchical
structures of XML documents asit is. As aresult, there is no delay in storing and searching XML documents and
it is possible to process XML data on the fly.

MINVA Sty pl it
I 5 i
:- =‘ g &my ol b
— T =
T
LR S i

Figure 1: Architecture of EXIMA™ Supply

EXIMA™ Supply provides alogically hierarchical structure to manage the storage of XML documents.
The logically hierarchical structure is the storage structure that is transparently accessible by users regardless of
the internal physical storage structure. EXIMA™ Supply has two kinds of storage types, “ Cabinet” and “Folder.”
Cabinet is a logical storage that can contain cabinets and folders. Cabinet can be used to manage storage

171

hierarchically.

Folder is the storage where XML and related documents are actually stored. A folder can contain one
DTD and corresponding XML and XSL documents. On the other hand, XML documents correspond to a DTD
can be stored in multiple folders if necessary.

Root cabinet |

XML
document
| Cabinet &

K_\ XML
Folder document

I

L_| Cabinet XML

document
Y

Figure 2: The Storage Types of EXIMA™ Supply

In set up the XML documents provided by INEX into EXIMA™ Supply, the directory structure of
XML documents was mapped into the logical structure of EXIMA™ Supply. For example, XML documents in
“E:\an\1995" directory are stored in the folder “1995” in the cabinet “an.”

The following picture shows the example storage structure of EXIMA™ Supply shown in EXIMA™
Manager.

+ i & w0 = i s

+ @0 SN LR = Wi e

= L L L SRR
7] T
-
A
o

prEegLe

5]
-

e
Figure 3: Example of the Storage Structure of EXIMA™ Supply

3.1.2. Indexing

EXIMA™ Supply has the functionality of indexing of elements of XML documents. EXIMA™ Supply makes
indexes of elements when an XML document is stored. So it doesn’t need any extra indexing process. Elements
in one folder are indexed together and the searching speed is ailmost same among elements in one folder.
However, the indexing is done in each folders, the searching speed may be different from each folder.

172

3.1.3. Retrieval process

- Xpath query generation

EXIMA™ Supply is not equipped with any searching engine functionality and it just supports Xpath searching
functionality. Therefore, searching topics from INEX has to be converted to Xpath queries for searching
information. For instance, INEX topic 01 can be expressed in Xpath queries as follows:

Topic 01:
<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE INEX-Topic SY STEM "inex-topics.dtd">
<INEX-Topic topic-id="01" query-type="CAS" ct-no="010">
<Title>
<te>article/fm/au</te>
<cw>description logics</cw><ce>abs, kwd</ce>
</Title>
<Description>
Retrieve the names of authors of articles on description logic, in particular articlesin
which the abstract or the list of keywords contains a reference to description logic.
</Description>
<Narrative>
Therating should reflect the likeliness that a person is an expert on description logic.
</Narrative>
<Keywords>
description logic DL ABox TBox reasoning
</Keywords>
</INEX-Topic>

Xpath query:
"article/fm[abs//* /text(™")[contains('description logic")]]/au”

Complicated topics that can not be expressed in one Xpath query can be divided into several Xpath
queries. For instance, topic 06 can be expressed in Xpath queries as follows:

Topic 06:
<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE INEX-Topic SYSTEM "inex-topics.dtd">
<INEX-Topic topic-id="06" query-type="CAS" ct-no="034">
<Title>
<te>tig</te>
<cw>Survey on Software Engineering</cw>
<Cw>
software engineering survey, programming survey, programming tutorial,
software engineering tutorial
</cw>
<ce>tig</ce>
<cw>programming languages</cw><ce>sec</ce>
</Title>
<Description>
Retrieve the article title from all articles which are atutorial or survey on software
engineering or programming dealing with programming languages.
</Description>
<Narrative>
To be relevant an article should offer atutorial or survey on software
engineering or programming containing sections dealing with programming languages.
</Narrative>
<Keywords>
survey, tutorial software engineering, programming language
</Keywords>
</INEX-Topic>

173

Xpath queries:

"article]//tig//* text(*")[contains('Survey on Software Engineering’)]]/tig"
"article]//tig//* text(**")[contains('software)] [contains(‘engineering')] [contains('survey")]
[containg(‘tutoria")]]//tig"

"article]//sec//* Itext(™* ")[contains('programming’)] [contai ns('languages)]] //tig"

If atopic can not be expressed in Xpath queries, just keywords can use for searching.

- Searching process of Xpath queries
In EXIMA™ Supply, the Xpath queries processed as the following Figure 4.

Parse Xpath
v

Decompose Xpath into sub-queries

v
Make an Xpath Tree

v

Traverse the X path Tree and resolve sub-queries

» Retrieve nodes from XML DB

Evaluate queries on
Retrieved nodes

Add nodes to the element-set
v v

If necessary, retrieve child nodes

v
Return the element-set

Figure 4: Flow of query processing in EXIMA™ Supply

Asthe above diagram illustrate, the given Xpath query isfirst parsed and then decomposed into severa
sub-queries. And based on these sub-queries, a query tree that represents the hierarchical relation of sub-queries
is constructed. Once the query tree is constructed, the tree is traversed and evaluated to get the corresponding
nodes. The traversing of query tree starts from the current context element. EXIMA™ Supply first retrieves the
child elements of the current element as candidate elements from storage. And then the candidate elements are
evauated and elements that satisfy conditions are added to the element-set. The traversing is done recursively
along to the child nodes of the query tree. If al nodes of the query tree are traversed and evaluated, the element-
set is returned as the result of the search.

4. Results
We only submitted the results of CAS (content-and-structure) queries in INEX 2002. Figure 5 presents P-R

174

graphs for the evaluations results of the subsets of CAS topics, i.e., #01, #04, #05, #06, #11, #21. Applying the
strict evaluation gave dlightly higher score (average precision: 0.077) than the generalized evaluation result
(average precision: 0.055) which provided by the official INEX organizers.

INEX 2002: ETRI_Incom INEX 2002: ETRI_Incom
guantization: generalized; topics: CAS
average precision: 0.055
(empty topic results ignored)

quantization: strict; topics: CAS
average precision: 0.077
(empty topic results ignored)

1 1
0.8 0.8
S 06 S 06
2 g
g_) [d)
a 0.4 \\ D\: 0.4 -\L_\
0.2 LL 0.2
0 0
0 0.5 1 0 0.5 1
Recall Recall

Figure 5: P-R Graph for (a) Generalized and (b) Strict CAS topic ignored empty results

Our overall, rather than empty topic results ignored, result showed relatively poor (average precision:
0.019). As shown in Figure 6 our results ranked with the 34" among 42 official submissions.

INEX 2002: ETRI_Incom

guantization: strict; topics: CAS
average precision: 0.019
rank: 34 (42 official submissions)

Figure 6: P-R Graph for Overall Results and Rank

5. Conclusion

In this paper, we described an approach of object-relational DBMS using EXIMA™ Supply for INEX test
collections. Although EXIMA™ Supply has many benefits, for example, no delay in storing and searching XML
documents, it showed relatively poor performance in overall evaluation at INEX 2002.

This result may be caused since the given topics had to be decomposed and modified to be processed
by the Xpath processor in EXIMA™ Supply, and during this modification the original meaning of topics can be
changed inevitably and some important information may missing. Some other possibilities are that because
EXIMA™ Supply targets only for Korean, and we were not able to implement any aid tools of construction of
indices, knowledge bases for INEX collection which will require to be investigating in the future study.

175

Acknowledgements

This work was supported in part by the Ministry of Information and Communication, Korea under the
Development of Information Distribution Framework Project. Any opinions, findings, or conclusions expressed
in this paper are those of the authors, and do not necessarily reflect those of the sponsor.

References

[1] Incom 1&C Co. Ltd. EXIMA™ Supply. Online available at: http://www.incom.co.kr

[2] INEX homepage at: http://gmir.dcs.gmul.ac.uk/INEX/

[3] INEX {down, up} load area available at: http://|s6-www.cs.uni-dortmund.de/ir/projects/inex/downl oad/

[4] Y. Despotopoulos, G. Patikis, J. Soldatos, L. Polymenakos, J. Kleindienst, and J. Geric. Accessing and
transforming dynamic content based on XML : alternative techniques and a practical implementation. In W.
Winiwarter, S. Bressan, and |.K. Ibrahim, editor, Third International Conference on Information Integration and
Web-based Applications and Services (I1IWAS 2001). Osterreichische Comput. Gesellschaft. 2001, pp. 95-105.
Wien, Austria.

[5] T.T. Chinenyanga, and N. Kushmerick. Expressive retrieval from XML documents. S GIR Forum (ACM
Special Interest Group on Information Retrieval), spec. issue., 2001, pp.163-71.

[6] S. Ha, and K. Kim. Mapping XML documents to the object-relational form. IS E 2001. 2001 |EEE
International Symposium on Industrial Electronics Proceedings. Part Vol. 3, 2001, pp. 1757-61. Piscataway, NJ,
USA.

[7] SJ. Lim, and Y. K. Ng. An automated integration approach for semi-structured and structured data.
Proceedings of the Third International Symposium on Cooperative Database Systems for Advanced Applications.
CODAS 2001. IEEE Comput. Soc. 2000, pp. 12-21. Los Alamitos, CA, USA

[8] C. Zhang, J. Naughton, D. DeWitt, O. Luo, and G. Lohman. On supporting containment queries in relational
database management systems. ACM. SSGMOD Record (ACM Special Interest Group on Management of Data),
Vol. 30, No. 2, June 2001, pp. 425-36.

[9] D. Shin. XML indexing and retrieval with a hybrid storage model. Knowledge & Information Systems, Voal. 3,
No. 2, May 2001, pp. 252-61

[10] J. A. Miller, and S. Sheth. Querying XML documents. |EEE Potentials, Vol. 19, No.1, Feb.-March 2000, pp.
24-6.

[11] C. Petrou, S. Hadjiefthymiades, and D. Martakos. An XML -based, 3-tier scheme for integrating
heterogeneous information sources to the WWW. In A. Cammelli, A. Tjoa, R.R. Wagner, editors, Proceedings
of Tenth International Workshop on Database and Expert Systems Applications. DEXA 99. IEEE Comput. Soc.
1999, pp. 706-10. Los Alamitos, CA, USA.

[12] M. M. David. SQL-based XML structured data access. Web Techniques, Val. 4, No. 6, June 1999, pp. 67-8,
70, 72.

[13] O. Alonso. Generation of text search applications for databases. An exercise on domain engineering. In C.
Gacek, editor, Software Reuse: Methods, Techniques, and Tools. 7th International Conference, ICSR-7.
Proceedings (Lecture Notes in Computer Science Vol. 2319). Springer-Verlag. 2002, pp. 179-93.

[14] M. Papiani, J. L. Wason, A. N. Dunlop, and D. A. Nicole. A distributed scientific data archive using the
Web, XML and SQL/MED. SSGMOD Record (ACM Special Interest Group on Management of Data), Vol. 28,
No.3, Sept. 1999, pp. 56-62.

[15] N. Fuhr, N. Goevert, G. Kazai, and M. Lamas. INEX: Initiative for the Evaluation of XML Retrieval, ACM
SIGIR Workshop on XML and Information Retrieval, Tampere, Finland, August 2002.

176

Appendix

INEX Guidelines for Topic Development
INEX Retrieval Result Submission Format and Procedure
INEX Relevance Assessments Guide

INEX 2002 Evaluation Results in Detail

177

178

182

184

188

INEX Guidelinesfor Topic
Development

May 2002

The aim of the INEX initiative is to provide means, in the form of a test collection and appropriate
scoring methods, for the evaluation of XML retrieval. Within the INEX initiative it is the task of the
participating organisations to provide the topics and relevance assessments that will contribute to a
large test collection for the evaluation of XML retrieval. Each participating organisation therefore plays
avita rolein this collaborative effort.

1. Introduction

Test collections, as traditionally used in information retrieval (IR), consist of three parts: a set of
documents, a set of information needs called topics, or queries, and a set of relevance assessments that
lists for each topic the set of relevant documents.

A test collection for XML retrieva differs from traditional IR test collections in many respects.
Although it still consists of the same three parts, the nature of these parts is fundamentally different. In
IR test collections, documents are considered as units of unstructured text, topic statements are
generally treated as collections of terms and/or phrases, and relevance assessments provide judgements
whether a document as a whole is relevant to a query or not. XML documents, on the other hand,
organise their content into smaller, nested structural elements. Each of these elements in the
document’ s hierarchy, along with the document itself, is aretrievable unit.

With the use of XML query languages, users of an XML retrieval system are able to restrict their
search to specific structural elements within an XML collection. A test collection for XML retrieval
should therefore include two types of query:

- content-and-structure, and
- content-only.

Content-and-structure queries are topic statements, which contain references to the XML structure,
either by restricting the context of interest or the context of search terms. Content-only queries ignore
the document structure and are the traditional topics used in IR test collections. The need for this type
of query for the evaluation of XML iswell published and stems from the fact that users may not know
the XML structure, or may not want to restrict their search to specific target elements. Examples of
both types of query are given in Section 2.2.

Finaly the relevance assessments for an XML collection must also consider the structural nature of
the documents. Currently, there are several issues asto the exact particulars of the relevance assessment
procedures. Participating organisations will be given the opportunity to contribute their opinions and
ideas on this matter prior to the release of the relevance assessment guidelines.

The next section provides detailed guidelines for the creation of topics for the XML test collection.

2. Topic creation

2.1. Topic creation criteria

Creating a set of topics for atest collection requires a balance between competing interests. It isa
well-known fact that the performance of retrieval systems varies largely for different topics. This
variation is usually greater than the performance variation of different retrieval methods on the same
topic. Thus, to judge whether one retrieval strategy is in general more effective than another strategy,
the retrieval performance must be averaged over alarge, diverse set of topics. In addition, to be a useful
diagnostic tool, the average performance of the retrieval systems on the topics can be neither too good
nor too bad as little can be learned about retrieval strategies if systems retrieve no relevant documents
or only relevant documents.

When creating topics, a number of factors should be taken into account.

e The author of a topic should be either an expert or the very least be familiar with the
subject area covered by the collection. (Note that the author of a topic should also be the
assessor of relevance!)

e Topicsshould reflect what real users of operational systems might ask.

178

Topics should be diverse.
Topics should be representative of the type of service that operational systems might provide.
Topics may also differ in their coverage, e.g. broad or narrow topic queries.

2.2. Topic format

A topic is made up of four parts: title, description, narrative and keywords. Title is a short, 2-3 word

version of the topic statement, made up of words that best describe what the user is looking for. In the
case of content-and-structure queries, it also specifies the target element(s) - <te> - of the search and
the context(s) - <ce=>- of the search word(s) - <cw>. A topic description is a one-sentence definition of
an information need. The narrative is the explanation of the topic statement in more detail and the
description of what makes a document relevant or not. Keywords are good scan words that are used in
the collection exploration phase of the topic development process (see Section 2.3.2.). Scan word may
include synonyms or broader, narrower terms from that listed in the topic description or title. Below is
an example of a content-only and a content-and-structure topic. Note that there are no <te> and <ce>
elements for the content-only query, meaning that there is no restriction on what element should be
returned by the engine and the content words may also occur in any arbitrary element.

<t opi ¢>

<title>
<cw>Conbati ng alien snuggling</cw>

</title>

<descri pti on>
What steps are being taken by governmental or even private
entities world-wide to conbat the snmuggling of aliens.

</ description>

<narrative>
To be relevant, a docunent nust describe an effort being nade
(including border patrols) in any country of the world to prevent
the illegal penetration of aliens across borders.

</narrative>

<keywor ds>
smuggling illegal trafficking alien custons border country world
prevent conbat stop governnent

</ keywor ds>

</t opi c>

<t opi c>

<title>
<te>chapter, article_title</te>
<cw>nucl ear energy</cw><ce>article_title</ce>
<cw>t echni cal report</cw><ce>articl e_type</ce>
<cw>saf ety nucl ear power plant</cw>

</title>

<descri pti on>
Retrieve the title and relevant chapters of technical reports
about the safety procedures and safety issues of nuclear power
plants where the title of the report contains reference to nuclear
ener gy.

</ description>

<narrative>
Rel evant docunments would be preferably, but not exclusively,
chapters of technical reports which discuss the day-to-day
operational safety guidelines and procedures of nuclear power
stations world wide. References to safety issues and possible
shortfalls of the safety procedures are also of interest. Reports
about nucl ear disasters or incidents may al so be rel evant provided
they hint at the cause of the problem

</narrative>

<keywor ds>
nucl ear energy power plant station safety regulations upkeep
servi ci ng checks incident accident |eak radiation health hazard

</ keywor ds>

</t opi c>

179

The example of a content-and-structure topic shows that the target elements (that is, what the user
wants to retrieve) are chapters and article titles. Furthermore, it specifies that the context element (or
container element) of the search words “nuclear” and “energy” should be the article_title element, and
that the element article_type should contain the words “technical” and “report”. The search words
“safety”, “nuclear”, “power” and “plant” may occur anywhere. Note that both the target element and
the context element may be given as paths (e.g. article/header/article title) or as element types (e.g.
article_title). Content-and-structure queries may specify both target and context elements, or either
target or context only elements.

The structure of the topicsis giveninthe DTD below.

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<! ELEMENT topic (title, description, narrative, keywords)>
<IELEMENT title (te?, (cw, ce?)+)>

<! ELEMENT te (#PCDATA) >

<! ELEMENT cw (#PCDATA) >

<! ELEMENT ce (#PCDATA) >

<! ELEMENT descri pti on (#PCDATA) >

<! ELEMENT narrative (#PCDATA) >

<! ELEMENT keywords (#PCDATA) >

2.3. Procedure for topic development

Each participating group will have to submit 3 content-only and 3 content-and-structure
queries by the 10" of June by filling in the form (one per topic) at

http://gmir.dcs.gmw.ac.uk/inex/T opicSubmission.html.

This section outlines the procedures involved in the development of candidate topics. There are four
steps in the process of creating topics for a test collection: creating initial topic statements, exploring
the collection, selecting final set of topics, and refining the topic statements.

2.3.1. Initial topic statements

In this step, you create a one-sentence description of the information you are seeking. This should
be a simple description of the needed information without regard to retrieval system capabilities or
document collection peculiarities. Thiswill become the topic description field.

2.3.2. Collection exploration

In this step the initia topic statements are used to explore the document collection in order to obtain
an estimate of the number of relevant documents/document components in the collection and to
evaluate whether this topic can be judged consistently in the assessment phase. You may use any
retrieval engine for this task, including your own.

Use the Candidate Topic Form to record information during your exploration (this form will be
used to submit your candidate topics). For each query record the initial query statement (the result of
task 2.3.1), the set of keywords that you use for retrieval. You should try and make this query as
expressive as possible for the kind of documents you wish to retrieve: think of the words that would
make good scan words when assessing, and use those as your query keywords.

Next, judge the top 25 documents/document components of your retrieval result and record the
number of relevant components and their element types. If you have found at least 1 relevant
component and no more than 20, perform a feedback search and record the terms (if any) that you
decide to add to your query keywords. Judge the top 100 (some of them you will have judged already),
and record the number of relevant documents’document components in the table. Finally record your
thoughts on what makes a document/document component relevant.

To assess the relevance of a retrieved document or document component use the following working
definition: mark a document/document component relevant if it would be useful if you were writing a
report on the subject of the topic, or if it contributes towards satisfying your information need. Each
document/document component should be judged on it own merits. That is, a document/document
component is gtill relevant even if it is the thirtieth document/document component you have seen with
the same information. It is crucial to obtain exhaustive relevance judgements. It is also very important
that your judgement of relevance is consistent throughout this task.

180

2.3.3. Refining topic statements

Refining the topic statement means finalising the topic title, description, keywords and narrative.
Note that each of the four parts of atopic (title, description, narrative and keywords) should be able to
be used in a stand-alone fashion (e.g. title for retrieval using short queries, narrative for filtering etc.).
The expectation is that by judging 100 documents/document components you will have determined
how you will judge the topic in the assessment phase. The narrative of the topic should reflect this.
Note that there will be a three-month gap before you will do the relevance assessments, so it is vital
that you record as much as you can in order to maintain judgement consistency.

2.3.4. Topic selection

The data obtained from the collection exploration phase will be used as input to the topic selection
process. Make sure you submit al 6 candidate topics by filling in the form at
http://gmir.dcs.gmw.ac.uk/inex/TopicSubmissionhtml no later then the 10" of June. We (the
clearinghouse) will then decide which topics to use such that a wide range of likely number of relevant
documents is included, and will distribute these back to you as the final set of topics to be used for the
retrieval and evaluation.

181

INEX Retrieval Result
Submission For mat and
, Procedure

; -

L retrieval

An INEX submission is arecord of the search results you obtained with respect to the INEX topics. For
the relevance assessment and evaluation of your results we require your submissions to be in the format
described in this document.

