
CYCLADES IST-2000-25456
An Open Collaborative Virtual Archive Environment

Detailed System Specification Report

D3.0.1

Delivery Type: R
Number: D3.0.1

Contractual Date of Delivery: month 12
Actual Date of Delivery: February 11, 2002

Task: WP3

Name of Responsible: Umberto Straccia

Istituto di Elaborazione dell’Informazione
Consiglio Nazionale delle Ricerche

56124 Pisa
Italy

E-Mail: straccia@iei.pi.cnr.it

Contributors

CNR-IEI: Leonardo Candela, Donatella Castelli, Pasquale Pagano,
M. Elena Renda, Fabrizio Sebastiani, Umberto Straccia

University of Dortmund: Gudrun Fischer, Norbert Fuhr
FORTH: Dimitris Plexousakis, Nick Papadopoulos

GMD-FIT: Tom Gross, Thomas Kreifelts

Abstract: This report defines the detailed specifications of the Cyclades software components.

Contents

1 Introduction 8

1.1 Rationale of Cyclades . 8

1.2 Users . 9

1.3 Functionality . 9

1.4 Services . 10

1.5 Architecture . 11

1.6 Communication protocol . 12

1.7 User interface . 12

2 Access Service 14

2.1 Functionality . 14

2.1.1 Information retrieval . 14

2.1.2 Management of archive information . 15

2.2 Process flow . 15

2.2.1 Information retrieval component . 15

2.2.2 Management of archive information . 16

2.3 Internal architecture . 18

2.3.1 Overview . 18

2.3.2 Database . 18

2.3.3 Information retrieval component . 18

2.3.4 Access Service implementation classes . 18

2.3.5 Access Service API . 18

2.3.6 Archive management GUI . 19

2.3.7 Communication with other services . 19

2.4 Data and method specification . 19

2.4.1 Access Service . 19

2.4.2 Access Service tables . 22

2.4.3 Information retrieval component . 23

2.4.4 Query language . 25

2.5 User interface . 25

2.5.1 Register a new archive . 26

2

Detailed System Specification Report(D3.0.1) 3

2.5.2 Edit an archive . 26

2.6 Service interaction diagrams . 27

2.7 Service implementation tools . 27

3 Collaborative Work Service 31

3.1 Functionality . 31

3.1.1 Folder and contents management . 31

3.1.2 Collaboration support . 32

3.1.3 Recommendations management . 33

3.2 Process flow . 33

3.2.1 Create folder . 34

3.2.2 Move and copy . 35

3.2.3 Delete, undelete and destroy . 36

3.2.4 Edit folder attributes . 37

3.2.5 Rate records . 38

3.2.6 Annotate records . 39

3.2.7 Invite a new member to a folder . 39

3.2.8 Remove a member from a folder . 40

3.2.9 Assign a member as manager . 40

3.2.10 Leave a community or project . 40

3.2.11 View communities . 41

3.2.12 Join a community . 41

3.2.13 Contact community managers . 41

3.2.14 Create discussion forums . 41

3.2.15 Add notes to a discussion forum . 42

3.2.16 Edit event notification preferences . 42

3.2.17 Catching up on events . 42

3.2.18 Edit personal preferences . 43

3.2.19 Processing recommendations . 43

3.2.20 Update folder profile . 44

3.2.21 Create new user . 44

3.2.22 Update password . 44

3.2.23 Get folder information . 45

3.2.24 Save query . 46

3.2.25 Save records . 46

3.2.26 Save recommendations . 46

3.2.27 Add or modify collection . 47

3.2.28 Delete collection . 47

3.2.29 Update personal set of collections . 47

3.3 Internal architecture . 48

4 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

3.3.1 Overview . 48

3.3.2 User request/response handling . 51

3.3.3 User operation handling . 54

3.3.4 The API method call and response handling 56

3.3.5 The API method handling . 57

3.4 Data and method specification . 58

3.4.1 The classes of the CWS package . 58

3.4.2 The user operation handlers of the CWS package 64

3.4.3 Abstract CWS classes, API methods and thier handlers 66

3.5 User interface . 69

3.6 Service interaction diagrams . 73

3.6.1 Diagrams for user operations . 73

3.6.2 Diagrams for API invocations . 75

3.7 Service implementation tools . 75

4 Search and Browse Service 80

4.1 Functionality . 80

4.1.1 Searching and browsing . 80

4.2 Process flow . 80

4.2.1 Searching and browsing without personalization (SU 8) 80

4.3 Internal architecture . 81

4.3.1 Overview . 81

4.3.2 Search and Browse Service API . 82

4.3.3 Search and Browse Service implementation classes 82

4.3.4 Search and Browse GUI . 82

4.3.5 Communication modules . 82

4.4 Data and method specification . 83

4.4.1 Search and Browse Service . 83

4.5 User interface . 86

4.5.1 Query formulation dialog . 86

4.5.2 Collection selection dialog . 87

4.5.3 Query selection dialog . 87

4.5.4 Metadata schema selection dialog . 88

4.5.5 Value browsing dialogs . 88

4.5.6 Result list . 88

4.6 Service interaction diagrams . 89

4.7 Service implementation tools . 89

5 Filtering and Recommendation Service 91

5.1 Functionality . 91

5.1.1 Update Folder Profile (SU 7) . 92

Detailed System Specification Report(D3.0.1) 5

5.1.2 Search On-Demand based on Folder Profile (SU 9) 92

5.1.3 Receive Recommendation from the System (SU 10) 92

5.2 Process flow . 93

5.2.1 Update Folder Profile On-Demand (SU 7-1) 93

5.2.2 Update Folder Profile at Scheduled Time (SU 7-2) 94

5.2.3 Search On-Demand based on Folder Profile (SU 9) 94

5.2.4 Receive Record Recommendation from the System (SU 10-1) 96

5.2.5 Receive Collection Recommendation from the System (SU 10-2) 97

5.2.6 Receive User Recommendation from the System (SU 10-3) 98

5.2.7 Receive Community Recommendation from the System (SU 10-4) 98

5.3 Internal architecture . 99

5.4 Data and method specification . 100

5.4.1 The Filtering & Recommendation Service classes 100

5.4.2 The internal Filtering & Recommendation Service methods 102

5.4.3 The Filtering & Recommendation Service algorithms 103

5.4.4 Detailed algorithm specification of Receive Record Recommendation from
the System (SU 10-1) . 104

5.4.5 Detailed algorithm specification of Receive Collection Recommendation from
the System (SU 10-2) . 105

5.4.6 Detailed algorithm specification of Receive User Recommendation from the
System (SU 10-3) . 106

5.4.7 Detailed algorithm specification of Receive Community Recommendation
from the System (SU 10-4) . 107

5.4.8 FRS database schema . 107

5.5 User interface . 109

5.6 Service interaction diagrams . 109

5.7 Service implementation tools . 109

6 Collection Service 113

6.1 Functionalities . 113

6.1.1 Create, Delete and Edit a collection . 113

6.1.2 Add and remove a search/browse format . 114

6.1.3 Browse collections . 114

6.1.4 Disseminate collection metadata . 114

6.2 Process flow . 115

6.2.1 Becoming a collection administrator . 115

6.2.2 Create collections . 115

6.2.3 Delete collections . 117

6.2.4 Add search/browse format . 118

6.2.5 Remove search/browse format . 119

6.2.6 Edit collection descriptive metadata . 119

6 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

6.2.7 Select a user’s collection set . 120

6.3 Internal architecture . 121

6.4 Data and method specification . 122

6.4.1 Abstract CollectionService class . 122

6.4.2 Abstract Collection class . 124

6.4.3 Abstract Subschema class . 124

6.4.4 Database schema . 124

6.4.5 The Membership Application Profile: fields and their definition 127

6.5 User interface . 127

6.6 Service interaction diagrams . 129

6.6.1 Becoming a collection administrator . 129

6.6.2 Create collections . 129

6.6.3 Delete collections . 131

6.6.4 Add search/browse format . 131

6.6.5 Remove search/browse format . 132

6.6.6 Edit collection descriptive metadata . 133