The overall submission format is defined by the following DTD:

<! ELEMENT i nex- submi ssi on (description?, topic+)>
<I ATTLI ST i nex- submi ssi on
participant-id CDATA #REQUI RED
run-id CDATA #REQUI RED
>
<! ELEMENT descri ption (#PCDATA) >
<! ELEMENT t opi c (result*)>
<! ATTLI ST topic
t opi c-id CDATA #REQUI RED
>
<! ELEMENT resul t (file, path, rank?, rsv?)>
<l ELEMENT file (#PCDATA) >
<! ELEMENT pat h (#PCDATA) >
<! ELEMENT rank (#PCDATA) >
<I ELEMENT rsv (#PCDATA) >

A submission should contain the top 100 retrieval results for each of the INEX topics. A submission
must contain the participant ID of the submitting ingitute (available at
http://gmir.dcs.gmw.ac.uk/inex/Participants.html) and a run ID. You may submit up to 3 retrieval runs
(one per submission file), each identified by a unique run ID. Y ou may also include a short description
of your retrieval run in the run-descr attribute. A submission consists of a number of topics, each
identified by atopic ID (which will be provided in the topic descriptions). A topic result consists of a
number of result elements, the retrieval results of your search on that topic, described by a file and a
path. A result description can have a rank and/or a retrieval status value (rsv). Before we describe the
various elements of the above DTD, thisis how an example submission could look like:

<i nex- submi ssion participant-id="12"
<topic topic-id="01">
<result>
<file>tc/2001/t0111</file>
<pat h>/article[1]/bn{1]/ack[1] </ pat h>
<rsv>0.67</rsv>
</result>
<result>
<fil e>an/ 1995/ al004</fil e>
<path>/article[1l]/bdy[1]/sec[1]/p[3] </ pat h>
<rsv>0. 1</rsv>
</result>
[... 1]
</t opic>
<topic topic-id="02">
[]
</topic

[]

</ i nex- submi ssi on>

run-id="MApproach">

182

Ranks and RSV

Ranking of results can be either described in terms of rank values (consecutive natural numbers,
starting with 1; there can be more than one element per rank) or retrieval status values (RSVs, read
numbers; result elements might have the same RSV). Choose either one to describe the ranking within
your submissions. If both, rank and rsv are given we will consider the rank for evaluation. If your
retrieval approach does not produce ranked output, omit these elements in your submission.

File and path

Since XML retrieval approaches may return arbitrary XML nodes from the documents in the INEX
collection, we need a way to identify these nodes without ambiguity. Within INEX submissions,
elements are identified by means of a file name plus a path specification in XPath syntax.

File names are relative to the INEX collections xml directory. They use /' for separating directories.
Article files as well as the volume.xml files can be referenced here. The extension .xml must be left
out. Examples:

an/ 1995/ a1004
an/ 1995/ vol une

Paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as
described by the following grammar:

Path = '[' ElementNode Path | /' ElementNode '/ AttributeNode | '/ ElementNode
ElementNode ::= ElementName Index
AttributeNode ::= '@ AttributeName
Index = T'integer '
An example path:

[article[1l]/bdy[1]/sec[1]/p[3]

would describe the element which can be found if we start at the document root, select the first “article”
element, then within that element, select the first “bdy” element, within that element select the first
“sec” element, within that element select the third “p” element. As it can be seen, XPath counts
elements starting with one and takes into account the element type, e.g. if a section had a title and 2
paragraphs then their paths would be ../title[1], ../p[1] and p[2].

As mentioned before, elements are unambiguously identified by a (file name, path) pair. On the other
hand, there are two ways to specify an element within the INEX collection. The first way is via the
article file, the second one is via the respective volumexml file. In the example below the two
specifications refer to the same element:

<result>
<fil e>an/ 1995/ al004</fil e>
<path>/article[l]/bdy[1]/sec[1]/p]3]</path>
</result>

<result>

<fil e>an/ 1995/ vol une</fil e>

<pat h>/ books[1] /journal [1]/article[2]/bdy[1]/sec[1]/p[3]</path>
</result>

Both of these methods are valid and will be accepted as correct submissions.

An application, which helps you to check the correctness of your path specification will be available at
http://IS6-www.cs.uni-dortmund.de/ir/proj ects/inex/downl oad/#explore.

183

_. |NEX Relevance Assessment
= Guide

1. Introduction

During the retrieval runs, participating organisations evaluated the 60 INEX queries against the IEEE
Computer Society document collection and produced a list (or set) of document components (XML
elements) as the retrieval result for each query. The top (or first) 100 components in a query’s retrieval
result were then submitted to INEX. The submissions received from the different participating groups
have now been pooled and redistributed to the participating groups (to the topic authors whenever
possible) for relevance assessment. However, assessment of a given topic should not be regarded as a
group task, but should be provided by one person only (e.g. by the topic author whenever possible).

The aim of this guide is to outline the process of providing assessments for the INEX test collection.
This requires first a definition of the metrics against which document components will be assessed
(Section 2), followed by details of what (Sections 3) and how (Section 4) to assess. Finally, we describe
the on-line relevance assessment system that should be used to record your assessments (Section 5).

2. Relevance and Coverage
For an XML test collection it is necessary to obtain assessments for the following two dimensions.

« Topical relevance, which describes the extent to which the information contained in a document
component is relevant to the topic of the request.

« Document coverage, which describes how much of the document component is relevant to the topic
of request.

To assess the topical relevance dimension, we adopt the following 4-point relevance degree scale.

0: Irrelevant, the document component does not contain any information about the topic of the
request.

1. Marginally relevant, the document component mentions the topic of the request, but only in
passing.

2: Fairly relevant, the document component contains more information than the topic
description, but this information is not exhaustive. In the case of multi-faceted topics, only
some of the sub-themes or viewpoints are discussed.

3. Highly relevant, the document component discusses the topic of the request exhaustively. In
the case of multi-faceted topics, all or most sub-themes or viewpoints are discussed.

To assess the document coverage, we define the following 4 categories.

No cover age, the topic or an aspect of the topic is not a theme of the document component.

L: Too large, the topic or an aspect of the topic is only a minor theme of the document
component.

S. Too small, the topic or an aspect of the topic is the main or only theme of the document
component, but the component is too small to act as a meaningful unit of information when
retrieved by itself (e.g. without any context).

E: Exact coverage, the topic or an aspect of the topic is the main or only theme of the document
component, and the component acts as a meaningful unit of information when retrieved by
itself.

Note that the two dimensions are orthogonal to each other. Relevance measures the exhaustiveness
aspect of a topic, whereas coverage measures the specificity of a document component with regards to
the topic. This means that a document component can be assessed as having exact coverage even if it
only mentions the topic of the request (marginally relevant) or discusses only some of the topic's sub-

184

themes (fairly relevant) as long as the relevant information is the main or only theme of the component.
According to the above definitions, however, an irrelevant document component should have no
coverage and vice versa.

3. What to judge

Depending on the topic, a pooled result set may contain between 1000 and 2000 document components
of 300-1000 articles, where a component may be a title, paragraph, section, or article etc. The
document components in each pooled result set have been sorted alphabeticaly according to the
article's file name and the component's path. Furthermore, al references to retrieval scores or ranking
have been removed. This is so that your judgement is not influenced by the order in which document
components are presented to you.

Traditionally, in evaluation initiatives for information retrieval, like TREC, relevance is judged on
document level, which is treated as the atomic unit of retrieval. In XML retrieval, the retrieval results
may contain document components of varying granularity, e.g. tables, figures, paragraphs, sections,
subsections, articles etc. Therefore, in order to provide comprehensive relevance assessment for an
XML test collection, it is necessary to obtain assessment for the different levels of granularity.

This means that if you find, say, a section of an article relevant to the topic of the request, you will then
need to provide assessment - both with regards to relevance and coverage - for the found relevant
component, for its ascendant elements until you find an irrelevant component or a component with
coverage L (too large), and for its descendant elements until you find an irrelevant component or a
component with coverage N or S (no coverage or too small). For example, given the XML structure in
Figure 1, if you judged Sub-section A fairly relevant with exact coverage (2E), Section C highly
relevant with exact coverage (3E), but Body D highly relevant and too large (3L), then it can be
assumed that Article E and Journal F are also highly relevant and too large (3L). On the other hand, if
Sub-sub-section 1 was irrelevant with no coverage (ON) or marginally relevant and too small (1S), then
it can be assumed that its descendant elements, e.g. Paragraph 3 and Paragraph 4, are aso irrelevant
with no coverage (ON) or marginally relevant and too small (1S).

Note that by the definition of “relevance” the relevance level of a parent element is equal to or greater
than the relevance level of its children elements. The only exception to this rule is when a topic has a
target element specification. In this case all elements (including the ascendant and descendant elements
of a target element) except the target element are irrelevant, as they do not satisfy the structural
condition of the topic.

JTounal F
Atticle B

Body D
Hection C

Llore atticles ...

Sub-section A

Sub-sub-zection 1

‘ Paragraph 3 ‘ ‘ Paragraph 4 ‘

Sub-sub-gection 2

Paragraph 5
‘ List & ‘ ‘ Tahle 7 ‘

Sub-zection B

[]

Another 30 Sections ...

Figure 1. Example XML structure and result element

Furthermore, you will also need to judge the sibling elements of those relevant XML elements whose
parent elements you judged more relevant than the element itself. For example, in the example above,

185

Section C was judged highly relevant, whereas Sub-section A was only marginaly relevant. This
means that Sub-section B must have contained some relevant information (either marginally or highly
relevant), which must be explicitly specified during the assessment.

4. How to judge
To assess the relevance and coverage of document components, we recommend a two-pass approach.

¢ During the first pass you should skim-read the whole article (that a result element is a part of -
even if the result element itself is not relevant!) and identify any relevant information as you go
along. The on-line system will assist you in this task by highlighting potentialy relevant cue or
search words within the article (see Section 5).

¢ Inthe second pass you should assess the relevance and coverage of the found relevant components,
and of their ascendant and descendant XML elements. Remember you will only need to judge
ascendant elements until you reach a component with too large coverage or an irrelevant
component (when assessing a CAS topic with target element specification), and descendant
elements until you reach an irrelevant component or a component with too small coverage (see
Section 3).

During the relevance assessment of a given query, all parts, with the exception of the keywords, of the
query specification should be consulted in the following order of priority: narrative, topic description
and topic title. The narrative should be treated as the most authoritative description of the user's
information need, and hence it serves as the main point of reference against which relevance should be
assessed. In the case there is conflicting information between the narrative and other parts of atopic,
the information contained in the narrative is decisive. A document component, in general, should be
judged relevant if it satisfies, to some degree (marginally, fairly, or highly, see Section 2), the query’s
information need as expressed within the narrative, the topic description and the topic title. The
keywords should be used strictly as a source of possibly relevant cue words and hence only as a means
of aiding your assessment. You should not rely, however, only on the presence or absence of these
keywords in document components to judge their relevance. It may be that a component contains some
or even maybe all the keywords, but is irrelevant to the topic of the request. Also, there may be
components that contain none of the keywords yet are relevant to the topic.

In the case of structure-and-content (CAS) queries, the topic titles contain structural constraints: pairs
of concepts-context elements (cw, ce) and target element (te) specifications. These structural conditions
should also be satisfied by relevant document components.

Note that some result elements are related to each other (ascendant/descendant), e.g. an article and
some sections or paragraphs within the article. This should not influence your assessment. For example
if the pooled result contains Chapter 1 and then Section 1.3, you should not assume that Section 1.3 is
more relevant than Sections 1.1, 1.2, and 1.4, or that Chapter 1 is more relevant than Section 1.3 or vice
versa. Remember that the pooled results are the product of different search engines, which warrants no
assumptions about the level of relevance based on the number of retrieved related components!

Y ou should judge each document component on its own merits. That is, a document component is till
relevant even if it the twentieth you have seen with the same information! It is imperative that you
maintain consistency in your judgement during assessment. Referring to the topic text from time to
time will help you maintain judgement consistency.

5. Using the on-line assessment system
Thereis an on-line relevance assessment system provided at
http://1s6-www.cs.uni-dortmund.de/ir/projects/inex/downl oad/#assess,

which alows you to view the pooled result set of a given query assigned to you for assessment, browse
the IEEE-CS document collection and to record your assessments. Use your username and password to
access this system.

After logging in, you will be presented with the topic ID numbers of the topics assigned to you for
relevance assessment. Clicking on the topic ID will display the topic text. Y ou should print this so that

186

you may refer to the topic description at any time during your assessment. A “pool” hyperlink is shown
next to each topic ID. Click on thislink to see the result elements in the query’s pooled result set.

Result elements in the pooled result set are shown in aphabetical order of the article's file name (that
the result element is a part of) and the result element's path. At the top of this page you will see an
“Edit your wordlist” button. This feature allows you to specify a list of words to be highlighted when
viewing the contents of an article during assessment. The default list of words that appears in the
wordlist is the words listed in the keywords section of the selected topic. You may edit, add to or delete
from this default list of words. You may also specify the preferred highlighting colour for each and
every word. Note that phrases have to be entered as individual words in separate lines.

When you finished setting up your wordlist, return to the pooled results page. On this page, the current
assessment status of each article will be shown by one of the following three flags.

[] articlehasno assessments at all,
B | article has some assessments,

B articleisfinished.

To view the article that a result element is a part of you can choose from two available views:
document and XML. Assessments must be done within the XML view, where the XML structure of the
articles is shown explicitly. The document view is more readable for humans and might especially help
you in the first pass of the assessment procedure (e.g. when skim reading the article to locate relevant
information).

Within the article (in both views), the content of the result element will be highlighted in red and terms
matching words in the wordlist will be highlighted in a shade of yellow (or your preferred colour). At
the top of the page the path of the result element is printed (as a sequence of hyperlinks).

In the XML view, next to each XML start tag in the article you will see an input text box, where you
should record the element's degree of relevance (0,1,2 or 3) and the category of coverage (N, L, Sor E).
Note that the order of the two dimensions is not strict and the coverage category is not case sensitive.
Furthermore, there are two additional assessment input text boxes at the top of the page; one next to the
“Journal” hyperlink referring to the journal that the article is a part of, and another next to the “Book”
hyperlink referring to the book element that the journal is a part of. Assessments aready provided for
the XML elementsin the article, journal and book will be displayed in any future assessment sessions.

As described in Section 4, first you will need to skim-read the text of the article (even if the result
element itself is not relevant!) in order to identify any relevant information within the article. The
highlighted words and the highlighted result elements are there to help you in finding possibly relevant
information quickly. Mark any found relevant information by recording a degree of relevance and
category of coverage to it in the appropriate assessment input text box. During your second pass you
should return to the found pieces of relevant information and assess the relevance and coverage of their
ascendant and descendant elements (until you find an irrelevant component or a component that is too
large or too small, see Section 3).

At the bottom of the page (in XML view) you will see two buttons:

e “Submit assessment”: will save all assessments done so far and will set the assessment status of the
article on the pooled results page to “ article has some assessments’.

e “Finish article”: will save all assessments done so far and set the assessment status of the article to
“article is finished”. Note that all non-assessed XML elements within the article will be
automatically assigned either default or inferred relevance and coverage values, where the default
isON, and inferred is for ascendants: max(child relevance level) and min(child coverage level), for
descendants: parent's relevance level and parent's coverage level, where consistency will be
checked.

Note, to minimise the time it takes to keep displaying the pooled results page after returning from a

document or XML view, you could keep the result pool in a separate browser window (or tab if your
browser supports that) and reload this page time to time to update the flags.

187

INEX 2002 Evaluation Results in Detall

The following pages contain the results for all submissions for INEX 2002. There were 42 submissions for the
content-and-structure (CAS) topics and 49 submissions for the content-only (CO) topics.

The initial pages give a listing of all submissions for the CAS and CO tasks, respectively (identified by organisa-
tion name and run ID). The remainder of this report is made up by the detailed results for each submission. Each
submission is presented on one page, with the following details (given for strict and generalised quantisation):

e A recall/precision graph, providing a plot of the precision values for 100 recall points. In a comparative
diagram the recall / precision graph is plotted together with all the recall / precision graphs obtained from the
other submissions.

e The overall average precision, computed over 100 recall points.
e A table displaying average precision values for each topic.

e A diagram which compares the evaluation results per topic to median performance in INEX 2002. For each
topic, the difference in average precision, compared to the median average precision for that topic, is plotted.

The following figures contain an overview on the median average precision values per topic.

‘quantisation: strict s
c 0.3 I !
2
@
o8
E = 0.2
o 017 I
>
[
0 Lm [
5 10 15 20 25 30
a) CAS topics
0.1 " " PETSL i
quantisation: strict
c
_@ 0.075
(oS}
c@
© L
E% 0.05
ES
o 0.025 .
¢ I I I I I
0 I I - . I - l | | I l
35 40 45 50 55 60

b) CO topics

All results presented in this report have been compiled using the assessment package version 1.8 and i nex_eval
version 0.007. A detailed description on the evaluation metrics used in INEX 2002 is provided in [1]. The result
description is based on what has been done in TREC (see e. g. [2] for further details).

References

[1] Norbert Govert and Gabriella Kazai. Overview of the INitiative for the Evaluation of XML retrieval (INEX)
2002. In Norbert Fuhr, Norbert Govert, Gabriella Kazai, and Mounia Lalmas, editors, INitiative for the Evalu-
ation of XML Retrieval (INEX). Proceedings of the First INEX Workshop. Dagstuhl, Germany, December 8-11,
2002, ERCIM Workshop Proceedings, Sophia Antipolis, France, March 2003. ERCIM.

[2] E. M. Voorhees and D. K. Harman, editors. The Tenth Text REtrieval Conference (TREC 2001), Gaithersburg,
MD, USA, 2002. NIST.

188

Overview of content-and-structure submissions

Organisation run ID Page
Centrum voor Wiskunde en Informatica (CWI) R_all 191
R_article 192
R_prel_length 193
CSIRO Mathematical and Information Sciences full 194
manual 195
Split 196
doctronic GmbH & Co. KG 1 197
Electronics & Telecommunications Research Institute (ETRI) ETRI_Incom 198
ETH Zurich Augmentation0.8 199
IBM Haifa Labs ManualNoMerge 200
Merge 201
NoMerge 202
Institut de Recherche en Informatique de Toulouse (IRIT) Mercurel 203
Nara Institute of Science and Technology 20020824-article 204
Queen Mary University of London QMUL1 205
QMUL2 206
QMUL3 207
Queensland University of Technology inexresult2.xml 208
inexresults1.xml 209
inexresults3.xml 210
Salzburg Research Forschungsgesellschaft 1-corrected 211
Sejong Cyber University TitleKeywordsWLErr 212
Tarragon Consulting Corporation tgnCAS_base 213
Universitat Bayreuth IRStream 214
Universitat Dortmund / Universitat Duisburg-Essen plain hyrex 215
Université Pierre et Marie Curie bayes-3 216
simple 217
University of Amsterdam UAmMSIO2NGISt 218
UAmMsIO2NGram 219
UAmMsI02Stem 220
University of California, Berkeley BerkeleyO1 221
Berkeley02 222
Berkeley03 223
University of Melbourne um_mgx21_short 224
um_mgx26_long 225
um_mgx2_long 226
University of Michigan allow-duplicate 227
no-duplicate 228
University of Minnesota Duluth 01 229
University of Twente utwentelh 230
utwenteln 231
utwentelpr 232

189

Overview of content-only submissions

Organisation run ID Page
Centrum voor Wiskunde en Informatica (CWI) R_all 233
R_article 234
R_prel_length 235
CSIRO Mathematical and Information Sciences full 236
manual 237
Split 238
doctronic GmbH & Co. KG 1 239
ETH Zurich Augmentation0.8 240
IBM Haifa Labs ManualNoMerge 241
Merge 242
NoMerge 243
Institut de Recherche en Informatique de Toulouse (IRIT) Mercurel 244
Nara Institute of Science and Technology 20020824-article 245
Queen Mary University of London QMUL1 246
QMUL2 247
QMUL3 248
Queensland University of Technology inexresult2.xml 249
inexresults1.xml 250
inexresults3.xml 251
Royal School of Library and Information Science bag-of-words 252
boomerang 253
polyrepresentation 254
Salzburg Research Forschungsgesellschaft 1-corrected 255
Sejong Cyber University TitleKeywordsWLErr 256
Tarragon Consulting Corporation tgnCO_base 257
Universitat Bayreuth IRStream 258
Universitat Dortmund / Universitat Duisburg-Essen Epros03 259
Epros06 260
plain hyrex 261
Université Pierre et Marie Curie bayes-2 262
bayes-3 263
simple 264
University of Amsterdam UAmMSIO2NGISt 265
UAmMsI02NGram 266
UAmMsI02Stem 267
University of California, Berkeley BerkeleyO1 268
Berkeley02 269
Berkeley03 270
University of California, Los Angeles CorrectedFormat 271
University of Melbourne um_mgx21_short 272
um_mgx26_long 273
um_mgx2_long 274
University of Michigan allow-duplicate 275
no-duplicate 276
University of Minnesota Duluth 01 277
University of North Carolina at Chapel Hill irt 278
University of Twente utwentelh 279
utwenteln 280
utwentelpr 281

190

Centrum voor Wiskunde en Informatica (CWI)
R_all (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0039

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0455
0.0025
0.0015
0.0053
0.0013
0.0015
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0045
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.0002
0.0047
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

ML

21
22
23
24
25
26
27
28
29
30

0.0002
0.0024
0.0019
0.0005
0.0005
0.0117
0.0001
0.0037
0.0050
0.0088

1

mr

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5

Recall

Overall average precision: 0.0080

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0463
0.0170
0.0040
0.0087
0.0072
0.0049
0.0007
0.0008
0.0211