6.6.7 Select a user’s collection set . 133

6.7 Service implementation tools . 134

7 Mediator Service 135

7.1 Functionality . 135

7.2 Process flow . 135

7.2.1 Inner-System Communication . 135

7.2.2 User Registration and Login . 136

7.2.3 Service Registration . 136

7.3 Internal architecture . 137

7.3.1 Overview . 137

7.3.2 MS API . 137

7.3.3 MS server . 138

7.4 Data and method specification . 138

7.4.1 MediatorService Class . 138

7.4.2 Service Class . 139

7.4.3 Database Schema . 140

7.5 User interface . 140

7.6 Service interaction diagrams . 141

7.7 Service implementation tools . 141

8 Rating Management Service 144

8.1 Functionality . 144

8.2 Process flow . 144

8.2.1 Save a rating . 145

Detailed System Specification Report(D3.0.1) 7

8.2.2 Get all ratings of a user . 145

8.2.3 Get all ratings of a record . 145

8.2.4 Get all ratings within a folder . 146

8.3 Internal architecture . 146

8.3.1 Overview . 146

8.3.2 RMS API handling . 146

8.3.3 RMS server . 148

8.4 Data and method specification . 149

8.4.1 The RMS API . 149

8.4.2 The RMS Ratings Database Schema . 150

8.5 User interface . 150

8.6 Service interaction diagrams . 150

8.7 Service implementation tools . 151

9 Communication protocol 154

9.1 XML-RPC . 154

9.2 Comparison with other protocols . 156

9.2.1 SOAP (http://www.w3.org/TR/SOAP/) 156

9.2.2 Evaluation and Summary . 157

9.3 Parameter encoding . 157

9.3.1 Booleans, integers and floating-point numbers 158

9.3.2 Strings . 158

9.3.3 Timestamps . 159

9.3.4 Void . 159

9.3.5 Object identifiers . 159

9.3.6 Objects of a certain Cyclades class . 160

9.3.7 Tuples and lists . 160

9.3.8 Fault codes . 161

9.3.9 Mapping of XML-RPC data types to Java and Python 161

A Terminology 163

Chapter 1

Introduction

1.1 Rationale of Cyclades

The main goal of Cyclades is to provide an integrated environment for scholars and groups of
scholars that want to use, in a highly personalized and flexible way, open archives, i.e. electronic
archives of documents compliant with the Open Archives Initiative1 (OAI) standard.

Cyclades users

• will be able to search documents relevant to their interests from electronic archives;

• will be made aware of new documents relevant to their interests as they become available.
Relevance to the interests of a user will be assessed by estimating the semantic similarity
between candidate documents and other documents the same user have previously expressed
interest in;

• will be provided with highly flexible and personalized tools for organizing references to ac-
cessed documents into a personal workspace. A reference to a document consists of a record
containing a description of the document by means of metadata;

• will be made aware of other Cyclades users with similar interests;

• will be able to create virtual “communities” of Cyclades users sharing common scientific or
professional interests, and will thus be allowed to use a community-specific workspace, where
it will also be possible to exchange information among members in the form of annotated
documents;

• will be able to create virtual “projects” (i.e. project groups) of Cyclades users working at
a common task, and will thus be allowed to use a project-specific workspace, where it will
also be possible to exchange information in the form of annotated documents or any other
kind of external documents;

• will be able to ask for recommendations of records, users, communities relevant to their
interests. Relevance to the interest of a user will be estimated based on implicit or expliting
ratings that other Cyclades users have given to documents.

Cyclades is thus an integrated environment for the access to scholarly information. By exchanging
information in the form of annotated documents, creating and joining communities and projects,
and rating documents, Cyclades users collectively contribute to building “common knowledge”
for scientific cybercommunities.

1http://www.openarchives.org

8

Detailed System Specification Report(D3.0.1) 9

The Cyclades system will use the protocol specified by the Open Archives Initiative to harvest
metadata from any number of archives that support the OAI standard. As the harvesting will be
done by one of several interoperable services, Cyclades is not restricted to using open archives,
as additional services can be added later, supporting other kinds of electronic archives that are not
compliant with the OAI standard.

1.2 Users

Scholars become Cyclades users by registering to the Cyclades environment. Once registered,
there are different roles that the user can play while interacting with the system. The user may
switch from one role to another during the same Cyclades session, provided she has the rights
needed for these roles. In particular

• Every user can act as a single user, i.e. only by virtue of having registered into the Cyclades

environment. In this capacity, a Cyclades user has access to all and only the folders of
which she is the owner and can also rearrange the folder hierarchy that contains them.

• A user who is a member of a community can additionally perform actions in the context of
this community, thus acting as a community member. In this capacity, a Cyclades user has
access to all and only the folders owned by the community.

• A community member with appropriate rights can also administrate a community, thus acting
as a community administrator. In this capacity, not only she has access to all and only the
folders owned by the community, but can also rearrange the folder hierarchy that contains
them.

• A user who is a member of a project can perform additional actions in the context of this
project. Then, the user is acting as a project member. In this capacity, a Cyclades user
has access to all and only the folders owned by the project.

• A project member with appropriate rights can administrate a project and its folders. Then,
the user is acting as a project administrator. In this capacity, not only she has access to all
and only the folders owned by the project, but can also rearrange the folder hierarchy that
contains them.

• A user with the appropriate rights can create a collection and manage the collection she has
created. Then, the user is acting as a collection administrator.

• A user with the appropriate rights can register or unregister an archive or edit the registration
information concerning an archive. Then, the user is acting as an archive administrator.

• There is a special user who has the rights to grant other users the rights to register archives
and collections. This user is called the Cyclades system administrator.

1.3 Functionality

The functionality of Cyclades may be summarized by looking (i) at the actions that the users
can perform, and (ii) at the actions that the system performs in the background.

Concerning (i), the main classes of actions that Cyclades users can perform are:

• Register and login. In order to access the Cyclades services, a user must register into
the Cyclades environment. The effect of a successful registration is that the user has a
Cyclades account consisting of a user name, a password, and a home folder, and may now
log into the Cyclades system using user name and password.

10 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Manage records and folders. Once a user has logged in, she can perform basic record and
folder management actions on records and folders she owns. Record management ooperations
include deleting a record from a folder and moving a record from a folder to another folder.
Folder management operations include creating a new folder as a child of an existing folder,
deleting a folder, moving a subfolder from an existing parent folder to a new parent folder.

• Search and browse records. At any time from login to logout, the user performs her operations
with respect to a current folder; at login, the users’s home folder is the current folder. Given
a current folder, the user can issue queries, whose results will be stored in the current folder.
Queries can be formed from scratch, or can be formed by editing an older query. Queries can
be associated to folders, so that the same query can be issues again and again with respect
to the same folder.

• Get recommendations. Recommendations made by the system to a user are associated with
a given user folder. The entities that can be recommended are records, collections, users,
and communities. The system recommends an entity to a user’s folder when it deems that
entity interesting for the user in the context of that folder. Recommendation are made by
the system based on the searching behaviour of other users who are deemed similar to this
user.

• Manage collections. A collection is a set of records, and is defined by a set of archives and
an optional selection criterion on these archives. Collections provide an abstract view of
archives. Users may define collections and associate them with specific search and browse
formats.

• Manage archives. Archives can be registered into Cyclades, so that collections may be
defined that use them.