11
12
13
14
15
16
17
18
19
20

0.0158
0.0025
0.0001
0.0024
0.0076
0.0097
0.0008
0.0021
0.0104
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0025
0.0032
0.0024
0.0009
0.0015
0.0247
0.0001
0.0037
0.0182
0.0158

10

15 20

topic

25 30

191

Centrum voor Wiskunde en Informatica (CWI)
R_article (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

k«\\—g

0

0.5
Recall

Overall average precision: 0.0338

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0039
0.0036
0.0053
0.0013
0.0015
0.0219
0.1259
0.0018

11
12
13
14
15
16
17
18
19
20

0.0612
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.0552
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

HL)

21
22
23
24
25
26
27
28
29
30

0.0033
0.0024
0.0994
0.0311
0.1284
0.3875
0.0001
0.0037
0.0058
0.0088

s

m—-—

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

k

0

0.5

Recall

Overall average precision: 0.0391

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0236
0.0065
0.0118
0.0074
0.0049
0.0198
0.1147
0.0341

11
12
13
14
15
16
17
18
19
20

0.0833
0.0025
0.0001
0.0024
0.0076
0.0097
0.0398
0.0322
0.0096
0.0006

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0081
0.1162
0.0889
0.0331
0.1268
0.2955
0.0001
0.0037
0.0245
0.0158

10

15
topic

20

25 30

192

Centrum voor Wiskunde en Informatica (CWI)
R_prel_length (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0059

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0457
0.0026
0.0015
0.0053
0.0013
0.0442
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0054
0.0036
0.0001
0.0030
0.0004
0.0073
0.0002
0.0002
0.0115
0.0021

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

T

21
22
23
24
25
26
27
28
29
30

0.0002
0.0024
0.0023
0.0005
0.0014
0.0128
0.0001
0.0037
0.0052
0.0088

T

mr

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5

Recall

Overall average precision: 0.0115

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0466
0.0172
0.0047
0.0085
0.0073
0.0395
0.0007
0.0008
0.0217

11
12
13
14
15
16
17
18
19
20

0.0190
0.0037
0.0001
0.0036
0.0076
0.0097
0.0332
0.0102
0.0370
0.0014

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0028
0.0034
0.0028
0.0011
0.0019
0.0193
0.0001
0.0037
0.0186
0.0158

10

15 20

topic

25 30

193

CSIRO Mathematical and Information Sciences
full (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

N

0

0.5
Recall

Overall average precision: 0.0109

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0634
0.1008
0.0025
0.0015
0.0155
0.0218
0.0032
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0045
0.0082
0.0001
0.0004
0.0004
0.0228
0.0034
0.0002
0.0053
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

T

21
22
23
24
25
26
27
28
29
30

0.0002
0.0095
0.0137
0.0005
0.0005
0.0115
0.0001
0.0112
0.0098
0.0133

I

mr

5

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

h

0

0.5
Recall

Overall average precision: 0.0143

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0634
0.1009
0.0173
0.0044
0.0106
0.0327
0.0105
0.0007
0.0008
0.0091

11
12
13
14
15
16
17
18
19
20

0.0201
0.0070
0.0001
0.0023
0.0080
0.0201
0.0020
0.0037
0.0098
0.0006

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 ¢
0.2

B

21
22
23
24
25
26
27
28
29
30

0.0033
0.0115
0.0133
0.0009
0.0015
0.0188
0.0001
0.0112
0.0203
0.0240

-

JTrF

5

10

15 20

topic

25 30

194

CSIRO Mathematical and Information Sciences
manual (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

N

T

T

0.5
Recall

Overall average precision: 0.3438

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.3282
0.2209
0.0070
0.0935
0.3858
0.0095
0.0479
0.9548
0.8688
0.0018

11
12
13
14
15
16
17
18
19
20

0.0203
0.4636
1.0000
0.0625
0.0018
0.6810
0.9583
0.5076
0.0151
0.2276

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2 |

21
22
23
24
25
26
27
28
29
30

0.0659
0.9232
0.3993
0.4021
0.7535
0.0156
0.6701
0.0138
0.0408
0.1729

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

N

—

~

0.5

Recall

Overall average precision: 0.2752

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.3282
0.2202
0.0338
0.0932
0.3283
0.0578
0.0895
0.8418
0.8437
0.0100

11
12
13
14
15
16
17
18
19
20

0.0466
0.4679
0.3601
0.0129
0.0607
0.6787
0.2505
0.0875
0.0363
0.2724

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -

21
22
23
24
25
26
27
28
29
30

0.0263
0.7108
0.4148
0.4753
0.6331
0.0179
0.6701
0.0138
0.0533
0.1201

10

15
topic

20

25 30

195

CSIRO Mathematical and Information Sciences

Quantisation: strict

Split (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.8

0.6

Precision

.

0.4

AN

Overall average precision: 0.1616

Average precision per topic:

difference from median

01
02
03
04
05
06
07
08
09
10

1

0.8
0.6
0.4

0.2

0.2
k 0
0.5 1
Recall

Recall /precision graph:

.

S~

—

0.5

Recall
Overall average precision: 0.1528

Average precision per topic:

0.0691 | 11 0.0166 | 21 0.0583 01 0.0691 | 11 0.0458 | 21 0.0312
0.0963 | 12 0.4271 | 22 0.0445 02 0.0988 | 12 0.3750 | 22 0.0394
0.0057 | 13 0.1084 | 23 0.4731 03 0.0261 | 13 0.0394 | 23 0.4948
0.0028 | 14 0.0950 | 24 0.1518 04 0.0051 | 14 0.0427 | 24 0.0785
0.3672 | 15 0.0119 | 25 0.7105 05 0.3315 | 15 0.0475 | 25 0.6548
0.0322 | 16 0.2922 | 26 0.0368 06 0.1245 | 16 0.2400 | 26 0.0833
0.0238 | 17 0.0048 | 27 0.6701 07 0.0567 | 17 0.0019 | 27 0.6701
0.2425 | 18 0.3241 | 28 0.0037 08 0.2187 | 18 0.1089 | 28 0.0037
0.3983 | 19 0.0097 | 29 0.0416 09 0.3989 | 19 0.0189 | 29 0.0630
0.0018 | 20 0.1098 | 30 0.0196 10 0.0091 | 20 0.1533 | 30 0.0549
Difference from median Difference from median
in average precision per topic: in average precision per topic:
1
€ 08¢
g
g 06|
§ o4l
,_.J §O'2ULJ
p
| “ﬂ_.) O |
5
-0.2
5 10 15 20 25 30 5 10 15 20 25 30
topic topic

196

Quantisation: strict

doctronic GmbH & Co. KG
1 (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

V\\\g

’“\/\

T

—

0.5
Recall

Overall average precision: 0.1182

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0205
0.1039
0.0031
0.0017
0.3192
0.0809
0.0556
0.6496
0.1277
0.0020

11
12
13
14
15
16
17
18
19
20

0.0118
0.0849
0.0213
0.0004
0.0004
0.4054
0.0002
0.2349
0.0045
0.0343

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.2453
0.9723
0.0174
0.0019
0.1129
0.0120
0.0001
0.0037
0.0079
0.0093

1

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

S

N

‘\“\

0.5

Recall

Overall average precision: 0.0997

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0205
0.1069
0.0219
0.0040
0.2942
0.0774
0.1005
0.5761
0.1170
0.0090

11
12
13
14
15
16
17
18
19
20

0.0758
0.0504
0.0079
0.0024
0.0090
0.3451
0.0008
0.0768
0.0096
0.0434

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 ¢
0.2

21
22
23
24
25
26
27
28
29
30

0.0804
0.7416
0.0327
0.0021
0.0956
0.0197
0.0001
0.0037
0.0444
0.0209

A

10

15
topic

20

25 30

197

Electronics & Telecommunications Research Institute (ETRI)
ETRI_Incom (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

"_\—L

0

0.5
Recall

Overall average precision: 0.0188

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0433 | 11
0.0465 | 12
0.0026 | 13
0.0015 | 14
0.2932 | 15
0.0076 | 16
0.0015 | 17
0.0006 | 18
0.0008 | 19
0.0018 | 20

0.0046
0.0013
0.0001
0.0004
0.0004
0.0074
0.0002
0.0002
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.1102
0.0024
0.0019
0.0005
0.0005
0.0108
0.0001
0.0038
0.0051
0.0089

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

\\T

0

0.5
Recall

Overall average precision: 0.0169

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0433 | 11
0.0474 | 12
0.0172 | 13
0.0039 | 14
0.2339 | 15
0.0195 | 16
0.0049 | 17
0.0007 | 18
0.0008 | 19
0.0090 | 20

0.0248
0.0025
0.0001
0.0024
0.0076
0.0100
0.0008
0.0021
0.0098
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0026
0.0032
0.0025
0.0010
0.0015
0.0175
0.0001
0.0038
0.0183
0.0159

15 20

topic

25 30

198

Quantisation: strict

Augmentation0.8 (CAS)

ETH Zurich

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0466

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0033
0.1603
0.0025
0.0015
0.0689
0.0033
0.0791
0.0038
0.0204
0.0018

11
12
13
14
15
16
17
18
19
20

0.0045
0.0016
0.0001
0.0004
0.0004
0.3376
0.0002
0.0051
0.0045
0.0009

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

I

21
22
23
24
25
26
27
28
29
30

0.0002
0.4123
0.0348
0.0005
0.0005
0.0106
0.0001
0.0037
0.0050
0.2288

e !

5

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

\\‘

k

0

0.5

Recall

Overall average precision: 0.0404

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0033
0.1638
0.0170
0.0039
0.0492
0.0172
0.0656
0.0040
0.0194
0.0090

11
12
13
14
15
16
17
18
19
20

0.0157
0.0027
0.0001
0.0023
0.0077
0.2808
0.0008
0.0075
0.0096
0.0009

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 ¢
0.2

21
22
23
24
25
26
27
28
29
30

0.0028
0.3141
0.0295
0.0009
0.0015
0.0171
0.0001
0.0037
0.0216
0.1414

10

15
topic

20

25 30

199

ManualNoMerge (CAS)

IBM Haifa Labs

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

N

—

]

0.5
Recall

Overall average precision: 0.3248

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.3876
0.0801
0.0102
0.0299
0.3522
0.0013
0.2111
1.0000
1.0000
0.1577

11
12
13
14
15
16
17
18
19
20

0.0067
0.4475
1.0000
0.0478
0.0032
0.6332
0.8501
0.2802
0.0086
0.2796

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6

21
22
23
24
25
26
27
28
29
30

0.3402
0.9302
0.0819
0.2036
0.5600
0.0673
0.6701
0.0058
0.0171
0.0797

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

S

R

)

0.5

Recall

Overall average precision: 0.2535

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.3876
0.0855
0.0231
0.0470
0.2782
0.0086
0.1405
0.8802
0.9700
0.0509

11
12
13
14
15
16
17
18
19
20

0.0453
0.5175
0.3999
0.0589
0.0465
0.6615
0.2311
0.0407
0.0227
0.1936

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -

21
22
23
24
25
26
27
28
29
30

0.0618
0.7151
0.0865
0.2089
0.4930
0.1482
0.6701
0.0058
0.0496
0.0757

10

15
topic

20

25

30

200

Quantisation: strict

IBM Haifa Labs
Merge (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

N

S

0.5
Recall

Overall average precision: 0.3411

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.5655
0.1514
0.0130
0.0642
0.3659
0.1042
0.1055
1.0000
1.0000
0.1644

11
12
13
14
15
16
17
18
19
20

0.0278
0.3810
1.0000
0.0061
0.0047
0.6457
0.8501
0.3423
0.0045
0.0808

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6

21
22
23
24
25
26
27
28
29
30

0.4402
0.9207
0.3234
0.1919
0.5988
0.0785
0.6701
0.0047
0.0094
0.1168

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

N

A —

)

0.5

Recall

Overall average precision: 0.2706

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.5655
0.1556
0.0266
0.0550
0.2805
0.1416
0.1232
0.8802
0.9700
0.0529

11
12
13
14
15
16
17
18
19
20

0.0669
0.3714
0.3761
0.0085
0.0471
0.6606
0.2311
0.0895
0.0096
0.1071

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6

21
22
23
24
25
26
27
28
29
30

0.0769
0.7084
0.3016
0.2415
0.5994
0.1525
0.6701
0.0047
0.0475
0.0963

10

15
topic

20

25 30

201

Quantisation: strict

IBM Haifa Labs
NoMerge (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

T

T

—_]

0.5
Recall

Overall average precision: 0.3093

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.3876
0.1184
0.0102
0.0304
0.3522
0.0637
0.2933
1.0000
1.0000
0.1577

11
12
13
14
15
16
17
18
19
20

0.0067
0.1110
1.0000
0.0033
0.0032
0.6332
0.8501
0.1322
0.0045
0.3325

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6

21
22
23
24
25
26
27
28
29
30

0.4264
0.9302
0.0719
0.1542
0.3749
0.0676
0.6701
0.0058
0.0073
0.0797

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

S

)

0.5 1

Recall

Overall average precision: 0.2419

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.3876
0.1208
0.0236
0.0467
0.2782
0.1039
0.1871
0.8802
0.9700
0.0509

11
12
13
14
15
16
17
18
19
20

0.0453 | 21 0.0441
0.1196 | 22 0.7151
0.3999 | 23 0.0750
0.0108 | 24 0.1662
0.0465 | 25 0.4136
0.6615 | 26 0.1499
0.2311 | 27 0.6701
0.0411 | 28 0.0058
0.0116 | 29 0.0460
0.2803 | 30 0.0757

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -

10

15 20 25 30
topic

202

Institut de Recherche en Informatique de Toulouse (IRIT)
Mercurel (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

-_

0

0.5

Recall

Overall average precision: 0.0145

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0025
0.0015
0.0053
0.0013
0.0015
0.0449
0.0630
0.0018

11
12
13
14
15
16
17
18
19
20

0.0048
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.0427
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

L

21
22
23
24
25
26
27
28
29
30

0.0008
0.0024
0.1523
0.0005
0.0005
0.0291
0.0001
0.0037
0.0050
0.0088

[

ﬁ_

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

/\—_

0

0.5
Recall

Overall average precision: 0.0212

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0171
0.0039
0.0122
0.0073
0.0049
0.0407
0.0613
0.0114

11
12
13
14
15
16
17
18
19
20

0.0193
0.0025
0.0001
0.0024
0.0076
0.0097
0.0487
0.0286
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0036
0.0571
0.1482
0.0009
0.0015
0.0489
0.0001
0.0037
0.0184
0.0158

10

15 20

topic

25 30

203

Nara Institute of Science and Technology

Quantisation: strict

20020824-article (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

S

Sl
T

0.5

Recall

Overall average precision: 0.1736

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0194 | 11
0.0468 | 12
0.0029 | 13
0.0615 | 14
0.3362 | 15
0.0053 | 16
0.0015 | 17
0.7835 | 18
0.4912 | 19
0.0018 | 20

0.0046
0.0013
0.1907
0.0004
0.0012
0.6195
0.0002
0.3022
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0002
0.8708
0.2365
0.3313
0.4982
0.0624
0.0001
0.3173
0.0071
0.0092

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

T

~—

0.5

Recall

Overall average precision: 0.1548

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0194
0.0480
0.0179
0.0413
0.3135
0.0256
0.0049
0.6941
0.4884
0.0090

11
12
13
14
15
16
17
18
19
20

0.0255
0.0025
0.0857
0.0024
0.0177
0.4837
0.0008
0.0681
0.0098
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0025
0.6702
0.2820
0.2576
0.5171
0.1406
0.0001
0.3173
0.0510
0.0465

L

10

15 20

topic

25 30

204

Quantisation: strict

Queen Mary University of London
QMUL1 (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0060

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0025
0.0030
0.0053
0.0013
0.0015
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0063
0.0013
0.0001
0.0061
0.0004
0.0073
0.0002
0.0002
0.0054
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

ML

21
22
23
24
25
26
27
28
29
30

0.0015
0.0024
0.0019
0.0005
0.0005
0.0637
0.0001
0.0037
0.0052
0.0088

11

i

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5

Recall

Overall average precision: 0.0114

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0170
0.0300
0.0085
0.0081
0.0049
0.0007
0.0008
0.0104

11
12
13
14
15
16
17
18
19
20

0.0160
0.0025
0.0001
0.0242
0.0076
0.0097
0.0008
0.0103
0.0191
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0045
0.0032
0.0024
0.0009
0.0015
0.0696
0.0001
0.0037
0.0190
0.0158

10

15 20

topic

25 30

205

Quantisation: strict

Queen Mary University of London
QMUL2 (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0088

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0477
0.0049
0.0086
0.0053
0.0013
0.0030
0.0006
0.0022
0.0018

11
12
13
14
15
16
17
18
19
20

0.0103
0.0013
0.0001
0.0014
0.0004
0.0073
0.0002
0.0011
0.0083
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

Ml

21
22
23
24
25
26
27
28
29
30

0.0462
0.0024
0.0035
0.0005
0.0317
0.0533
0.0001
0.0037
0.0052
0.0088

11

E

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5

Recall

Overall average precision: 0.0117

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0486
0.0202
0.0298
0.0085
0.0074
0.0063
0.0007
0.0020
0.0098

11
12
13
14
15
16
17
18
19
20

0.0207
0.0025
0.0001
0.0081
0.0076
0.0097
0.0010
0.0183
0.0141
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0070
0.0032
0.0037
0.0009
0.0131
0.0579
0.0001
0.0037
0.0253
0.0158

10

15 20

topic

25 30

206

Quantisation: strict

Queen Mary University of London
QMULS3 (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0063

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0466
0.0025
0.0052
0.0053
0.0013
0.0015
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0061
0.0023
0.0001
0.0078
0.0004
0.0073
0.0002
0.0002
0.0065
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

ML

21
22
23
24
25
26
27
28
29
30

0.0034
0.0024
0.0019
0.0005
0.0047
0.0583
0.0001
0.0037
0.0052
0.0088

11

mi

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5

Recall

Overall average precision: 0.0117

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0475
0.0170
0.0344
0.0085
0.0080
0.0049
0.0007
0.0008
0.0101

11
12
13
14
15
16
17
18
19
20

0.0160
0.0031
0.0001
0.0273
0.0076
0.0097
0.0008
0.0103
0.0224
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

CIT

21
22
23
24
25
26
27
28
29
30

0.0050
0.0033
0.0024
0.0009
0.0032
0.0651
0.0001
0.0037
0.0190
0.0158

L

"

5

10

15 20

topic

25 30

207

Quantisation: strict

Queensland University of Technology
inexresult2.xml (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

T

0

0.5
Recall

Overall average precision: 0.0634

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0026
0.0015
0.0053
0.0013
0.0015
0.5324
0.0260
0.0018

11
12
13
14
15
16
17
18
19
20

0.0068
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.5266
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.4402
0.0024
0.0139
0.0017
0.1631
0.0937
0.0001
0.0037
0.0058
0.0088

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

B

e

0

0.5
Recall

Overall average precision: 0.0407

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0174
0.0039
0.0113
0.0072
0.0049
0.4706
0.0237
0.0212

11
12
13
14
15
16
17
18
19
20

0.0191
0.0025
0.0001
0.0024
0.0076
0.0097
0.0057
0.0727
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0730
0.1679
0.0147
0.0017
0.1056
0.0724
0.0001
0.0037
0.0278
0.0158

10

15 20

topic

25 30

208

Queensland University of Technology

inexresultsl.xml (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

S

0

0.5
Recall

Overall average precision: 0.0335

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0072
0.0015
0.0053
0.0013
0.0015
0.0155
0.1115
0.0018

11
12
13
14
15
16
17
18
19
20

0.0068
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.1630
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.1838
0.0024
0.2117
0.0205
0.1501
0.0408
0.0001
0.0037
0.0055
0.0088

Ml

III_

5

10

15
topic

20 25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

N

0

0.5
Recall

Overall average precision: 0.0276

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0206
0.0039
0.0107
0.0072
0.0049
0.0138
0.1011
0.0239

11
12
13
14
15
16
17
18
19
20

0.0191
0.0025
0.0001
0.0024
0.0076
0.0097
0.0179
0.0381
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0246
0.0981
0.2069
0.0116
0.0587
0.0418
0.0001
0.0037
0.0230
0.0158

10

15 20

topic

25 30

209

Quantisation: strict

Queensland University of Technology

inexresults3.xml (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

T

0

0.5
Recall

Overall average precision: 0.0633

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0026
0.0015
0.0053
0.0013
0.0015
0.5346
0.0260
0.0018

11
12
13
14
15
16
17
18
19
20

0.0068
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.5266
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.4402
0.0024
0.0111
0.0005
0.1653
0.0909
0.0001
0.0037
0.0057
0.0088

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

\\—“

\K_

0

0.5
Recall

Overall average precision: 0.0417

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0174
0.0039
0.0115
0.0072
0.0049
0.4725
0.0237
0.0212

11
12
13
14
15
16
17
18
19
20

0.0191
0.0025
0.0001
0.0024
0.0076
0.0097
0.0057
0.0727
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0719
0.1679
0.0117
0.0009
0.1463
0.0676
0.0001
0.0037
0.0246
0.0158

10

15 20

topic

25 30

210

Salzburg Research Forschungsgesellschaft
1-corrected (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0221

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0452
0.0030
0.0015
0.0053
0.0013
0.0015
0.0386
0.2351
0.0018