Concerning (ii), the main classes of actions that the Cyclades system performs behind the curtains
are:

• Harvest and index records from archives. Metadata records are harvested and indexed offline
from the underlying electronic archives, and a search method for the other services is provided.
Additionally, information about the used archives and the available metadata formats is
maintained.

• Filter records. As a result of (either implicit or explicit) user queries, records are filtered
by means of a “folder profile”, i.e. a representation of the user’s interests as shown by the
contents of that folder. The folder profile is automatically maintained by the system by
exploiting implicit user feedback.

1.4 Services

The Cyclades system provides the user with different environments, according to the actions the
user wants to perform.

The main environment in which the user will carry out her work will be her folder hierarchy, i.e. a
set of hierarchically organized folders, each of which is a repository of metadata records retrieved
from open archives. Each of these records refers to a physical document, usually stored in the same
archive where the record is stored.

Each folder typically corresponds to one subject (or discipline, or field) the user is interested in.
However, in order to accomplish a truly personalized interaction between user and system, this
correspondence is implemented in a way which is fully idiosyncratic to the user; this means that
e.g. a folder named Nuclear Waste Disposal and owned by user Sue will not correspond to any
“objective” definition or characterization of what nuclear waste disposal is, but will correspond

Detailed System Specification Report(D3.0.1) 11

to what Sue means by nuclear waste disposal, i.e. to her personal view of (or interest in) nuclear
waste disposal. This user-oriented view of folders is realized by learning the “semantics of folders”
from the current contents of the folders themselves.

Folders can be private folders (in which case they can be accessed only by the individual user who
owns the folder), or community folders (in which case they can be accessed by all members of the
community who owns the folder), or project folders (in which case they can be accessed by all
members of the project who owns the folder). The folder hierarchy of a given user will thus include
her private folders and the community/project folders owned by the communities/projects she is
a member of, freely intermixed.

As all the actions that the user performs in her folder hierarchy are closely related to each other,
they will be implemented by the same system component, called the Collaborative Work Service
(CWS). This service will also be in charge of basic user management operations, such as user
registration into the Cyclades system, and folder management operations, such as creation of a
home folder. This service also includes a rating management component (RMS), which manages
all aspects related to the gathering and maintainance of user-provided document ratings.

Searching and browsing is an activity only loosely connected to a folder (since it is performed “from
within” a folder, i.e. with a given folder as the current folder), but otherwise autonomous. Thus,
it will be implemented by a separate system component, called the Search and Browse Service
(SBS).

Although in the beginning the Cyclades system will deal with open archives only, it is meant
to be extensible to other data sources in the future. Thus, access to the actual metadata is
implemented in a separate system component, the Access Service (AS). In this way, in order to
use data from other kinds of archives in the future, only an appropriate Access Service will have
to be implemented.

The management of collections (i.e. their definition, creation, and update) is a separate task that
will be implemented by yet another separate system component, the Collection Service (CS). This
will be in charge of providing users with a conceptual view of how documents are organized, i.e.
with a view in which documents are organized into topically coherent sets of independent interest
to one or more users/communities/projects.

In principle, the Cyclades system could work without recommendation and personalization fa-
cilities. As a consequence, the recommendation and personalization functionality will also be
implemented by a separate system component, the Filtering and Recommendation Service (FRS).
This separation of concerns will also enable the experimentation with different recommendation
and personalization paradigms. The FRS will be in charge of enabling users to interact with the
system in a personalized way, i.e. in a way that takes into consideration the user’s interests, and
to do so without any added load for the user (i.e. without requesting the user to explicitly specify
her interests).

All of these services will interoperate in a distributed environment. Security and system admin-
istration will be provided for centrally. Therefore, a Mediator Service (MS) will mediate between
the individual services and will manage user sessions. The Cyclades services can run on different
machines, and will only need a HTTP connection to communicate and collaborate.