11
12
13
14
15
16
17
18
19
20

0.0045
0.0013
0.0001
0.0004
0.0004
0.0073
0.0002
0.0002
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0002
0.0024
0.2465
0.0293
0.0005
0.0106
0.0001
0.0038
0.0050
0.0088

1

-

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5

Recall

Overall average precision: 0.0247

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0461
0.0189
0.0039
0.0085
0.0072
0.0049
0.0344
0.2282
0.0090

11
12
13
14
15
16
17
18
19
20

0.0156
0.0025
0.0001
0.0024
0.0076
0.0097
0.0008
0.0021
0.0098
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

T

21
22
23
24
25
26
27
28
29
30

0.0025
0.0032
0.2360
0.0270
0.0015
0.0171
0.0001
0.0038
0.0181
0.0158

r

T

5

10

15 20

topic

25 30

211

Quantisation: strict

Sejong Cyber University
TitleKeywordsWLErr (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

“\,\‘

_

—

0.5

Recall

Overall average precision: 0.1777

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0250 | 11 0.0142
0.1330 | 12 0.0339
0.0140 | 13 0.3093
0.0017 | 14 0.0685
0.3757 | 15 0.0004
0.0356 | 16 0.4425
0.1492 | 17 0.4047
0.4163 | 18 0.3387
0.0960 | 19 0.0259
0.0018 | 20 0.0193

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4

L

0.2

21
22
23
24
25
26
27
28
29
30

0.0010
0.9158
0.4003
0.0031
0.3079
0.0997
0.6701
0.0040
0.0157
0.0089

th.

topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

\\“L

\—\H

1

0.5

Recall

Overall average precision: 0.1424

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0250
0.1368
0.0218
0.0040
0.3244
0.0808
0.1639
0.3817
0.0926
0.0107

11
12
13
14
15
16
17
18
19
20

0.0341
0.0202
0.1124
0.0322
0.0118
0.3742
0.1085
0.0780
0.0277
0.0080

Difference from median

in average precision per topic:

1

0.2

difference from median

0.8 r
0.6 -
04 r

21
22
23
24
25
26
27
28
29
30

0.0044
0.7052
0.3791
0.0024
0.2106
0.1577
0.6701
0.0040
0.0536
0.0347

10

15 20

topic

25 30

212

Quantisation: strict

Tarragon Consulting Corporation
tgnCAS_base (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

L\L\ﬁ&

.

ii

0.5
Recall

Overall average precision: 0.1757

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0354
0.2248
0.0057
0.0417
0.3889
0.0013
0.0015
0.8702
0.6006
0.0018

11
12
13
14
15
16
17
18
19
20

0.0046
0.0013
1.0000
0.0004
0.0004
0.3967
0.0002
0.2802
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0002
0.4133
0.1852
0.0005
0.5229
0.0676
0.0001
0.0038
0.0051
0.2112

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

_

~—

0.5

Recall

Overall average precision: 0.1583

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0354
0.2238
0.0179
0.0214
0.3110
0.0074
0.0049
0.7703
0.5807
0.0095

11
12
13
14
15
16
17
18
19
20

0.0159
0.0025
0.4972
0.0024
0.0076
0.5829
0.0823
0.0409
0.0098
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0080
0.3148
0.2422
0.0232
0.6294
0.1366
0.0001
0.0038
0.0285
0.1394

10

15
topic

20

25 30

213

Universitat Bayreuth
IRStream (CAS)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 \\\ 506
o] @
2 2
a 04 \\ a 04 \\\
0.2 H 0.2
—_\——____ \s\—_\;
0 0 »
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.1346 Overall average precision: 0.0871
Average precision per topic: Average precision per topic:
01 0.0030 | 11 0.0133 | 21 0.4402 01 0.0030 | 11 0.0595 | 21 0.0563
02 0.2105 | 12 0.0314 | 22 0.0024 02 0.2098 | 12 0.0127 | 22 0.0032
03 0.0026 | 13 0.4540 | 23 0.0147 03 0.0176 | 13 0.1649 | 23 0.0162
04 0.0015 | 14 0.0004 | 24 0.0014 04 0.0065 | 14 0.0024 | 24 0.0015
05 0.3453 | 15 0.0004 | 25 0.2506 05 0.2627 | 15 0.0076 | 25 0.1651
06 0.0122 | 16 0.1431 | 26 0.0682 06 0.0310 | 16 0.1413 | 26 0.1449
07 0.0256 | 17 0.3100 | 27 0.0001 07 0.0689 | 17 0.0820 | 27 0.0001
08 0.8245 | 18 0.4528 | 28 0.0091 08 0.7283 | 18 0.0664 | 28 0.0091
09 0.2016 | 19 0.0045 | 29 0.0072 09 0.1920 | 19 0.0097 | 29 0.0199
10 0.0018 | 20 0.1972 | 30 0.0088 10 0.0090 | 20 0.1057 | 30 0.0158
Difference from median Difference from median
in average precision per topic: in average precision per topic:
1 1
5 08¢ g 08¢
3 2
g 0.6 g 06|
§ 04| § o4l
8 o021 802
E 0 - E 0 . ¢JJ1H
© ©
0.2 0.2 t
5 10 15 20 25 30 5 10 15 20 25 30
topic topic

214

Universitat Dortmund / Universitat Duisburg-Essen

plain hyrex (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

\—M\

0

0.5
Recall

Overall average precision: 0.0409

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0090
0.0660
0.0065
0.0032
0.3818
0.0035
0.1387
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0182
0.0018
0.0165
0.0017
0.0004
0.2011
0.0045
0.0002
0.0047
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

M

21
22
23
24
25
26
27
28
29
30

0.1033
0.2262
0.0019
0.0005
0.0005
0.0127
0.0001
0.0037
0.0068
0.0096

I

"

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2 p

k\

0

\

0

0.5

Recall

Overall average precision: 0.0417

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0090
0.0674
0.0200
0.0042
0.3669
0.0237
0.1377
0.0007
0.0008
0.0141

11
12
13
14
15
16
17
18
19
20

0.0682
0.0029
0.0061
0.0040
0.0094
0.1895
0.0018
0.0021
0.0098
0.0006

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

U

21
22
23
24
25
26
27
28
29
30

0.0308
0.1778
0.0025
0.0010
0.0015
0.0279
0.0001
0.0037
0.0410
0.0257

-

5

10

15
topic

20

25 30

215

Quantisation: strict

Université Pierre et Marie Curie
bayes-3 (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0065

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0465
0.0026
0.0015
0.0054
0.0013
0.0015
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0096
0.0013
0.0001
0.0004
0.0004
0.0185
0.0002
0.0615
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

ML

21
22
23
24
25
26
27
28
29
30

0.0002
0.0024
0.0019
0.0005
0.0005
0.0108
0.0001
0.0038
0.0050
0.0089

B L

mr

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5
Recall

Overall average precision: 0.0100

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.0474
0.0171
0.0039
0.0087
0.0124
0.0049
0.0007
0.0008
0.0090

11
12
13
14
15
16
17
18
19
20

0.0369
0.0025
0.0001
0.0023
0.0076
0.0214
0.0008
0.0445
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0025
0.0032
0.0025
0.0010
0.0015
0.0175
0.0001
0.0038
0.0181
0.0159

10

15 20

topic

25 30

216

Quantisation: strict

Université Pierre et Marie Curie
simple (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0243

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.1041
0.0026
0.0015
0.3900
0.0013
0.0015
0.0006
0.0008
0.0018

11
12
13
14
15
16
17
18
19
20

0.0046
0.0013
0.0001
0.0004
0.0004
0.0116
0.0002
0.1630
0.0045
0.0002

Difference from median

in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0002
0.0024
0.0019
0.0005
0.0005
0.0108
0.0001
0.0038
0.0050
0.0089

'

B

mr

5

10

15 20

topic

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

\LL

0

0.5
Recall

Overall average precision: 0.0208

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0030
0.1089
0.0171
0.0039
0.3060
0.0112
0.0049
0.0007
0.0008
0.0090

11
12
13
14
15
16
17
18
19
20

0.0159
0.0025
0.0001
0.0023
0.0076
0.0191
0.0008
0.0346
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0025
0.0032
0.0025
0.0010
0.0015
0.0175
0.0001
0.0038
0.0181
0.0159

10

15 20

topic

25 30

217

University of Amsterdam

UAmMSsIO2NGISt (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

“_\ﬂ
i&\

Recall

Overall average precision: 0.2257

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0121 | 11 0.0067 | 21 0.2886
0.1456 | 12 0.4503 | 22 0.9505
0.0074 | 13 1.0000 | 23 0.2769
0.0216 | 14 0.0004 | 24 0.0426
0.3767 | 15 0.0026 | 25 0.4748
0.0013 | 16 0.4016 | 26 0.0776
0.0360 | 17 0.0009 | 27 0.0001
1.0000 | 18 0.6062 | 28 0.0038
0.5532 | 19 0.0045 | 29 0.0065
0.0018 | 20 0.0002 | 30 0.0202

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

H\v

0.5 1
Recall

Overall average precision: 0.1782

Average precision per topic:

0.0329 | 21 0.0711
0.4124 | 22 0.7298
0.3601 | 23 0.2806
0.0024 | 24 0.0224
0.0166 | 25 0.5792
0.4073 | 26 0.1581
0.0011 | 27 0.0001
0.1402 | 28 0.0038
0.0096 | 29 0.0597
0.0006 | 30 0.0434

01
02
03
04
05
06
07
08
09
10

0.0121
0.1460
0.0228
0.0042
0.3273
0.0180
0.0575
0.8802
0.5343
0.0129

11
12
13
14
15
16
17
18
19
20

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

I

10

15 20 25
topic

30

218

Quantisation: strict

University of Amsterdam
UAmMsIO2NGram (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

k\\

R—

0.5
Recall

Overall average precision: 0.2233

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0220
0.1352
0.0077
0.0216
0.3802
0.0013
0.0300
1.0000
0.5587
0.0018

11
12
13
14
15
16
17
18
19
20

0.0074
0.4296
1.0000
0.0004
0.0022
0.4022
0.0002
0.6263
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.2145
0.9500
0.2611
0.0618
0.4733
0.0766
0.0001
0.0038
0.0063
0.0197

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

L&\?

0.5

Recall

Overall average precision: 0.1770

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0220
0.1342
0.0225
0.0043
0.3275
0.0232
0.0519
0.8802
0.5401
0.0124

11
12
13
14
15
16
17
18
19
20

0.0334
0.4005
0.3601
0.0024
0.0165
0.3996
0.0008
0.1421
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0744
0.7293
0.2660
0.0322
0.5619
0.1583
0.0001
0.0038
0.0584
0.0430

l,

10

15 20

topic

25 30

219

Quantisation: strict

University of Amsterdam

UAmMsI02Stem (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

V\’\\‘\\

\/"___/_M\

| S—

T

0.5
Recall

Overall average precision: 0.1839

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0033
0.1258
0.0069
0.0020
0.3660
0.0022
0.1474
0.9727
0.5134
0.0018

11
12
13
14
15
16
17
18
19
20

0.0067
0.2686
1.0000
0.0004
0.0044
0.0333
0.0034
0.1715
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0140
0.9557
0.2913
0.0263
0.4920
0.0831
0.0001
0.0038
0.0070
0.0088

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

.

HL

0.5

Recall

Overall average precision: 0.1592

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0033
0.1276
0.0226
0.0041
0.3234
0.0117
0.1134
0.8569
0.5002
0.0133

11
12
13
14
15
16
17
18
19
20

0.0315
0.3474
0.3601
0.0024
0.0150
0.0403
0.0016
0.0865
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0141
0.7336
0.3220
0.0152
0.5813
0.1595
0.0001
0.0038
0.0579
0.0158

]

10

15 20

topic

25 30

220

University of California, Berkeley
BerkeleyOl (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

Overall average precision: 0.0897

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0040
0.0958
0.0025
0.0068
0.0053
0.0017
0.0033
0.0100
0.2450
0.0018

11
12
13
14
15
16
17
18
19
20

0.0054
0.2988
0.0001
0.0036
0.0004
0.0088
0.9526
0.0020
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

WL\\’%‘—‘—_
\-Lﬁ__
0 0.5 1
Recall

0.0002
0.3936
0.0545
0.0314
0.2849
0.0214
0.0001
0.0041
0.0052
0.2428

L

1l

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

——

N

\\%

0.5

Recall

Overall average precision: 0.0583

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0040
0.0977
0.0171
0.0043
0.0146
0.0100
0.0127
0.0098
0.2327
0.0099

11
12
13
14
15
16
17
18
19
20

0.0382
0.2784
0.0001
0.0036
0.0076
0.0109
0.2518
0.0052
0.0096
0.0006

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

o

21
22
23
24
25
26
27
28
29
30

0.0028
0.3046
0.0584
0.0387
0.1153
0.0364
0.0001
0.0041
0.0226
0.1461

1

LN

.

5

10

15
topic

20 25 30

221

University of California, Berkeley
Berkeley02 (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

k\“\\

e

\\'-—\x

\H__

0.5
Recall

Overall average precision: 0.1038

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0231
0.1037
0.0025
0.0042
0.1628
0.0019
0.0029
0.0026
0.2331
0.0021

11
12
13
14
15
16
17
18
19
20

0.0192
0.2764
0.0001
0.0004
0.0004
0.2573
0.9526
0.0002
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

Rl

21
22
23
24
25
26
27
28
29
30

0.0002
0.3936
0.0978
0.0314
0.2597
0.0289
0.0001
0.0040
0.0052
0.2435

N

ol

5

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

s=

\N_\

0.5

Recall

Overall average precision: 0.0749

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0231
0.1069
0.0193
0.0040
0.1544
0.0206
0.0113
0.0030
0.2198
0.0097

11
12
13
14
15
16
17
18
19
20

0.0431 | 21
0.2369 | 22
0.0001 | 23
0.0024 | 24
0.0076 | 25
0.3172 | 26
0.2518 | 27
0.0044 | 28
0.0096 | 29
0.0006 | 30

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

il

0.0060
0.3046
0.0922
0.0387
0.1261
0.0562
0.0001
0.0040
0.0228
0.1506

1l o

.

5

10

15 20 25 30

topic

222

University of California, Berkeley
Berkeley03 (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

T

"k_*“
“_\»

0.5
Recall

Overall average precision: 0.1865

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0083 | 11
0.1227 | 12
0.0084 | 13
0.0019 | 14
0.0054 | 15
0.0249 | 16
0.1184 | 17
0.9567 | 18
0.1063 | 19
0.0049 | 20

0.0109
0.3999
0.3093
0.0019
0.0004
0.4628
0.9526
0.3283
0.0045
0.2601

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4

21
22
23
24
25
26
27
28
29
30

0.0223
0.3936
0.3164
0.0314
0.0005
0.0523
0.6701
0.0041
0.0062
0.0108

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

S~

~—

0.5

Recall

Overall average precision: 0.1513

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0083
0.1252
0.0188
0.0040
0.0087
0.0797
0.1667
0.8422
0.1028
0.0146

11
12
13
14
15
16
17
18
19
20

0.0313
0.3201
0.1672
0.0033
0.0076
0.5443
0.2518
0.0956
0.0096
0.2071

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r

21
22
23
24
25
26
27
28
29
30

0.0109
0.3046
0.3176
0.0387
0.0015
0.1281
0.6701
0.0041
0.0361
0.0181

10

15
topic

20

25 30

223

University of Melbourne
um_mgx21 short (CAS)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 W\RL 5 06| ¥L
o] @
2 2
o 04 o 04
0.2 ‘v\vK 0.2 \
S —
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0723 Overall average precision: 0.0672
Average precision per topic: Average precision per topic:
01 0.0047 | 11 0.0198 | 21 0.0141 01 0.0047 | 11 0.0414 | 21 0.0075
02 0.2240 | 12 0.0162 | 22 0.0057 02 0.2218 | 12 0.0104 | 22 0.0062
03 0.0026 | 13 0.0176 | 23 0.0082 03 0.0175 | 13 0.0159 | 23 0.0079
04 0.0039 | 14 0.0150 | 24 0.0005 04 0.0055 | 14 0.0495 | 24 0.0009
05 0.1775 | 15 0.0004 | 25 0.0005 05 0.1608 | 15 0.0076 | 25 0.0015
06 0.0914 | 16 0.4186 | 26 0.0258 06 0.0764 | 16 0.3406 | 26 0.0428
07 0.1148 | 17 0.1792 | 27 0.6701 07 0.0755 | 17 0.0489 | 27 0.6701
08 0.0632 | 18 0.0386 | 28 0.0037 08 0.0563 | 18 0.0161 | 28 0.0037
09 0.0310 | 19 0.0045 | 29 0.0061 09 0.0284 | 19 0.0096 | 29 0.0267
10 0.0018 | 20 0.0002 | 30 0.0093 10 0.0137 | 20 0.0083 | 30 0.0403
Difference from median Difference from median
in average precision per topic: in average precision per topic:
1 1
g 08¢ g 08¢
2 k5
g 0.6 2 06|
§ 04| § o4l
3 02t 8 0.2
2 2 |
g 0 J—Illll ?GEJ 0 _l_lllll,____L
© ©
0.2 ¢ 0.2 t
5 10 15 20 25 30 5 10 15 20 25 30
topic topic

224

University of Melbourne
um_mgx26_long (CAS)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 5 06| \\\
o] @
2 2
o 04 o 04
0.2 /\’\\ 0.2 \\
T~
0 0 ﬂ\;
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.1240 Overall average precision: 0.1076
Average precision per topic: Average precision per topic:
01 0.0036 | 11 0.0092 | 21 0.0384 01 0.0036 | 11 0.0194 | 21 0.0130
02 0.1647 | 12 0.1009 | 22 0.9052 02 0.1658 | 12 0.0656 | 22 0.6959
03 0.0025 | 13 0.0131 | 23 0.1034 03 0.0170 | 13 0.0118 | 23 0.0933
04 0.0015 | 14 0.0098 | 24 0.0018 04 0.0040 | 14 0.0276 | 24 0.0021
05 0.2643 | 15 0.0008 | 25 0.0005 05 0.2668 | 15 0.0100 | 25 0.0015
06 0.0294 | 16 0.2861 | 26 0.0345 06 0.0468 | 16 0.2518 | 26 0.0734
07 0.2107 | 17 0.2896 | 27 0.6701 07 0.1969 | 17 0.0792 | 27 0.6701
08 0.0787 | 18 0.2540 | 28 0.0040 08 0.0699 | 18 0.0804 | 28 0.0040
09 0.1060 | 19 0.0084 | 29 0.0050 09 0.1007 | 19 0.0160 | 29 0.0187
10 0.0018 | 20 0.1108 | 30 0.0108 10 0.0167 | 20 0.1675 | 30 0.0385
Difference from median Difference from median
in average precision per topic: in average precision per topic:
1 1
g 08¢ g 08¢
2 k5
g 0.6 2 06|
§ 04| § o4l
802 802
[0 ()
2 5 N g OLJI.J_L
= S
0.2 ¢ 0.2 t
5 10 15 20 25 30 5 10 15 20 25 30
topic topic

225

Quantisation: strict

University of Melbourne
um_mgx2_long (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.1570

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0066
0.1715
0.0025
0.0164
0.3540
0.0267
0.2159
0.3274
0.0592
0.0018

11
12
13
14
15
16
17
18
19
20

0.0048
0.0493
0.0170
0.0138
0.0006
0.3745
0.9233
0.2465
0.0156
0.0134

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4

ok,

0.2

21
22
23
24
25
26
27
28
29
30

0.0773
0.9419
0.0999
0.0045
0.0005
0.0563
0.6701
0.0037
0.0052
0.0091

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

\\R

R

__\1

0.5

Recall

Overall average precision: 0.1265

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0066
0.1715
0.0170
0.0230
0.3501
0.0442
0.1915
0.2955
0.0564
0.0141

11
12
13
14
15
16
17
18
19
20

0.0263
0.0323
0.0154
0.0462
0.0230
0.3857
0.2440
0.0954
0.0127
0.0573

Difference from median
in average precision per topic:

1

0.2

difference from median

0.8 r
0.6 -
04 r

21
22
23
24
25
26
27
28
29
30

0.0298
0.7234
0.0889
0.0032
0.0015
0.1028
0.6701
0.0037
0.0239
0.0396

10

15
topic

20

25 30

226

Quantisation: strict

University of Michigan
allow-duplicate (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

-

»\k\

—\

]

0 0.5

Recall

Overall average precision: 0.3090

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0366 | 11 0.0046
0.2241 | 12 0.4702
0.0134 | 13 1.0000
0.0090 | 14 0.1305
0.3175 | 15 0.0004
0.0606 | 16 0.4523
0.1275 | 17 0.6462
0.8702 | 18 0.2802
0.5008 | 19 0.0089
0.0119 | 20 0.3941

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0340
0.9276
0.2772
0.1518
0.4102
0.0648
0.6701
1.0000
0.0052
0.1690

topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

"

—

S

0.5

Recall

Overall average precision: 0.2634

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0366
0.2234
0.0198
0.0043
0.2633
0.0899
0.1354
0.7703
0.4808
0.0091

11
12
13
14
15
16
17
18
19
20

0.0248
0.5806
0.4829
0.0225
0.0256
0.5996
0.1751
0.0407
0.0133
0.2491

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r

21
22
23
24
25
26
27
28
29
30

0.0145
0.7127
0.2992
0.0757
0.5916
0.1373
0.6701
1.0000
0.0258
0.1268

10

15
topic

20

25 30

227

Quantisation: strict

University of Michigan
no-duplicate (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

-

»\k\

—\

]

0 0.5

Recall

Overall average precision: 0.3090

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0366 | 11 0.0046
0.2241 | 12 0.4702
0.0134 | 13 1.0000
0.0090 | 14 0.1305
0.3175 | 15 0.0004
0.0606 | 16 0.4523
0.1275 | 17 0.6462
0.8702 | 18 0.2802
0.5008 | 19 0.0089
0.0119 | 20 0.3941

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0340
0.9276
0.2772
0.1518
0.4102
0.0648
0.6701
1.0000
0.0052
0.1690

topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

"

—

S

0.5

Recall

Overall average precision: 0.2634

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0366
0.2234
0.0198
0.0043
0.2633
0.0899
0.1354
0.7703
0.4808
0.0091

11
12
13
14
15
16
17
18
19
20

0.0248
0.5806
0.4829
0.0225
0.0256
0.5996
0.1751
0.0407
0.0133
0.2491

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r

21
22
23
24
25
26
27
28
29
30

0.0145
0.7127
0.2992
0.0757
0.5916
0.1373
0.6701
1.0000
0.0258
0.1268

10

15
topic

20

25 30

228

Quantisation: strict

University of Minnesota Duluth

01 (CAS)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

k\-\—‘_\—\,

N

T

0.5
Recall

Overall average precision: 0.1168

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0631
0.0774
0.0038
0.0251
0.2248
0.0013
0.0015
0.8420
0.0105
0.0018

11
12
13
14
15
16
17
18
19
20

0.0411
0.0013
1.0000
0.0004
0.0004
0.0664
0.0002
0.0809
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0215
0.3409
0.0780
0.0005
0.4221
0.0212
0.0001
0.0037
0.0057
0.1632

1l

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

=

\

\\HM

—

0.5

Recall

Overall average precision: 0.0831

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0631
0.0773
0.0201
0.0076
0.2025
0.0097
0.0049
0.7444
0.0091
0.0089

11
12
13
14
15
16
17
18
19
20

0.0462
0.0025
0.3601
0.0024
0.0078
0.0506
0.0008
0.0357
0.0096
0.0006

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0161
0.2672
0.0686
0.0010
0.2742
0.0308
0.0001
0.0037
0.0352
0.1336

Al

10

15 20

topic

25 30

229

University of Twente
utwentelh (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

\

\‘\ﬂ—u

___x—_

0.5
Recall

Overall average precision: 0.0923

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0183
0.1091
0.0029
0.0349
0.3618
0.0018
0.0195
0.2443
0.2469
0.0018

11
12
13
14
15
16
17
18
19
20

0.0114
0.0758
0.0001
0.0629
0.0004
0.0851
0.6192
0.2067
0.0045
0.0976

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4

0.2

21
22
23
24
25
26
27
28
29
30

0.0010
0.0427
0.2040
0.0655
0.1193
0.0392
0.0001
0.0057
0.0267
0.0599

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

=S

L\

S

— |

0.5

Recall

Overall average precision: 0.0789

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0183
0.1097
0.0252
0.0809
0.3229
0.0103
0.0580
0.2162
0.2321
0.0107

11
12
13
14
15
16
17
18
19
20

0.0186
0.0496
0.0001
0.0988
0.0108
0.0663
0.1635
0.1024
0.0098
0.0889

Difference from median
in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0049
0.0335
0.1977
0.1269
0.1059
0.1034
0.0001
0.0057
0.0477
0.0477

=l

oy

10

15 20

topic

25 30

230

University of Twente
utwenteln (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

X\‘\—~\

s O

0.5
Recall

Overall average precision: 0.0670

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0168
0.1091
0.0025
0.0205
0.3608
0.0019
0.0040
0.0510
0.1213
0.0018

11
12
13
14
15
16
17
18
19
20

0.0072
0.0199
0.0001
0.0600
0.0004
0.0758
0.6192
0.0387
0.0045
0.0002

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4
0.2

21
22
23
24
25
26
27
28
29
30

0.0002
0.0427
0.2393
0.0655
0.0133
0.0392
0.0001
0.0056
0.0273
0.0599

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

=

T~

— |

0

0.5

Recall

Overall average precision: 0.0592

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0168
0.1097
0.0200
0.0626
0.3218
0.0102
0.0197
0.0460
0.1166
0.0108

11
12
13
14
15
16
17
18
19
20

0.0170
0.0162
0.0001
0.0972
0.0107
0.0574
0.1635
0.0563
0.0098
0.0008

Difference from median

in average precision per topic:

1

difference from median

0.8 r
0.6 -
04 r
0.2 r

21
22
23
24
25
26
27
28
29
30

0.0036
0.0335
0.2417
0.1266
0.0120
0.1032
0.0001
0.0056
0.0377
0.0477

-

1#1Ih.

5

10

15 20

topic

25 30

231

University of Twente
utwentelpr (CAS)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

\\R—‘\,

0.5
Recall

Overall average precision: 0.1115

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0523
0.1091
0.0030
0.0373
0.3861
0.0017
0.0234
0.3191
0.2525
0.0018

11
12
13
14
15
16
17
18
19
20

0.0493
0.0809
0.0001
0.0567
0.0004
0.3324
0.4021
0.2071
0.0045
0.1580

Difference from median
in average precision per topic:

difference from median

1

0.8
0.6
0.4

0.2

21
22
23
24
25
26
27
28
29
30

0.0029
0.0427
0.1965
0.1120
0.1325
0.1386
0.0001
0.0076
0.0269
0.2061

10

15
topic

20

25 30

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

L

0.5

Recall

Overall average precision: 0.1026

Average precision per topic:

01
02
03
04
05
06
07
08
09
10

0.0523
0.1097
0.0287
0.0877
0.3320
0.0159
0.0668
0.2845
0.2376
0.0106

11
12
13
14
15
16
17
18
19
20

0.0404
0.0609
0.0001
0.0974
0.0190
0.2782
0.1083
0.1041
0.0098
0.1508

Difference from median

in average precision per topic:

1

0.2

difference from median

0.8 r
0.6 -
04 r

21
22
23
24
25
26
27
28
29
30

0.0096
0.0335
0.1926
0.2277
0.1157
0.1966
0.0001
0.0076
0.0580
0.1419

—n L

el gl

1.4

10

15
topic

20

25 30

232

Centrum voor Wiskunde en Informatica (CWI)
R_all (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

Precision
[

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0061
Average precision per topic:

31 0.0002 | 41 0.0024 | 51
32 0.0021 | 42 0.0782 | 52 0.0124
33 0.0001 | 43 0.0003 | 53 0.0004
34 0.0024 | 44 0.0005 | 54 -

35 - 45 0.0017 | 55 -

36 0.0017 | 46 0.0021 | 56 -

37 0.0032 | 47 0.0003 | 57
38 0.0023 | 48 0.0036 | 58
39 0.0004 | 49 0.0022 | 59
40 0.0088 | 50 - 60

0.0016

0.0075

0.0065

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8
5 0.6
g \"_
e
o 04

0.2

0 \

0 0.5 1

Recall
Overall average precision: 0.0189
Average precision per topic:

31 0.0035 | 41 0.0068 | 51
32 0.0097 | 42 0.1076 | 52 0.0561
33 0.0025 | 43 0.0017 | 53 0.0124
34 0.0166 | 44 0.0024 | 54 -

35 - 45 0.0290 | 55 -

36 0.0079 | 46 0.0144 | 56 -

37 0.0203 | 47 0.0029 | 57
38 0.0273 | 48 0.0339 | 58
39 0.0054 | 49 0.0072 | 59
40 0.0166 | 50 0.0064 | 60

0.0123

0.0274

0.0239

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1¢

difference from median

35 40 45 50 55 60
topic

233

Centrum voor Wiskunde en Informatica (CWI)
R_article (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
08 | 0.8
5 06 | N 5 0.6 |
8] (%)
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0520 Overall average precision: 0.0555
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0061 31 0.2265 | 41 0.0099 | 51 0.0373
32 0.0712 | 42 0.0099 | 52 0.0947 32 0.0404 | 42 0.0795 | 52 0.0459
33 0.0001 | 43 0.1695 | 53 0.0292 33 0.2552 | 43 0.0415 | 53 0.0165
34 0.0088 | 44 0.0005 | 54 - 34 0.0271 | 44 0.0027 | 54 -
35 - 45 0.1696 | 55 - 35 - 45 0.0708 | 55 -
36 0.0017 | 46 0.0359 | 56 - 36 0.0204 | 46 0.0584 | 56 -
37 0.0032 | 47 0.0742 | 57 - 37 0.0259 | 47 0.0441 | 57 -
38 0.0034 | 48 0.0390 | 58 0.1128 38 0.0302 | 48 0.0386 | 58 0.0637
39 0.0374 | 49 0.2386 | 59 - 39 0.0296 | 49 0.0391 | 59 -
40 0.0818 | 50 - 60 0.0066 40 0.0885 | 50 0.0130 | 60 0.0280
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 \ 0.4
C C
S 03| S 03}
© ©
(] (3]
S S
g 02 £ 02t
= o
o1} S 01t
o I o
g OL L i ;105) 0 h..l'llj..._.__.._;g.__;
© ©
0.1 : -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

234

Centrum voor Wiskunde en Informatica (CWI)
R_prel_length (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

A\‘k\—_;

A\x\’—ﬁ_\

0

0.5
Recall

Overall average precision: 0.0319

Average precision per topic:

difference from median

31
32
33
34
35
36
37
38
39
40

0.4

03 r

0.2 r

0.1 r

0.0002 | 41 0.0024 | 51 0.0016
0.0047 | 42 0.1516 | 52 0.0652
0.0090 | 43 0.0003 | 53 0.0349
0.0031 | 44 0.0009 | 54 -
- 45 0.0330 | 55 -
0.0373 | 46 0.2682 | 56 -
0.0130 | 47 0.0003 | 57 -
0.0039 | 48 0.0144 | 58 0.0266
0.0384 | 49 0.0087 | 59 -
0.0088 | 50 - 60 0.0065
Difference from median
in average precision per topic:
- i |
35 40 45 50 55 60

topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

\x
0 0.5
Recall

Overall average precision: 0.0423

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0070
0.0229
0.0124
0.0190

0.0560
0.0369
0.0315
0.1000
0.0169

41
42
43
44
45
46
47
48
49
50

0.0076
0.1713
0.0043
0.0029
0.0660
0.0896
0.0042
0.0634
0.0079
0.0093

Difference from median

in average precision per topic:

0.4

0.1

difference from median

03t

0.2

o-rhl o

40

51
52
53
54
55
56
57
58
59
60

0.0157
0.1805
0.0218

0.0414

0.0257

35

45 50

topic

55 60

235

CSIRO Mathematical and Information Sciences
full (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

Precision

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0026
Average precision per topic:

31 0.0002 | 41 0.0024 | 51
32 0.0002 | 42 0.0026 | 52 0.0001
33 0.0001 | 43 0.0036 | 53 0.0006
34 0.0024 | 44 0.0005 | 54 -

35 - 45 0.0034 | 55 -

36 0.0017 | 46 0.0012 | 56 -

37 0.0032 | 47 0.0003 | 57
38 0.0023 | 48 0.0030 | 58
39 0.0014 | 49 0.0004 | 59
40 0.0091 | 50 - 60

0.0016

0.0119

0.0065

Difference from median
in average precision per topic:

0.4

03

0.2

0.1}

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8
c 0.6 |
=}
7 I
o
o 04

0.2

0 L

0 0.5 1

Recall
Overall average precision: 0.0152
Average precision per topic:

31 0.0136 | 41 0.0073 | 51
32 0.0057 | 42 0.0109 | 52 0.0011
33 0.0457 | 43 0.0041 | 53 0.0108
34 0.0162 | 44 0.0040 | 54 -

35 - 45 0.0223 | 55 -

36 0.0081 | 46 0.0151 | 56 -

37 0.0208 | 47 0.0029 | 57
38 0.0278 | 48 0.0137 | 58
39 0.0043 | 49 0.0138 | 59
40 0.0228 | 50 0.0034 | 60

0.0283

0.0276

0.0353

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 ¢

difference from median

35 40 45 50 55 60
topic

236

CSIRO Mathematical and Information Sciences
manual (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

08|
506 k\
0
(8]
8
g 04

02 \

0
0 05 1

Recall
Overall average precision: 0.0398
Average precision per topic:

31 0.0214 | 41 0.0930 | 51
32 0.0021 | 42 0.0496 | 52
33 0.0001 | 43 0.0100 | 53
34 0.0566 | 44 0.0027 | 54
35 - 45 0.0017 | 55
36 0.0334 | 46 0.0157 | 56
37 0.0063 | 47 0.0050 | 57
38 0.0030 | 48 0.1894 | 58
39 0.0603 | 49 0.0796 | 59
40 0.0125 | 50 - 60

Difference from median
in average precision per topic:

0.0365
0.0396
0.0825

0.0934

0.0209

0.4
03
0.2

0.1}

oetnth,

difference from median

ol

1.

topic

35 40 45 50 55 60

Recall /precision graph:

0.8

L

Precision

0.4

o\
N

0 0.5 1
Recall

Overall average precision: 0.0464
Average precision per topic:

31 0.0300 | 41 0.1110 | 51
32 0.0369 | 42 0.0979 | 52 0.0761
33 0.0224 | 43 0.0188 | 53 0.0112
34 0.0498 | 44 0.0078 | 54 -

35 - 45 0.0190 | 55 -

36 0.0249 | 46 0.0447 | 56 -

37 0.0423 | 47 0.0259 | 57
38 0.0400 | 48 0.1130 | 58
39 0.0768 | 49 0.0292 | 59
40 0.0202 | 50 0.0348 | 60

0.0667

0.0687

0.0453

Difference from median
in average precision per topic:

0.4
03 r
0.2 r

PRI | "N P

35 40 45 50 55 60
topic

difference from median

237

CSIRO Mathematical and Information Sciences
Split (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8
5 0.6 \z\k
.
o
g
o 04

- \A\/\\

0
0 0.5 1

Recall
Overall average precision: 0.0356
Average precision per topic:

31 0.0098 | 41 0.0930
32 0.0021 | 42 0.0458
33 0.0001 | 43 0.0210
34 0.0566 | 44 0.0022
35 45 0.0041
36 46 0.1255
37 47 0.0005
38 48 0.0756
39 49 0.0532
40 50 -

51
52
53
54
55
56
57
58
59
60

0.0367
0.0167
0.0205
0.0004
0.0115

Difference from median
in average precision per topic:

0.0361
0.0605
0.0007

0.1144

0.0305

0.4
03
0.2

0.1

NNV P

difference from median

mp

35 40 45

topic

50

55

60

Recall /precision graph:

0.8

_

Precision

0.4

\

0.2

N

0 0.5
Recall

Overall average precision: 0.0447
Average precision per topic:

31 0.0205 | 41 0.1110
32 0.0368 | 42 0.0812
33 0.0146 | 43 0.0253
34 0.0498 | 44 0.0037
35 45 0.0312
36 46 0.0756
37 47 0.0078
38 48 0.0693
39 49 0.0452
40 50 0.0068

51
52
53
54
55
56
57
58
59
60

0.0475
0.0572
0.0388
0.0079
0.0194

Difference from median
in average precision per topic:

0.0624
0.1251
0.0109

0.0707

0.0551

0.4
03 r
0.2 r

0.1 ¢

: r“'ﬁ.Ll-'ﬂL

difference from median

35 40 45

topic

50

55

60

238

doctronic GmbH & Co. KG
1 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

\\k

S

0

0.5
Recall

Overall average precision: 0.0325

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0609
0.0117
0.0001
0.0228

0.0318
0.0048
0.0103
0.0086
0.0132

41
42
43
44
45
46
47
48
49
50

0.0028
0.0205
0.0806
0.0047
0.0238
0.0664
0.0169
0.0919
0.0626

Difference from median
in average precision per topic:

difference from median

0.4

03

0.2

0.1}

51
52
53
54
55
56
57
58
59
60

0.0125
0.0996
0.0186

0.0618

0.0199

35

40

45
topic

50 55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

h

\

L

0.5
Recall

Overall average precision: 0.0441

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.1520
0.0290
0.0062
0.0429

0.0307
0.0407
0.0343
0.0296
0.0310

41
42
43
44
45
46
a7
48
49
50

0.0338
0.0555
0.0436
0.0040
0.0503
0.0541
0.0244
0.0843
0.0318
0.0115

Difference from median

in average precision per topic:

0.4

difference from median

03 r
0.2 r

0.1 p

Luu.Lu-Jl

51
52
53
54
55
56
57
58
59
60

0.0385
0.1145
0.0210

0.0534

0.0424

35

40

45 50

topic

55 60

239

ETH Zurich
Augmentation0.8 (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8 |
S 06| S 06|
2 eSS = 2 \
g g
o 04 a 04
0.2 0.2
0 0 K
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0099 Overall average precision: 0.0142
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0016 31 0.0028 | 41 0.0073 | 51 0.0122
32 0.0016 | 42 0.0014 | 52 0.0001 32 0.0062 | 42 0.0048 | 52 0.0049
33 0.0001 | 43 0.0003 | 53 0.0048 33 0.0025 | 43 0.0015 | 53 0.0118
34 0.0056 | 44 0.0005 | 54 - 34 0.0171 | 44 0.0024 | 54 -
35 - 45 0.0023 | 55 - 35 - 45 0.0226 | 55 -
36 0.0017 | 46 0.0012 | 56 - 36 0.0077 | 46 0.0132 | 56 -
37 0.0032 | 47 0.1158 | 57 - 37 0.0238 | 47 0.0417 | 57 -
38 0.0025 | 48 0.0472 | 58 0.0111 38 0.0278 | 48 0.0316 | 58 0.0273
39 0.0047 | 49 0.0042 | 59 - 39 0.0098 | 49 0.0102 | 59 -
40 0.0088 | 50 - 60 0.0066 40 0.0166 | 50 0.0086 | 60 0.0259
Difference from median Difference from median
in average precision per topic: in average precision per topic:
04 0.4
e c
8 03+ S 03¢
°© °
3] (]
S E
g 02 ¢ e 0.2
S o
801+ 3 o01r
c c
g g
£ 0 — £ 0 T —
kS| = LI I I A I 5]"f‘-"l'l'_' e w
-0.1 ‘ -0.1 ‘
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

240

Quantisation: strict

IBM Haifa Labs
ManualNoMerge (CO)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

A

0.5
Recall

Overall average precision: 0.0434

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0271
0.0109
0.0001
0.0316

0.0033
0.0032
0.0095
0.0048
0.1113

41
42
43
44
45
46
47
48
49
50

0.0031
0.0139
0.1805
0.0047
0.0019
0.0012
0.1893
0.1123
0.2532

Difference from median
in average precision per topic:

difference from median

0.4

03

0.2

0.1}

51
52
53
54
55
56
57
58
59
60

0.0033
0.0001
0.0006

0.0246

0.0067

al

35

40

45
topic

50

55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

\

N

0

0.5

Recall

Overall average precision: 0.0337

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0792
0.0389
0.0496
0.0312

0.0152
0.0262
0.0444
0.0087
0.0994

41
42
43
44
45
46
a7
48
49
50

0.0220
0.0198
0.0308
0.0049
0.0217
0.0144
0.0830
0.0719
0.0266
0.0167

Difference from median

in average precision per topic:

0.4

difference from median

03 r

0.2 r

0.1 ¢

51
52
53
54
55
56
57
58
59
60

0.0320
0.0013
0.0111

0.0356

0.0246

35

40

45 50

topic

55 60

241

IBM Haifa Labs
Merge (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

0
(8]
g
o 04

0

0 0.5 1
Recall

Overall average precision: 0.0496
Average precision per topic:

31 0.0338 | 41 0.0032 | 51
32 0.0054 | 42 0.0089 | 52 0.0663
33 0.0001 | 43 0.0948 | 53 0.0388
34 0.0334 | 44 0.0074 | 54 -

35 - 45 0.0108 | 55 -

36 0.0087 | 46 0.1312 | 56 -

37 0.0098 | 47 0.1254 | 57
38 0.0137 | 48 0.1615 | 58
39 0.0355 | 49 0.2877 | 59
40 0.0321 | 50 - 60

0.0143

0.0111

0.0067

Difference from median
in average precision per topic:

0.4

03

0.2

0.1}

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8

Precision

0.4 \\
0.2

0 0.5 1
Recall

Overall average precision: 0.0404
Average precision per topic:

31 0.0788 | 41 0.0232 | 51
32 0.0360 | 42 0.0341 | 52 0.0361
33 0.0229 | 43 0.0408 | 53 0.0234
34 0.0548 | 44 0.0042 | 54 -

35 - 45 0.0318 | 55 -

36 0.0323 | 46 0.0673 | 56 -

37 0.0544 | 47 0.0646 | 57
38 0.0422 | 48 0.1137 | 58
39 0.0178 | 49 0.0405 | 59
40 0.0409 | 50 0.0256 | 60

0.0324

0.0272

0.0246

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 ¢

difference from median

35 40 45 50 55 60
topic

242

IBM Haifa Labs
NoMerge (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

Precision
o
[e)]

T

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0367
Average precision per topic:

31 0.0271 | 41 0.0031 | 51
32 0.0109 | 42 0.0014 | 52 0.0005
33 0.0001 | 43 0.2003 | 53 0.0011
34 0.0398 | 44 0.0074 | 54 -

35 - 45 0.0019 | 55 -

36 0.0027 | 46 0.0083 | 56 -

37 0.0032 | 47 0.0917 | 57
38 0.0045 | 48 0.0476 | 58
39 0.0048 | 49 0.2532 | 59
40 0.1113 | 50 - 60

0.0055

0.0107

0.0067

Difference from median
in average precision per topic:

0.4

03

0.2

0.1}

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8

06 | k

N
.