1.5 Architecture

The Cyclades system consists of the following services, as outlined in Section 1.4:

• Collaborative Work Service

• Search and Browse Service

• Access Service

12 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Collection Service

• Filtering and Recommendation Service

• Mediator Service

The Collaborative Work Service provides a folder-based environment for managing metadata
records, queries, collections, external documents, and annotations. Furthermore, it supports col-
laboration between Cyclades users by way of folder-sharing in communities and projects. One
component of this service is the Rating Management Service, which manages ratings.

The Search and Browse Service supports the activity of searching records from the various collec-
tions, of formulating and reusing queries, and browsing schemas, attribute values, and metadata
records.

The Access Service is in charge of interfacing with the underlying metadata archives. In this
project, only archives adhering to the Open Archives specification will be accounted for; however,
the system is extensible to other kinds of archives by modifying the Access Service only.

The Collection Service manages collections, thus allowing a partinioning of the information space
according to the users’ interests, and making the individual archives transparent to the user.

The Filtering and Recommendation Service provides personalized filtering of queries and query
results, provides recommendations of records, collections, users, and communities deemed relevant
to the user’s interests, and provides personalized folder management.

The Mediator Service acts as a registry for the other services and provides security, i. e. it checks if
a user is entitled to use the system, and ensures that the other services are only called after proper
authentication.

Each service registers itself with the Mediator Service. Whenever a service needs to communicate
with another service, it asks the Mediator Service for a list of services of the appropriate type. In
this version, when asked for, say, Search and Browse Services, the Mediator will return a list of
Search and Browse Services, and the requesting service can be sure that each Search and Browse
Service of this list will provide the same functionality.

In the first version, i. e. the system as it will be implemented in the Cyclades project, the
infrastructure will provide for replication of the services, but not for distribution. The registry is
extendable, so that in future versions also distribution may be supported.

1.6 Communication protocol

The services of the Cyclades system will communicate via HTTP, using XML-RPC 2. XML-RPC
is a simple protocol for implementing cross-platform, distributed applications. As its name sug-
gests, communication between the distributed applications is done via remote procedure calls. The
XML-RPC protocol is based on Internet standards: method calls and responses are transmitted
using HTTP, and the bodies of the calls and responses are encoded in XML.

An XML-RPC message is an HTTP-POST request. The body of the request is in XML. A
procedure executes on the server and the value it returns is also formatted in XML. Procedure
parameters can be scalars, numbers, strings, dates, etc.; and can also be complex record and list
structures.

1.7 User interface

Most of the services (i. e. the Collaborative Work Service, the Search and Browse Service, the Access
Service (for archive management), and the Collection Service (for collection management)) will

2http://www.xmlrpc.com/spec

Detailed System Specification Report(D3.0.1) 13

provide their own user interface. The Mediator service itself will provide the registration and login
interface, and a system administration interface (for assigning access rights, etc.). Additionally,
the Mediator Service will integrate the user interfaces of the other services, and make sure that
those services and their interfaces are called only for authorized users, and only via the Mediator
Service.

Chapter 2

Access Service

2.1 Functionality

The Access Service harvests and indexes metadata records from the underlying electronic archives
and provides a search method for the other services. Additionally, it maintains information about
the used archives and the available metadata formats which the user can edit as needed.

Thus, the functionality of the Access Service consits of two parts:

• information retrieval on metadata records

• management of archive information

2.1.1 Information retrieval

Metadata records are a central issue in Cyclades, as they are the entities that the users will search
for, share, request as recommendation, and comment. All the metadata records in Cycladesare
provided by the Access Service. Thus, information retrieval on these metadata records is one of
the Access Service’s main tasks. It consists of:

• harvesting metadata records

• indexing metadata records

• retrieving metadata records

Harvesting metadata records

Cycladesuses metadata records from electronic archives. As many archives do not provide
a search function, Cycladescollects and stores the metadata records from the corresponding
archives itself, so that it can then implement a search function on its own local copies of the
records.