0 0.5 1
Recall

Precision

0

Overall average precision: 0.0309
Average precision per topic:

31 0.0792 | 41 0.0220 | 51
32 0.0389 | 42 0.0049 | 52 0.0017
33 0.0506 | 43 0.0318 | 53 0.0119
34 0.0368 | 44 0.0049 | 54 -

35 - 45 0.0213 | 55 -

36 0.0098 | 46 0.0224 | 56 -

37 0.0277 | 47 0.0660 | 57
38 0.0328 | 48 0.0489 | 58
39 0.0087 | 49 0.0266 | 59
40 0.0994 | 50 0.0136 | 60

0.0302

0.0271

0.0246

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 ¢

difference from median

35 40 45 50 55 60
topic

243

Institut de Recherche en Informatique de Toulouse (IRIT)
Mercurel (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

M

0

0.5
Recall

Overall average precision: 0.0058

Average precision per topic:

difference from median

31
32
33
34
35
36
37
38
39
40

0.4

03 r

0.2 r

0.1 r

0.0002 | 41 0.0024 | 51 0.0038
0.0002 | 42 0.0233 | 52 0.0306
0.0001 | 43 0.0003 | 53 0.0062
0.0024 | 44 0.0016 | 54 -
- 45 0.0055 | 55 -
0.0017 | 46 0.0179 | 56 -
0.0032 | 47 0.0003 | 57 -
0.0035 | 48 0.0030 | 58 0.0072
0.0004 | 49 0.0035 | 59 -
0.0091 | 50 - 60 0.0065
Difference from median
in average precision per topic:
- "JF—III - LI
35 40 45 50 55 60

topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

o

0

0.5
Recall

Overall average precision: 0.0224

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.4

difference from median

03t

0.2

0.1¢

0.1177 | 41 0.0091 | 51 0.0178
0.0056 | 42 0.0395 | 52 0.0222
0.0026 | 43 0.0015 | 53 0.0141
0.0154 | 44 0.0036 | 54 -
- 45 0.0246 | 55 -
0.0194 | 46 0.0714 | 56 -
0.0203 | 47 0.0029 | 57 -
0.0331 | 48 0.0138 | 58 0.0253
0.0026 | 49 0.0166 | 59 -
0.0172 | 50 0.0168 | 60 0.0242
Difference from median
in average precision per topic:
l“fﬁ—'lm—-'l“ el
35 40 45 50 55 60
topic

244

Nara Institute of Science and Technology
20020824-article (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

N

S

0.5
Recall

Overall average precision: 0.0445

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0304
0.0001
0.0493

0.0024
0.0032
0.0023
0.0180
0.0503

41
42
43
44
45
46
47
48
49
50

0.0024
0.0237
0.1251
0.0074
0.1151
0.0553
0.1024
0.0335
0.1256

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

51
52
53
54
55
56
57
58
59
60

0.0114
0.1587
0.0153

0.0850

0.0070

TR

35

40

45
topic

50 55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5
Recall

Overall average precision: 0.0461

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.4

difference from median

03t

0.2

0.1 ¢

0.2432 | 41 0.0086 | 51 0.0351
0.0247 | 42 0.0601 | 52 0.0481
0.0433 | 43 0.0369 | 53 0.0158
0.0507 | 44 0.0103 | 54 -
- 45 0.0648 | 55 -
0.0199 | 46 0.0399 | 56 -
0.0325 | 47 0.0291 | 57 -
0.0370 | 48 0.0368 | 58 0.0637
0.0328 | 49 0.0174 | 59 -
0.1104 | 50 0.0109 | 60 0.0349
Difference from median
in average precision per topic:
_.A-I'_LL__LJJL
35 40 45 50 55 60
topic

245

Queen Mary University of London
QMUL1 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

_——. |
0.5 1
Recall

Overall average precision: 0.0071

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0006
0.0001
0.0024

0.0097
0.0037
0.0038
0.0004
0.0091

41
42
43
44
45
46
47
48
49
50

0.0288 | 51 0.0164
0.0564 | 52 0.0001
0.0003 | 53 0.0004
0.0005 | 54 -
0.0017 | 55 -
0.0017 | 56 -
0.0003 | 57 -
0.0032 | 58 0.0100
0.0013 | 59 -

- 60 0.0117

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

0 0.5 1
Recall

Overall average precision: 0.0194

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0029
0.0219
0.0025
0.0229

0.0133
0.0212
0.0294
0.0026
0.0173

41
42
43
44
45
46
47
48
49
50

0.0190 | 51
0.0741 | 52
0.0016 | 53
0.0024 | 54
0.0260 | 55
0.0192 | 56
0.0030 | 57
0.0234 | 58
0.0076 | 59
0.0325 | 60

Difference from median
in average precision per topic:

0.4

difference from median

03t

0.2

0.1¢

0.0152
0.0176
0.0121

0.0500

0.0269

35

40

45 50
topic

55 60

246

Quantisation: strict

Queen Mary University of London
QMUL2 (CO)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

Kk

0

0.5

Recall

Overall average precision: 0.0163

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0281 | 41
0.0188 | 42
0.0001 | 43
0.0043 | 44
- 45
0.0329 | 46
0.0033 | 47
0.0031 | 48
0.0052 | 49
0.0116 | 50

0.0028
0.0280
0.0046
0.0008
0.0017
0.0189
0.0612
0.0518
0.0364

Difference from median

in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

51
52
53
54
55
56
57
58
59
60

0.0040
0.0135
0.0167

0.0202

0.0072

35 40

45 50

topic

55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

N

0

0.5
Recall

Overall average precision: 0.0275

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0346
0.0186
0.0042
0.0191

0.0123
0.0239
0.0308
0.0087
0.0193

41
42
43
44
45
46
47
48
49
50

0.0777
0.0962
0.0050
0.0025
0.0296
0.0211
0.0273
0.0477
0.0258
0.0178

Difference from median
in average precision per topic:

0.4

difference from median

03t

0.2

0.1¢

51
52
53
54
55
56
57
58
59
60

0.0212
0.0383
0.0137

0.0381

0.0269

35

40

45
topic

50

55 60

247

Queen Mary University of London
QMULS3 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

RSSS = =S
J\\
0.5 1
Recall

Overall average precision: 0.0077

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0017
0.0001
0.0024

0.0232
0.0037
0.0036
0.0020
0.0091

41
42
43
44
45
46
47
48
49
50

0.0111 | 51 0.0107
0.0476 | 52 0.0001
0.0003 | 53 0.0004
0.0005 | 54 -
0.0017 | 55 -
0.0239 | 56 -
0.0003 | 57 -
0.0032 | 58 0.0169
0.0013 | 59 -

- 60 0.0123

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

35

40

45 50 55 60
topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

.

0

0.5
Recall

Overall average precision: 0.0232

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0029
0.0240
0.0025
0.0227

0.0165
0.0213
0.0291
0.0034
0.0173

41
42
43
44
45
46
47
48
49
50

0.0490
0.1088
0.0016
0.0024
0.0260
0.0307
0.0030
0.0234
0.0078
0.0229

Difference from median
in average precision per topic:

0.4

difference from median

03t

0.2

0.1¢

51
52
53
54
55
56
57
58
59
60

0.0209
0.0235
0.0122

0.0569

0.0279

35

40

45
topic

50

55 60

248

Quantisation: strict

Queensland University of Technology
iInexresult2.xml (CO)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

S

\

R

0.5
Recall

Overall average precision: 0.0627

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0564
0.0001
0.0081

0.0023
0.0032
0.0036
0.0230
0.0321

41
42
43
44
45
46
47
48
49
50

0.0024
0.0128
0.2508
0.0010
0.0907
0.0018
0.3592
0.0631
0.3304

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

51
52
53
54
55
56
57
58
59
60

0.0035
0.0748
0.0836

0.0322

0.0066

35

40

45
topic

50

55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5
Recall

Overall average precision: 0.0385

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.4

difference from median

03t

0.2

0.1 ¢

0.1062 | 41 0.0186 | 51 0.0233
0.0308 | 42 0.0183 | 52 0.0171
0.1144 | 43 0.0729 | 53 0.0166
0.0173 | 44 0.0030 | 54 -
- 45 0.0558 | 55 -
0.0194 | 46 0.0211 | 56 -
0.0277 | 47 0.1037 | 57 -
0.0337 | 48 0.0457 | 58 0.0284
0.0391 | 49 0.0180 | 59 -
0.0641 | 50 0.0037 | 60 0.0243
Difference from median
in average precision per topic:
]-Ir4l-_ll_l_l- -
35 40 45 50 55 60
topic

249

Queensland University of Technology
inexresultsl.xml (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

-

0.4

N _—\;
0
0 0.5 1
Recall

Precision

Overall average precision: 0.0356
Average precision per topic:

31 0.0002 | 41 0.0024 | 51
32 0.0283 | 42 0.0289 | 52 0.0054
33 0.0001 | 43 0.1945 | 53 0.0496
34 0.0189 | 44 0.0005 | 54 -

35 - 45 0.1205 | 55 -

36 0.0028 | 46 0.0018 | 56 -

37 0.0032 | 47 0.0687 | 57
38 0.0045 | 48 0.0503 | 58
39 0.0263 | 49 0.1651 | 59
40 0.0121 | 50 - 60

0.0021

0.0268

0.0066

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8

06 | L

0.4

ool
_

0 0.5 1
Recall

Precision

0

Overall average precision: 0.0275
Average precision per topic:

31 0.0875 | 41 0.0107 | 51
32 0.0272 | 42 0.0341 | 52 0.0055
33 0.0236 | 43 0.0439 | 53 0.0148
34 0.0187 | 44 0.0024 | 54 -

35 - 45 0.0577 | 55 -

36 0.0142 | 46 0.0205 | 56 -

37 0.0223 | 47 0.0146 | 57
38 0.0373 | 48 0.0440 | 58
39 0.0423 | 49 0.0103 | 59
40 0.0419 | 50 0.0035 | 60

0.0305

0.0284

0.0243

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1 ¢

difference from median

35 40 45 50 55 60
topic

250

Quantisation: strict

Queensland University of Technology
inexresults3.xml (CO)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

N

B

T

0.5
Recall

Overall average precision: 0.0590

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0496
0.0001
0.0081

0.0023
0.0032
0.0036
0.0223
0.0325

41
42
43
44
45
46
47
48
49
50

0.0024
0.0129
0.2174
0.0007
0.0907
0.0018
0.3347
0.0645
0.3304

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

51
52
53
54
55
56
57
58
59
60

0.0035
0.0582
0.0794

0.0322

0.0066

35

40

45
topic

50

55 60

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0379

Average precision per topic:

difference from median

31
32
33
34
35
36
37
38
39
40

0.4

03t

0.2

0.1 ¢

0.1071 | 41 0.0166 | 51 0.0232
0.0307 | 42 0.0184 | 52 0.0119
0.1064 | 43 0.0733 | 53 0.0164
0.0173 | 44 0.0027 | 54 -
- 45 0.0541 | 55 -
0.0188 | 46 0.0211 | 56 -
0.0280 | 47 0.1013 | 57 -
0.0333 | 48 0.0465 | 58 0.0284
0.0392 | 49 0.0180 | 59 -
0.0681 | 50 0.0036 | 60 0.0243
Difference from median
in average precision per topic:
[N
35 40 45 50 55 60
topic

251

Royal School of Library and Information Science
bag-of-words (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 5 06
o] @
2 2
a 04 \\\\ o 04 \
0.2 k_\‘_\\ 0.2 R
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0809 Overall average precision: 0.0618
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0275 31 0.2535 |41 0.0392 | 51 0.0386
32 0.0487 | 42 0.0215 | 52 0.2325 32 0.0262 | 42 0.0134 | 52 0.0349
33 0.0001 | 43 0.3109 | 53 0.0780 33 0.1360 | 43 0.0793 | 53 0.0168
34 0.0511 | 44 0.0022 | 54 - 34 0.0688 | 44 0.0059 | 54 -
35 - 45 0.0715 | 55 - 35 - 45 0.0432 | 55 -
36 0.0021 | 46 0.0201 | 56 - 36 0.0213 | 46 0.0312 | 56 -
37 0.0032 | 47 0.2379 | 57 - 37 0.0351 | 47 0.1079 | 57 -
38 0.0039 | 48 0.0641 | 58 0.1219 38 0.0395 | 48 0.0449 | 58 0.0739
39 0.0689 | 49 0.2376 | 59 - 39 0.0620 | 49 0.0305 | 59 -
40 0.2465 | 50 - 60 0.0077 40 0.2356 | 50 0.0085 | 60 0.0367
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 ‘ 0.4
c c
8 03¢} 8 03¢
© e}
Q ()
= =
g 02 £ 02}
o 2
801+] 8 o01r
c c
o o
g OJJ J‘; ;105) 0 IJ-,_...I—;gl_lL
© ©
0.1 ‘ -0.1 ‘
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

252

Royal School of Library and Information Science
boomerang (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
S 06 5 06
T 04 a 04
0.2 0.2
; /\mﬂh . \
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0231 Overall average precision: 0.0227
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0016 31 0.0029 | 41 0.0068 | 51 0.0137
32 0.0002 | 42 0.0014 | 52 0.0001 32 0.0056 | 42 0.0048 | 52 0.0010
33 0.0001 | 43 0.0225 | 53 0.0011 33 0.0025 | 43 0.0080 | 53 0.0107
34 0.0228 | 44 0.0005 | 54 - 34 0.0437 | 44 0.0024 | 54 -
35 - 45 0.0017 | 55 - 35 - 45 0.0166 | 55 -
36 0.0017 | 46 0.0012 | 56 - 36 0.0080 | 46 0.0120 | 56 -
37 0.0032 | 47 0.2482 | 57 - 37 0.0253 | 47 0.0631 | 57 -
38 0.0026 | 48 0.0065 | 58 0.0170 38 0.0387 | 48 0.0179 | 58 0.0309
39 0.0012 | 49 0.0076 | 59 - 39 0.0103 | 49 0.0111 | 59 -
40 0.1810 | 50 - 60 0.0065 40 0.1815 | 50 0.0034 | 60 0.0241
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
c c
8 03¢} 8 03+
© e}
Q ()
= =
g 02 £ 02t
o 2
801+ 8 o01r
c c
o o
g olom 1 2
5 - — ——I-*‘-* =]“l - -
0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

253

Royal School of Library and Information Science

polyrepresentation (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

S

Hb_\‘\

0

0.5
Recall

Overall average precision: 0.0313

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0091
0.0001
0.0453

0.0017
0.0032
0.0044
0.0080
0.1702

41
42
43
44
45
46
47
48
49
50

0.0024
0.0021
0.1154
0.0005
0.0173
0.0026
0.0943
0.0472
0.0197

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

54
55
56
57

59

51 0.0065
52 0.1234
53 0.0218

58 0.0174

60 0.0066

1.

HL[L#

|
35 40 45 50 55 60
topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

R

S

0

0.5
Recall

Overall average precision: 0.0271

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0512
0.0115
0.0055
0.0431

0.0121
0.0253
0.0327
0.0113
0.1597

41
42
43
44
45
46
47
48
49
50

0.0085
0.0050
0.0257
0.0031
0.0231
0.0148
0.0561
0.0329
0.0168
0.0044

Difference from median
in average precision per topic:

0.4

difference from median

03t

0.2

0.1¢

51
52
53
54
55
56
57
58
59
60

0.0210
0.0163
0.0126

0.0305

0.0260

35

40

45
topic

50

55 60

254

Salzburg Research Forschungsgesellschaft
1-corrected (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

0.6 |

Precision

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0037
Average precision per topic:

31 0.0002 | 41 0.0024 | 51
32 0.0002 | 42 0.0014 | 52 0.0001
33 0.0001 | 43 0.0003 | 53 0.0004
34 0.0025 | 44 0.0005 | 54 -

35 - 45 0.0017 | 55 -

36 0.0017 | 46 0.0012 | 56 -

37 0.0032 | 47 0.0395 | 57
38 0.0023 | 48 0.0030 | 58
39 0.0004 | 49 0.0004 | 59
40 0.0088 | 50 - 60

0.0016

0.0072

0.0065

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0120
Average precision per topic:

31 0.0028 | 41 0.0069 | 51
32 0.0056 | 42 0.0049 | 52 0.0010
33 0.0025 | 43 0.0015 | 53 0.0106
34 0.0156 | 44 0.0024 | 54 -

35 - 45 0.0166 | 55 -

36 0.0078 | 46 0.0117 | 56 -

37 0.0227 | 47 0.0427 | 57
38 0.0270 | 48 0.0138 | 58
39 0.0026 | 49 0.0070 | 59
40 0.0166 | 50 0.0034 | 60

0.0120

0.0250

0.0241

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1 ¢

difference from median

35 40 45 50 55 60
topic

255

Sejong Cyber University
TitleKeywordsWLErr (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
08 | 0.8
S 06 5 06 k
& 04 & 04
0.2 0.2 \\\g
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0340 Overall average precision: 0.0582
Average precision per topic: Average precision per topic:
31 0.0055 | 41 0.0307 | 51 0.0087 31 0.0163 | 41 0.0729 | 51 0.0321
32 0.0094 | 42 0.1151 | 52 0.0924 32 0.0490 | 42 0.1843 | 52 0.2645
33 0.0001 | 43 0.0060 | 53 0.0149 33 0.0040 | 43 0.0126 | 53 0.0214
34 0.0218 | 44 0.0009 | 54 - 34 0.0535 | 44 0.0028 | 54 -
35 - 45 0.0019 | 55 - 35 - 45 0.0355 | 55 -
36 0.0674 | 46 0.0420 | 56 - 36 0.0784 | 46 0.0500 | 56 -
37 0.0488 | 47 0.0194 | 57 - 37 0.0808 | 47 0.0222 | 57 -
38 0.0416 | 48 0.1186 | 58 0.0446 38 0.0485 | 48 0.1326 | 58 0.0638
39 0.0043 | 49 0.0476 | 59 - 39 0.0301 | 49 0.0209 | 59 -
40 0.0120 | 50 - 60 0.0284 40 0.0195 | 50 0.0497 | 60 0.0506
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
C C
S 03| S 03}
© ©
(] (0]
S S
g 02 £ 02t
= =
o1}] S 01t
o o
S yla m I..1IIrJ-Ir;L4-_l 2 o mt _ma
© ©
-0.1 ‘ -0.1 ‘
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

256

Tarragon Consulting Corporation
tgnCO_base (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

0.6 \\
0.4 \
0.2

0 0.5 1
Recall

Precision

Overall average precision: 0.0500
Average precision per topic:

31 0.0002 | 41 0.0024 | 51
32 0.0390 | 42 0.0237 | 52 0.1565
33 0.0001 | 43 0.1694 | 53 0.0376
34 0.0319 | 44 0.0005 | 54 -

35 - 45 0.0264 | 55 -

36 0.0017 | 46 0.0559 | 56 -

37 0.0032 | 47 0.0354 | 57
38 0.0027 | 48 0.0601 | 58
39 0.0464 | 49 0.2188 | 59
40 0.1239 | 50 - 60

0.0664

0.0413

0.0066

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

S 1 A

35 40 45 50 55 60
topic

difference from median

Recall /precision graph:

0.6

ol
2l

0 0.5 1
Recall

Precision

Overall average precision: 0.0435
Average precision per topic:

31 0.0759 | 41 0.0380 | 51
32 0.0227 | 42 0.0429 | 52 0.0465
33 0.1284 | 43 0.0276 | 53 0.0109
34 0.0430 | 44 0.0025 | 54 -

35 - 45 0.0284 | 55 -

36 0.0271 | 46 0.0743 | 56 -

37 0.0315 | 47 0.0177 | 57
38 0.0296 | 48 0.0446 | 58
39 0.0489 | 49 0.0346 | 59
40 0.1410 | 50 0.0121 | 60

0.0474

0.0337

0.0347

Difference from median
in average precision per topic:

0.4

03t

0.2

0-: ;Ju_II-.LJ.-u- -

35 40 45 50 55 60
topic

difference from median

257

Universitat Bayreuth
IRStream (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 \ 506
8] (%)
2 N 2
o 04 i 04 ‘\
N \L\,\R\&\ N K
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0329 Overall average precision: 0.0392
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0317 31 0.1520 | 41 0.0335 | 51 0.0165
32 0.0029 | 42 0.0253 | 52 0.0203 32 0.0106 | 42 0.0544 | 52 0.0167
33 0.0001 | 43 0.1624 | 53 0.0055 33 0.1130 | 43 0.0357 | 53 0.0140
34 0.0406 | 44 0.0005 | 54 - 34 0.0531 | 44 0.0034 | 54 -
35 - 45 0.0284 | 55 - 35 - 45 0.0314 | 55 -
36 0.0017 | 46 0.0547 | 56 - 36 0.0079 | 46 0.0683 | 56 -
37 0.0032 | 47 0.0055 | 57 - 37 0.0327 | 47 0.0037 | 57 -
38 0.0033 | 48 0.0146 | 58 0.0315 38 0.0367 | 48 0.0273 | 58 0.0346
39 0.0288 | 49 0.2188 | 59 - 39 0.0431 | 49 0.0271 | 59 -
40 0.0669 | 50 - 60 0.0065 40 0.0924 | 50 0.0090 | 60 0.0248
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
c c
8 03¢} 8 03¢
el e}
Q ()
= =
g 02 £ 02t
o 2
801+ 8 o01r
o & II
g OTl J-— “GE) 0 f‘.L—Ll.-- -
© ©
0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

258

Universitat Dortmund / Universitat Duisburg-Essen
Epros03 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0883

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.2503
0.0544
0.0001
0.0477

0.0100
0.0032
0.0061
0.0385
0.0945

41
42
43
44
45
46
47
48
49
50

0.0024
0.0641
0.2762
0.0029
0.1300
0.0539
0.1111
0.0594
0.2504

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 f

0.1 H

51
52
53
54
55
56
57
58
59
60

0.0575
0.2964
0.0489

0.1635

0.0085

35

40

45
topic

50

55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0.5
Recall

Overall average precision: 0.0705

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.4

difference from median

03t

0.2

0.1 ¢

0.2592 | 41 0.0126 | 51 0.0560
0.0377 | 42 0.1284 | 52 0.2394
0.0878 | 43 0.0735 | 53 0.0204
0.0637 | 44 0.0070 | 54 -
- 45 0.0616 | 55 -
0.0380 | 46 0.0476 | 56 -
0.0353 | 47 0.0836 | 57 -
0.0415 | 48 0.0452 | 58 0.0900
0.0465 | 49 0.0310 | 59 -
0.1361 | 50 0.0153 | 60 0.0346
Difference from median
in average precision per topic:
el Al 1
35 40 45 50 55 60
topic

259

Universitat Dortmund / Universitat Duisburg-Essen
Epros06 (CO)

Quantisation: strict Quantisation: generalised

Recall /precision graph: Recall /precision graph:

0.8 0.8

. e
N, |
AN

0.6

Precision
Precision

0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0670 Overall average precision: 0.0635
Average precision per topic: Average precision per topic:
31 0.0794 | 41 0.0024 | 51 0.0262 31 0.3241 | 41 0.0105 | 51 0.0440
32 0.0776 | 42 0.0442 | 52 0.3055 32 0.0271 | 42 0.0900 | 52 0.2107
33 0.0001 | 43 0.2115 | 53 0.0471 33 0.1116 | 43 0.0483 | 53 0.0204
34 0.0308 | 44 0.0016 | 54 - 34 0.0507 | 44 0.0064 | 54 -
35 - 45 0.1133 | 55 - 35 - 45 0.0518 | 55 -
36 0.0030 | 46 0.0155 | 56 - 36 0.0213 | 46 0.0293 | 56 -
37 0.0032 | 47 0.1338 | 57 - 37 0.0308 | 47 0.0773 | 57 -
38 0.0057 | 48 0.0443 | 58 0.1195 38 0.0376 | 48 0.0409 | 58 0.0741
39 0.0205 | 49 0.1652 | 59 - 39 0.0284 | 49 0.0296 | 59 -
40 0.0829 | 50 - 60 0.0078 40 0.1127 | 50 0.0148 | 60 0.0327
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
c c
8 03¢} & 03+
© e}
Q ()
= =
g 02 c 02 H
o 2
801+] 8 o01r
c c
: . Ny
g 0 | :105) 0 ___-I'I._._l_-. e
© ©
0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

260

Universitat Dortmund / Universitat Duisburg-Essen
plain hyrex (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

06 | \\\\

0.4
02|\

S

0 0.5 1
Recall

Precision

Overall average precision: 0.0556
Average precision per topic:

31 0.0311 | 41 0.0024 | 51
32 0.0332 | 42 0.0669 | 52 0.2197
33 0.0001 | 43 0.1368 | 53 0.0065
34 0.0703 | 44 0.0017 | 54 -

35 - 45 0.0319 | 55 -

36 0.0057 | 46 0.0241 | 56 -

37 0.0032 | 47 0.1340 | 57
38 0.0044 | 48 0.1194 | 58
39 0.0493 | 49 0.1514 | 59
40 0.0502 | 50 - 60

0.0120

0.1168

0.0085

Difference from median
in average precision per topic:

0.4

03 r

35 40 45 50 55 60
topic

difference from median

Recall /precision graph:

0.8

0.6
0.4 \\
0.2

0 0.5 1
Recall

Precision

Overall average precision: 0.0572
Average precision per topic:

31 0.2065 | 41 0.0109 | 51
32 0.0314 | 42 0.1354 | 52 0.1597
33 0.0236 | 43 0.0447 | 53 0.0142
34 0.0663 | 44 0.0045 | 54 -

35 - 45 0.0426 | 55 -

36 0.0429 | 46 0.0470 | 56 -

37 0.0385 | 47 0.0671 | 57
38 0.0386 | 48 0.0808 | 58
39 0.0432 | 49 0.0289 | 59
40 0.0881 | 50 0.0234 | 60

0.0245

0.0785

0.0320

Difference from median
in average precision per topic:

0.4

03t

0.2

o T

35 40 45 50 55 60
topic

difference from median

261

Université Pierre et Marie Curie
bayes-2 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

Precision

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0023
Average precision per topic:

31 0.0002 | 41 0.0024 | 51
32 0.0002 | 42 0.0029 | 52 0.0001
33 0.0001 | 43 0.0003 | 53 0.0031
34 0.0024 | 44 0.0005 | 54 -

35 - 45 0.0019 | 55 -

36 0.0017 | 46 0.0020 | 56 -

37 0.0032 | 47 0.0003 | 57
38 0.0028 | 48 0.0030 | 58
39 0.0004 | 49 0.0004 | 59
40 0.0088 | 50 - 60

0.0016

0.0072

0.0065

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8
15 0.6
(%]
2 A
g
a 04

0.2

0
0 0.5 1

Recall
Overall average precision: 0.0115
Average precision per topic:

31 0.0028 | 41 0.0073 | 51
32 0.0056 | 42 0.0289 | 52 0.0010
33 0.0025 | 43 0.0015 | 53 0.0113
34 0.0156 | 44 0.0024 | 54 -

35 - 45 0.0196 | 55 -

36 0.0077 | 46 0.0119 | 56 -

37 0.0202 | 47 0.0029 | 57
38 0.0300 | 48 0.0138 | 58
39 0.0026 | 49 0.0072 | 59
40 0.0166 | 50 0.0035 | 60

0.0120

0.0253

0.0242

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1¢

difference from median

35 40 45 50 55 60
topic

262

Université Pierre et Marie Curie
bayes-3 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8

Precision

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0023
Average precision per topic:

31 0.0002 | 41 0.0027 | 51
32 0.0002 | 42 0.0081 | 52 0.0001
33 0.0001 | 43 0.0003 | 53 0.0004
34 0.0024 | 44 0.0005 | 54 -

35 - 45 0.0017 | 55 -

36 0.0017 | 46 0.0012 | 56 -

37 0.0032 | 47 0.0003 | 57
38 0.0023 | 48 0.0030 | 58
39 0.0004 | 49 0.0004 | 59
40 0.0088 | 50 - 60

0.0016

0.0072

0.0066

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8

Precision

0.4

0.2

0 0.5 1
Recall

Overall average precision: 0.0117
Average precision per topic:

31 0.0028 | 41 0.0070 | 51
32 0.0056 | 42 0.0416 | 52 0.0010
33 0.0025 | 43 0.0015 | 53 0.0106
34 0.0155 | 44 0.0024 | 54 -

35 - 45 0.0167 | 55 -

36 0.0077 | 46 0.0117 | 56 -

37 0.0202 | 47 0.0029 | 57
38 0.0269 | 48 0.0139 | 58
39 0.0026 | 49 0.0071 | 59
40 0.0166 | 50 0.0034 | 60

0.0120

0.0252

0.0242

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1¢

difference from median

35 40 45 50 55 60
topic

263

Quantisation: strict

Université Pierre et Marie Curie
simple (CO)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

L=
0 0.5 1
Recall

Overall average precision: 0.0055

Average precision per topic:

difference from median

31
32
33
34
35
36
37
38
39
40

0.4

03 r

0.2 r

0.1 r

0.0002 | 41 0.0051 | 51 0.0016
0.0002 | 42 0.0134 | 52 0.0001
0.0001 | 43 0.0007 | 53 0.0004
0.0027 | 44 0.0005 | 54 -
- 45 0.0017 | 55 -
0.0318 | 46 0.0012 | 56 -
0.0032 | 47 0.0003 | 57 -
0.0058 | 48 0.0084 | 58 0.0179
0.0004 | 49 0.0073 | 59 -
0.0091 | 50 - 60 0.0139
Difference from median
in average precision per topic:
- L"T"IIITFTL
35 40 45 50 55 60

topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

0 0.5 1
Recall

Overall average precision: 0.0181

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0030
0.0161
0.0025
0.0243

0.0190
0.0203
0.0311
0.0027
0.0183

41
42
43
44
45
46
47
48
49
50

0.0081 | 51
0.0601 | 52
0.0024 | 53
0.0028 | 54
0.0310 | 55
0.0149 | 56
0.0030 | 57
0.0307 | 58
0.0133 | 59
0.0195 | 60

Difference from median
in average precision per topic:

0.4

difference from median

03t

0.2

0.1¢

0.0126
0.0198
0.0108

0.0387

0.0288

35

40

45 50
topic

55 60

264

University of Amsterdam
UAmMsIO2NGIiSt (CO)

Quantisation: strict Quantisation: generalised

Recall /precision graph: Recall /precision graph:

0.8 0.8

g i
S~

Precision
Precision

0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0532 Overall average precision: 0.0554
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0019 31 0.0960 | 41 0.0552 | 51 0.0225
32 0.0948 | 42 0.0097 | 52 0.0386 32 0.0169 | 42 0.0795 | 52 0.0181
33 0.0001 | 43 0.1555 | 53 0.0211 33 0.2054 | 43 0.0437 | 53 0.0227
34 0.0222 | 44 0.0074 | 54 - 34 0.0316 | 44 0.0034 | 54 -
35 - 45 0.2578 | 55 - 35 - 45 0.0949 | 55 -
36 0.0027 | 46 0.0350 | 56 - 36 0.0237 | 46 0.0520 | 56 -
37 0.0032 | 47 0.1973 | 57 - 37 0.0336 | 47 0.0709 | 57 -
38 0.0042 | 48 0.0207 | 58 0.1117 38 0.0422 | 48 0.0232 | 58 0.0725
39 0.0813 | 49 0.0443 | 59 - 39 0.0701 | 49 0.0291 | 59 -
40 0.1035 | 50 - 60 0.0072 40 0.1642 | 50 0.0124 | 60 0.0446
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 \ 0.4
c c
8 03¢} 8 03+
el e}
Q ()
= =
g 02 £ 02t
o 2
801+ 8 o01r]
c c
: . 1. 1 | :
g 0 - il ;105) 0 A;-II..._III.- - | 1
© ©
0.1 : -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

265

University of Amsterdam
UAmMsIO2NGram (CO)

Quantisation: strict Quantisation: generalised

Recall /precision graph: Recall /precision graph:

0.8 0.8

1A
ol l\
*L

0.6

Precision
Precision

0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0592 Overall average precision: 0.0546
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0039 31 0.0062 | 41 0.0559 | 51 0.0347
32 0.0799 | 42 0.0085 | 52 0.0057 32 0.0154 | 42 0.0705 | 52 0.0052
33 0.0001 | 43 0.1457 | 53 0.0094 33 0.2241 | 43 0.0390 | 53 0.0180
34 0.0103 | 44 0.0036 | 54 - 34 0.0249 | 44 0.0041 | 54 -
35 - 45 0.2519 | 55 - 35 - 45 0.0925 | 55 -
36 0.0024 | 46 0.0354 | 56 - 36 0.0222 | 46 0.0556 | 56 -
37 0.0032 | 47 0.2423 | 57 - 37 0.0317 | 47 0.0881 | 57 -
38 0.0043 | 48 0.0187 | 58 0.1022 38 0.0428 | 48 0.0228 | 58 0.0696
39 0.0785 | 49 0.1156 | 59 - 39 0.0647 | 49 0.0340 | 59 -
40 0.2311 | 50 - 60 0.0071 40 0.2366 | 50 0.0096 | 60 0.0423
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 ‘ ‘ 0.4
c c
8 03¢} 8 03+
el e}
Q ()
= =
g 02 £ 02t
o 2
8 o1 $ 01
o I I o
(V) ()
i - 1
£ 0 L £ 0 a
0.1 ‘ ‘ -0.1 ‘
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

266

University of Amsterdam
UAmMsI02Stem (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 \ 506
o] @
2 N 2
& 04 & 04 \\
02\ 0.2 g
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0385 Overall average precision: 0.0466
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0016 31 0.2597 | 41 0.0473 | 51 0.0131
32 0.0880 | 42 0.0148 | 52 0.0920 32 0.0195 | 42 0.0777 | 52 0.0348
33 0.0001 | 43 0.1087 | 53 0.0211 33 0.0389 | 43 0.0388 | 53 0.0174
34 0.0266 | 44 0.0074 | 54 - 34 0.0556 | 44 0.0046 | 54 -
35 - 45 0.2585 | 55 - 35 - 45 0.0951 | 55 -
36 0.0032 | 46 0.0337 | 56 - 36 0.0258 | 46 0.0429 | 56 -
37 0.0032 | 47 0.0003 | 57 - 37 0.0360 | 47 0.0035 | 57 -
38 0.0035 | 48 0.0248 | 58 0.1073 38 0.0398 | 48 0.0219 | 58 0.0688
39 0.0535 |49 0.0128 | 59 - 39 0.0527 | 49 0.0250 | 59 -
40 0.0138 | 50 - 60 0.0082 40 0.0501 | 50 0.0112 | 60 0.0390
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 \ 0.4
c c
8 03¢} 8 03¢
el e}
Q ()
= =
g 02 c 02}
o 2
§ 01t § 0.1 H
[0 ()
g 0 J_L J-;J‘k ;105) 0 ,-.llll_ll.-- = H
© ©
0.1 : -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

267

University of California, Berkeley
BerkeleyO1l (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

0 0.5 1
Recall

Overall average precision: 0.0114

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0158
0.0001
0.0038

0.0017
0.0032
0.0025
0.0004
0.0914

41
42
43
44
45
46
47
48
49
50

0.0024 | 51 0.0022
0.0016 | 52 0.0066
0.0003 | 53 0.0191
0.0005 | 54 -
0.0068 | 55 -
0.0369 | 56 -
0.0006 | 57 -
0.0030 | 58 0.0561
0.0004 | 59 -

- 60 0.0069

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

35

40

45 50 55 60
topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

1
0 0.5
Recall

Overall average precision: 0.0204

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0570
0.0127
0.0026
0.0225

0.0077
0.0206
0.0320
0.0038
0.1089

41
42
43
44
45
46
47
48
49
50

0.0338
0.0049
0.0015
0.0024
0.0208
0.0224
0.0093
0.0155
0.0083
0.0052

Difference from median

in average precision per topic:

0.4

difference from median

03t
0.2

0.1¢

SR

51
52
53
54
55
56
57
58
59
60

0.0126
0.0023
0.0109

0.0440

0.0282

35

40

45 50

topic

55 60

268

University of California, Berkeley
Berkeley02 (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 \ 506 \
o] @
2 N 2
o 04 a 04
\\\ \M
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0376 Overall average precision: 0.0314
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0020 31 0.0570 | 41 0.0267 | 51 0.0167
32 0.0158 | 42 0.0016 | 52 0.0062 32 0.0127 | 42 0.0049 | 52 0.0023
33 0.0001 | 43 0.1624 | 53 0.0097 33 0.0257 | 43 0.0358 | 53 0.0109
34 0.0393 | 44 0.0005 | 54 - 34 0.0515 | 44 0.0024 | 54 -
35 - 45 0.0027 | 55 - 35 - 45 0.0208 | 55 -
36 0.0017 | 46 0.0031 | 56 - 36 0.0077 | 46 0.0158 | 56 -
37 0.0032 | 47 0.1855 | 57 - 37 0.0265 | 47 0.0489 | 57 -
38 0.0089 | 48 0.0435 | 58 0.0385 38 0.0377 | 48 0.0306 | 58 0.0357
39 0.0055 | 49 0.1407 | 59 - 39 0.0236 | 49 0.0184 | 59 -
40 0.1849 | 50 - 60 0.0065 40 0.2132 | 50 0.0035 | 60 0.0251
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
c c
8 03¢} 8 03¢
el e}
Q ()
= =
g 02 £ 02t
o 2
801+ 8 o01r
c c
o o
(V) ()
£ (R —u £ 0 =M iy -
0.1 -0.1 :
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

269

University of California, Berkeley
Berkeley03 (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

0 0.5 1
Recall

Overall average precision: 0.0106

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0009
0.0001
0.0038

0.0017
0.0032
0.0025
0.0004
0.0914

41
42
43
44
45
46
47
48
49
50

0.0024 | 51 0.0022
0.0016 | 52 0.0066
0.0003 | 53 0.0137
0.0005 | 54 -
0.0068 | 55 -
0.0374 | 56 -
0.0006 | 57 -
0.0030 | 58 0.0561
0.0004 | 59 -

- 60 0.0069

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

35

40

45 50 55 60
topic

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

0 0.5
Recall

Overall average precision: 0.0187

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0253
0.0058
0.0026
0.0225

0.0077
0.0206
0.0320
0.0038
0.1089

41
42
43
44
45
46
47
48
49
50

0.0338
0.0049
0.0015
0.0024
0.0208
0.0188
0.0093
0.0154
0.0083
0.0052

Difference from median

in average precision per topic:

0.4

difference from median

03t
0.2

0.1¢

NN

51
52
53
54
55
56
57
58
59
60

0.0126
0.0023
0.0109

0.0440

0.0282

35

40

45 50

topic

55 60

270

Quantisation: strict

University of California, Los Angeles
CorrectedFormat (CO)

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0394

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0192
0.0001
0.0416

0.0017
0.0032
0.0023
0.0131
0.0962

41
42
43
44
45
46
47
48
49
50

0.0024
0.0014
0.0880
0.0007
0.0195
0.0313
0.1202
0.0842
0.2689

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

51
52
53
54
55
56
57
58
59
60

0.0406
0.0001
0.0269

0.0382

0.0066

35

40

45
topic

50

55 60

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0

N

N

0

0.5
Recall

Overall average precision: 0.0303

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.1364
0.0159
0.0110
0.0347

0.0234
0.0276
0.0283
0.0196
0.0974

41
42
43
44
45
46
47
48
49
50

0.0115
0.0050
0.0265
0.0025
0.0271
0.0180
0.0365
0.0413
0.0389
0.0042

Difference from median

in average precision per topic:

difference from median

0.4

03t

0.2

0.1 ¢

51
52
53
54
55
56
57
58
59
60

0.0365
0.0010
0.0117

0.0417

0.0310

35

40

45
topic

50

55 60

271

University of Melbourne
um_mgx21 short (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

Precision

0.8

0.6

0.4

0.2

0.5
Recall

Overall average precision: 0.0329

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.0002
0.0131
0.0001
0.0164

0.0017
0.0032
0.0026
0.0091
0.1578

41
42
43
44
45
46
47
48
49
50

0.0026
0.0017
0.0383
0.0018
0.0028
0.0313
0.2294
0.0626
0.1504

Difference from median
in average precision per topic:

difference from median

0.4

03 r

0.2 r

0.1 r

51
52
53
54
55
56
57
58
59
60

0.0016
0.0001
0.0118

0.0112

0.0069

.

L

35

40

45
topic

50 55 60

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

0

L

N

0

0.5

Recall

Overall average precision: 0.0287

Average precision per topic:

31
32
33
34
35
36
37
38
39
40

0.4

difference from median

03t

0.2

0.1 ¢

0.0587 | 41 0.0668 | 51 0.0151
0.0103 | 42 0.0049 | 52 0.0010
0.0066 | 43 0.0099 | 53 0.0127
0.0272 | 44 0.0044 | 54 -
- 45 0.0207 | 55 -
0.0089 | 46 0.0140 | 56 -
0.0266 | 47 0.0876 | 57 -
0.0296 | 48 0.0339 | 58 0.0278
0.0161 | 49 0.0158 | 59 -
0.1542 | 50 0.0073 | 60 0.0293
Difference from median
in average precision per topic:
TJFJ [| L
35 40 45 50 55 60
topic

272

University of Melbourne
um_mgx26_long (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8
5§ 067 \\\
R
(8]
g
o 04

N \\

0
0 0.5 1
Recall

Overall average precision: 0.0418
Average precision per topic:

31 0.0002 | 41 0.0208 | 51
32 0.0589 | 42 0.0820 | 52 0.1314
33 0.0001 | 43 0.0292 | 53 0.0041
34 0.0329 | 44 0.0025 | 54 -

35 - 45 0.0360 | 55 -

36 0.0135 | 46 0.0123 | 56 -

37 0.0036 | 47 0.1039 | 57
38 0.0080 | 48 0.0580 | 58
39 0.0108 | 49 0.2291 | 59
40 0.0433 | 50 - 60

0.0033

0.0678

0.0086

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

e |

35 40 45 50 55 60
topic

difference from median

Recall /precision graph:

0.8

0.6
ol
ol

0 0.5 1
Recall

Precision

Overall average precision: 0.0411
Average precision per topic:

31 0.1218 | 41 0.0347 | 51
32 0.0329 | 42 0.0924 | 52 0.0424
33 0.0520 | 43 0.0088 | 53 0.0132
34 0.0450 | 44 0.0072 | 54 -

35 - 45 0.0369 | 55 -

36 0.0309 | 46 0.0456 | 56 -

37 0.0358 | 47 0.0450 | 57
38 0.0345 | 48 0.0439 | 58
39 0.0179 | 49 0.0426 | 59
40 0.0749 | 50 0.0216 | 60

0.0212

0.0578

0.0269

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1 ¢

difference from median

35 40 45 50 55 60
topic

273

University of Melbourne
um_mgx2_long (CO)

Quantisation: strict Quantisation: generalised

Recall /precision graph: Recall /precision graph:

0.8 0.8

p—

Precision
Precision

0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0340 Overall average precision: 0.0483
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0050 | 51 0.0159 31 0.2675 | 41 0.0670 | 51 0.0446
32 0.0323 | 42 0.0193 | 52 0.0760 32 0.0296 | 42 0.0523 | 52 0.0191
33 0.0001 | 43 0.0299 | 53 0.0192 33 0.0870 | 43 0.0111 | 53 0.0145
34 0.0092 | 44 0.0017 | 54 - 34 0.0261 | 44 0.0104 | 54 -
35 - 45 0.0428 | 55 - 35 - 45 0.0391 | 55 -
36 0.0017 | 46 0.0023 | 56 - 36 0.0262 | 46 0.0388 | 56 -
37 0.0032 | 47 0.1267 | 57 - 37 0.0244 | 47 0.0415 | 57 -
38 0.0046 | 48 0.0166 | 58 0.0995 38 0.0327 | 48 0.0254 | 58 0.0638
39 0.0175 | 49 0.1806 | 59 - 39 0.0232 | 49 0.0374 | 59 -
40 0.0708 | 50 - 60 0.0069 40 0.1271 | 50 0.0153 | 60 0.0363
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
c c
8 03¢} & 03+
© e}
Q ()
= =
g 02 c 02 H
o 2
801+] 8 o01r
o &
g LQLJ_I.LIki; e 5 F_lL__..._u_gJJL
© ©
0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

274

University of Michigan
allow-duplicate (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
08 | 0.8
5 0.6 _\\ 5 0.6 |
8] %)
g |
- \\R__ " \x
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0470 Overall average precision: 0.0397
Average precision per topic: Average precision per topic:
31 0.0046 | 41 0.0410 | 51 0.0077 31 0.0317 | 41 0.0641 | 51 0.0165
32 0.0147 | 42 0.1391 | 52 0.0612 32 0.0321 | 42 0.0812 | 52 0.0621
33 0.0001 | 43 0.0644 | 53 0.0004 33 0.1592 | 43 0.0195 | 53 0.0108
34 0.0045 | 44 0.0005 | 54 - 34 0.0282 | 44 0.0027 | 54 -
35 - 45 0.0057 | 55 - 35 - 45 0.0309 | 55 -
36 0.0146 | 46 0.0995 | 56 - 36 0.0196 | 46 0.0479 | 56 -
37 0.0217 | 47 0.0086 | 57 - 37 0.0354 | 47 0.0105 | 57 -
38 0.0094 | 48 0.1271 | 58 0.0333 38 0.0446 | 48 0.0722 | 58 0.0533
39 0.0004 | 49 0.3601 | 59 - 39 0.0142 | 49 0.0274 | 59 -
40 0.0425 | 50 - 60 0.0188 40 0.0331 | 50 0.0246 | 60 0.0305
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
C C
S 03| S 03}
© ©
(] (0]
S S
g 02 £ 02t
= =
o1} JIL S 01t
o o
£ o - _a_ £ o | T ey -
-0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

275

University of Michigan
no-duplicate (CO)

Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
08 | 0.8
5 0.6 | _1 5 0.6 |
8] %)
g |
0.2 \. 0.2 \1
0 — 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0449 Overall average precision: 0.0390
Average precision per topic: Average precision per topic:
31 0.0055 | 41 0.0245 | 51 0.0077 31 0.0302 | 41 0.0524 | 51 0.0165
32 0.0157 | 42 0.1173 | 52 0.0612 32 0.0276 | 42 0.0952 | 52 0.0635
33 0.0001 | 43 0.0652 | 53 0.0004 33 0.1592 | 43 0.0212 | 53 0.0109
34 0.0045 | 44 0.0005 | 54 - 34 0.0282 | 44 0.0027 | 54 -
35 - 45 0.0057 | 55 - 35 - 45 0.0312 | 55 -
36 0.0152 | 46 0.0958 | 56 - 36 0.0225 | 46 0.0412 | 56 -
37 0.0143 | 47 0.0086 | 57 - 37 0.0324 | 47 0.0107 | 57 -
38 0.0104 | 48 0.0769 | 58 0.0333 38 0.0438 | 48 0.0577 | 58 0.0533
39 0.0004 | 49 0.4066 | 59 - 39 0.0128 | 49 0.0345 | 59 -
40 0.0444 | 50 - 60 0.0188 40 0.0344 | 50 0.0246 | 60 0.0305
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
C C
S 03| S 03}
© ©
(] (0]
S S
g 02 £ 02t
= =
o1} S 01t
5] I]
g 0 (= T J- :105) 0 _-_..LJ-....II_I -
© ©
-0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

276

University of Minnesota Duluth

01 (CO)
Quantisation: strict Quantisation: generalised
Recall /precision graph: Recall /precision graph:
1 1
0.8 | 0.8
506 A 506
o] @
2 N s |
> \\\\’_\‘ " g
0 0
0 0.5 1 0 0.5 1
Recall Recall
Overall average precision: 0.0503 Overall average precision: 0.0469
Average precision per topic: Average precision per topic:
31 0.0002 | 41 0.0024 | 51 0.0089 31 0.1827 | 41 0.0417 | 51 0.0432
32 0.0688 | 42 0.0063 | 52 0.1336 32 0.0380 | 42 0.0595 | 52 0.0537
33 0.0001 | 43 0.2643 | 53 0.0248 33 0.1122 | 43 0.0710 | 53 0.0164
34 0.0105 | 44 0.0206 | 54 - 34 0.0371 | 44 0.0041 | 54 -
35 - 45 0.1348 | 55 - 35 - 45 0.0631 | 55 -
36 0.0017 | 46 0.0030 | 56 - 36 0.0216 | 46 0.0423 | 56 -
37 0.0032 | 47 0.0022 | 57 - 37 0.0224 | 47 0.0085 | 57 -
38 0.0031 | 48 0.0406 | 58 0.0889 38 0.0333 | 48 0.0403 | 58 0.0620
39 0.0305 | 49 0.2862 | 59 - 39 0.0243 | 49 0.0670 | 59 -
40 0.0164 | 50 - 60 0.0066 40 0.0304 | 50 0.0184 | 60 0.0333
Difference from median Difference from median
in average precision per topic: in average precision per topic:
0.4 0.4
c c
8 03¢} 8 03+
el e}
Q ()
= =
g 02 £ 02t
o 2
go1r] o1t]
: L h
S OJ—— 4L, £ 9 ___..I_LI.._I.LJ_.L
© ©
0.1 -0.1
35 40 45 50 55 60 35 40 45 50 55 60
topic topic

277

University of North Carolina at Chapel Hill
irt (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8
508
(%)
e i
g
o 04

0.2

O A\
0 0.5 1

Recall
Overall average precision: 0.0037
Average precision per topic:

31 0.0002 | 41 0.0025 | 51
32 0.0028 | 42 0.0014 | 52 0.0001
33 0.0001 | 43 0.0003 | 53 0.0004
34 0.0025 | 44 0.0005 | 54 -

35 - 45 0.0018 | 55 -

36 0.0017 | 46 0.0013 | 56 -

37 0.0032 | 47 0.0003 | 57
38 0.0023 | 48 0.0030 | 58
39 0.0092 | 49 0.0004 | 59
40 0.0350 | 50 - 60

0.0016

0.0073

0.0066

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

35 40 45 50 55 60
topic

Recall /precision graph:

0.8
.5 0.6
z A
g
a 04

0.2

A

0 0.5 1

Recall
Overall average precision: 0.0119
Average precision per topic:

31 0.0031 | 41 0.0069 | 51
32 0.0058 | 42 0.0049 | 52 0.0010
33 0.0201 | 43 0.0015 | 53 0.0106
34 0.0156 | 44 0.0024 | 54 -

35 - 45 0.0168 | 55 -

36 0.0078 | 46 0.0119 | 56 -

37 0.0204 | 47 0.0029 | 57
38 0.0271 | 48 0.0139 | 58
39 0.0064 | 49 0.0071 | 59
40 0.0333 | 50 0.0034 | 60

0.0122

0.0252

0.0244

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1¢

difference from median

35 40 45 50 55 60
topic

278

University of Twente
utwentelh (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

08 |
S 06 f
2 L
(8] =
o
T 0.4
0.2
0
0 05 1

Recall
Overall average precision: 0.0172
Average precision per topic:

31 0.0002 | 41 0.0954 | 51
32 0.0002 | 42 0.0966 | 52 0.0238
33 0.0001 | 43 0.0010 | 53 0.0136
34 0.0024 | 44 0.0005 | 54 -

35 - 45 0.0041 | 55 -

36 0.0035 | 46 0.0133 | 56 -

37 0.0043 | 47 0.0050 | 57
38 0.0023 | 48 0.0534 | 58
39 0.0004 | 49 0.0118 | 59
40 0.0088 | 50 - 60

0.0016

0.0455

0.0066

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

0.1 r

difference from median

o

35 40 45 50 55 60
topic

Recall /precision graph:

0.8
5 0.6 \
Rzl
[5)
g
o 04

) \

0

0 0.5 1

Recall
Overall average precision: 0.0279
Average precision per topic:

31 0.0046 | 41 0.0559 | 51
32 0.0080 | 42 0.0889 | 52 0.0489
33 0.0061 | 43 0.0039 | 53 0.0274
34 0.0185 | 44 0.0024 | 54 -

35 - 45 0.0362 | 55 -

36 0.0321 | 46 0.0363 | 56 -

37 0.0252 | 47 0.0153 | 57
38 0.0271 | 48 0.0514 | 58
39 0.0039 | 49 0.0089 | 59
40 0.0168 | 50 0.0398 | 60

0.0121

0.0763

0.0244

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1¢

difference from median

35 40 45 50 55 60
topic

279

University of Twente
utwenteln (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

0.8
5 0.6
%]
o S = SN
o
o 04
0.2
0
0 0.5 1

Recall
Overall average precision: 0.0126
Average precision per topic:

31 0.0002 | 41 0.0895 | 51
32 0.0002 | 42 0.1171 | 52 0.0156
33 0.0001 | 43 0.0023 | 53 0.0006
34 0.0024 | 44 0.0005 | 54 -

35 - 45 0.0019 | 55 -

36 0.0028 | 46 0.0039 | 56 -

37 0.0043 | 47 0.0006 | 57
38 0.0023 | 48 0.0116 | 58
39 0.0004 | 49 0.0016 | 59
40 0.0088 | 50 - 60

0.0016

0.0156

0.0066

Difference from median
in average precision per topic:

0.4

03 r

0.2 r

S

35 40 45 50 55 60
topic

difference from median

Recall /precision graph:

0.8

0.6

Precision

0.4

0.2

N

0 0.5 1
Recall

0

Overall average precision: 0.0235
Average precision per topic:

31 0.0038 | 41 0.0438 | 51
32 0.0078 | 42 0.0848 | 52 0.0435
33 0.0025 | 43 0.0021 | 53 0.0197
34 0.0186 | 44 0.0024 | 54 -

35 - 45 0.0337 | 55 -

36 0.0207 | 46 0.0276 | 56 -

37 0.0227 | 47 0.0084 | 57
38 0.0271 | 48 0.0308 | 58
39 0.0037 | 49 0.0077 | 59
40 0.0168 | 50 0.0348 | 60

0.0121

0.0648

0.0244

Difference from median
in average precision per topic:

0.4

03t

0.2

0.1¢

difference from median

35 40 45 50 55 60
topic

280

University of Twente
utwentelpr (CO)

Quantisation: strict

Quantisation: generalised

Recall /precision graph:

08 |
5067 N
0
[} (=
o
T 04
0.2 I\
0
0 0.5 1

Recall
Overall average precision: 0.0429
Average precision per topic:

31 0.0160 | 41 0.0978 | 51
32 0.0273 | 42 0.0513 | 52 0.0302
33 0.0001 | 43 0.0010 | 53 0.0571
34 0.0074 | 44 0.0036 | 54 -

35 - 45 0.0077 | 55 -

36 0.0052 | 46 0.0600 | 56 -

37 0.0065 | 47 0.0058 | 57
38 0.0040 | 48 0.1336 | 58
39 0.0179 | 49 0.1107 | 59
40 0.0879 | 50 - 60

0.0025

0.2456

0.0065

Difference from median
in average precision per topic:

0.4

03 r
0.2 r
0.1

35 40 45 50 55 60
topic

difference from median

Recall /precision graph:

0.8

o6 | L

0.4

ol
N

0 0.5 1
Recall

Precision

Overall average precision: 0.0499
Average precision per topic:

31 0.0994 | 41 0.0754 | 51
32 0.0163 | 42 0.0794 | 52 0.0586
33 0.1571 | 43 0.0040 | 53 0.0371
34 0.0176 | 44 0.0027 | 54 -

35 - 45 0.0400 | 55 -

36 0.0429 | 46 0.0593 | 56 -

37 0.0598 | 47 0.0160 | 57
38 0.0307 | 48 0.0848 | 58
39 0.0181 | 49 0.0181 | 59
40 0.0813 | 50 0.0329 | 60

0.0328

0.1099

0.0242

Difference from median
in average precision per topic:

0.4

03t

0.2

0-: J,MhﬁJldLif

difference from median

35 40 45 50 55 60
topic

281

	final_p17_Goevert_etal.pdf
	Introduction
	Weighting and ranking
	Retrieval algorithm
	Evaluation of effectiveness
	XIRQL: Processing content-and-structure topics
	Conclusion

	final_p31_Kamps_etal.pdf
	1 Introduction
	2 Experimental Set-Up
	2.1 The FlexIR information retrieval system
	2.2 Morphological normalization

	3 Runs
	3.1 Content-only topics
	3.2 Content-and-structure topics

	4 Results
	5 Discussion and Conclusions

	final_p43_Mass_etal.pdf
	INTRODUCTION
	THE QUERY FORMAT
	Query syntax
	The default semantic of a query is that a document/component is considered a valid result if it contains at least one path of the query tree from the root to a leaf (see examples below), or to follow the vector space model, if it has a non-null similarit
	In order to allow for more control on the XML fragments and yet still keep their simple intuitive syntax, we augment the XML fragments with the following symbols:
	Target elements

	Query examples
	Task: Find books written by John.
	Task: Find books written by John Doe
	Task: Retrieve all articles from the years 1999-2000 that deal with works on nonmonotonic reasoning. Do not retrieve articles that are calendar/call for papers

	INEX QUERY TRANSLATION
	CO topics translation
	CAS topics translation
	Limitations of our format

	RANKING APPROACHES
	Assigning weights to individual contexts
	Merging contexts

	IMPLEMENTATION – THE JuruXML SYSTEM
	Indexing stage
	Component statistics

	Retrieval stage
	Query expansion
	Result filtering

	INEX RUNS
	First run – assigning weights to individual contexts
	Second run – merging contexts
	Third run – manual editing
	Comparing the Runs
	Generating the submission format

	CONCLUSION AND FUTURE WORK
	REFERENCES

	final_overview.pdf
	Introduction
	Participating organisations
	The task
	The test collection
	Documents
	Topics
	Topic format
	The topic development process

	Submissions
	Assessments

	Evaluation metrics
	Implicit relevance assessments
	Quantisation of relevance and coverage
	Recall / precision metrics

	Summary of participants' results
	Conclusions and outlook on INEX 2003
	Acknowledgements

	cover:
	cover2:
	page21: 3
	page31: 4
	page41: 5
	page51: 6
	page61: 7
	page71: 8
	page81: 9
	page91: 10
	page101: 11
	page111: 12
	page121: 13
	page131: 14
	page141: 15
	page151: 16
	page161: 17
	page171: 18
	page181: 19
	page191: 20
	page201: 21
	page211: 22
	page221: 23
	page231: 24
	page241: 25
	page251: 26
	page261: 27
	page271: 28
	page281: 29
	page291: 30
	page301: 31
	page311: 32
	page321: 33
	page331: 34
	page341: 35
	page351: 36
	page361: 37
	page371: 38
	page381: 39
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54
	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61
	page611: 62
	page621: 63
	page631: 64
	page641: 65
	page651: 66
	page661: 67
	page671: 68
	page681: 69
	page691: 70
	page701: 71
	page711: 72
	page721: 73
	page731: 74
	page741: 75
	page751: 76
	page761: 77
	page771: 78
	page781: 79
	page791: 80
	page801: 81
	page811: 82
	page821: 83
	page831: 84
	page841: 85
	page851: 86
	page861: 87
	page871: 88
	page881: 89
	page891: 90
	page901: 91
	page911: 92
	page921: 93
	page931: 94
	page941: 95
	page951: 96
	page961: 97
	page971: 98
	page981: 99
	page991: 100
	page1001: 101
	page1011: 102
	page1021: 103
	page1031: 104
	page1041: 105
	page1051: 106
	page1061: 107
	page1071: 108
	page1081: 109
	page1091: 110
	page1101: 111
	page1111: 112
	page1121: 113
	page1131: 114
	page1141: 115
	page1151: 116
	page1161: 117
	page1171: 118
	page1181: 119
	page1191: 120
	page1201: 121
	page1211: 122
	page1221: 123
	page1231: 124
	page1241: 125
	page1251: 126
	page1261: 127
	page1271: 128
	page1281: 129
	page1291: 130
	page1301: 131
	page1311: 132
	page1321: 133
	page1331: 134
	page1341: 135
	page1351: 136
	page1361: 137
	page1371: 138
	page1381: 139
	page1391: 140
	page1401: 141
	page1411: 142
	page1421: 143
	page1431: 144
	page1441: 145
	page1451: 146
	page1461: 147
	page1471: 148
	page1481: 149
	page1491: 150
	page1501: 151
	page1511: 152
	page1521: 153
	page1531: 154
	page1541: 155
	page1551: 156
	page1561: 157
	page1571: 158
	page1581: 159
	page1591: 160
	page1601: 161
	page1611: 162
	page1621: 163
	page1631: 164
	page1641: 165
	page1651: 166
	page1661: 167
	page1671: 168
	page1681: 169
	page1691: 170
	page1701: 171
	page1711: 172
	page1721: 173
	page1731: 174
	page1741: 175
	page1751: 176
	page1761: 177
	page1771: 178
	page1781: 179
	page1791: 180
	page1801: 181
	page1831: 184
	page1841: 185
	page1851: 186
	page1861: 187
	page1871: 188
	page1881: 189
	page1891: 190
	page1901: 191
	page1911: 192
	page1921: 193
	page1931: 194
	page1941: 195
	page1951: 196
	page1961: 197
	page1971: 198
	page1981: 199
	page1991: 200
	page2001: 201
	page2011: 202
	page2021: 203
	page2031: 204
	page2041: 205
	page2051: 206
	page2061: 207
	page2071: 208
	page2081: 209
	page2091: 210
	page2101: 211
	page2111: 212
	page2121: 213
	page2131: 214
	page2141: 215
	page2151: 216
	page2161: 217
	page2171: 218
	page2181: 219
	page2191: 220
	page2201: 221
	page2211: 222
	page2221: 223
	page2231: 224
	page2241: 225
	page2251: 226
	page2261: 227
	page2271: 228
	page2281: 229
	page2291: 230
	page2301: 231
	page2311: 232
	page2321: 233
	page2331: 234
	page2341: 235
	page2351: 236
	page2361: 237
	page2371: 238
	page2381: 239
	page2391: 240
	page2401: 241
	page2411: 242
	page2421: 243
	page2431: 244
	page2441: 245
	page2451: 246
	page2461: 247
	page2471: 248
	page2481: 249
	page2491: 250
	page2501: 251
	page2511: 252
	page2521: 253
	page2531: 254
	page2541: 255
	page2551: 256
	page2561: 257
	page2571: 258
	page2581: 259
	page2591: 260
	page2601: 261
	page2611: 262
	page2621: 263
	page2631: 264
	page2641: 265
	page2651: 266
	page2661: 267
	page2671: 268
	page2681: 269
	page2691: 270
	page2701: 271
	page2711: 272
	page2721: 273
	page2731: 274
	page2741: 275
	page2751: 276
	page2761: 277
	page2771: 278
	page2781: 279
	page2791: 280
	page2801: 281
	ce: <ce>
	page01: 1
	page11: 2