Indexing metadata records

To allow information retrieval on the harvested metadata records, they have to be indexed. The
Access Service will implement several levels of indexing.

14

Detailed System Specification Report(D3.0.1) 15

Retrieving metadata records

The user will not directly access the Access Service to retrieve metadata records. However, some of
the other Cycladesservices need to search for records. Thus, the Access Service provides them a
search function, using an internal query language that allows to specify both mandatory conditions
(e. g. the author must equal ’Fuhr’), and weighted conditions.

2.1.2 Management of archive information

The Access Service has to know which electronic archives it should harvest. That means that
archives have to be registered first. The Access Service will provide a means for a user to manage
archive information, and it will also make this information available to the other Cycladesservices.

To the user, the Access Service will provide the following functions:

• register an archive

• edit archive information

• unregister an archive

Register an archive

This function allows the user to register a new archive for future harvesting by the Access Service.
The user enters the archive URL, the system then automatically collects information about the
archive that the archive itself provides, and then presents this information to the user to edit. The
user can also specify information that could not be automatically detected, e. g. a textual descrip-
tion of the content, or more details about the metadata schemas used. After this registration,
the user will be responsible for the archive, from the system’s perspective. Thus, from the system
point of view, this user is an archive administrator.

Edit archive information

The content and the schemas of an archive may change with time, there may be more topics
available, more languages, additional metadata schemas and so on. Thus, the archive administrator
has to be able to change the information about the archive at any time.

Unregister an archive

It may happen that an archive is no longer available for public use, or that the owner of an
electronic archive does not want its contents to be accessible via Cyclades. In these cases, the
archive administrator can unregister the archive. After unregistering, this archive will not be
harvested any more, and no records from this archive will be available in Cyclades.

2.2 Process flow

2.2.1 Information retrieval component

This is the core part of the Access Service’s functionality. It does not require user interaction and
consists of functions running periodically in the background.

16 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Harvesting

In the first version of Cyclades, the system will rely only on those electronic archives that adhere
to the Open Archives specification 1. This specification defines a harvesting protocol to harvest
all open archives in a uniform way, without having to write a special harvesting wrapper for every
single archive. According to the specification, all archives provide at least unqualified Dublin Core
metadata, but any other metadata format (schema) can be used additionally. The Access Service
will harvest metadata records in all formats that it will be able to treat.

The harvesting comes in two flavours:

• a full harvest retrieves all records available from an archive

• an incremental harvests only those records from an archive that are newer than a specified
date

Both kinds of harvesting will run periodically, however, full harvests will be less frequent.

Indexing

After a set of records has been harvested, the individual metadata fields are analyzed and their con-
tent split into terms, stemming is applied, stopwords are eliminated, certain terms are normalized
(e. g. languages, if unambiguously identified). Then, the frequencies of the individual terms are
calculated on the field level and on the document level. Furthermore, the lengths of the individual
fields and the document lengths, both in number of terms, are calculated.

Retrieval

For retrieval, the corresponding query must be analyzed. Mandatory conditions are evaluated. For
the resulting set of records, the relevance for the query is estimated using the weighted conditions
from the query and the weights of the concerning terms, and the records are ordered by this
estimated relevance.

2.2.2 Management of archive information

This part of the Access Service’s functionality allows the user to register an archive to be included
in the AS’s automatic harvesting mechanism, to manually edit the archive information, and to
unregister an archive, if it should not be available via Cycladesany longer.

Register an archive

• User: enters the archive registration environment and chooses the function to add an archive

• System: asks the user for the primary URL of the archive

• User: enters the primary url for the archive

• System: collects initial archive information

• System: presents the metadata schemas available for the new archive

• User: chooses the schemas to be used in the record gathering process. Only records in these
formats will be available to the Cycladessystem from this archive.

1http://www.openarchives.org

Detailed System Specification Report(D3.0.1) 17

• System: presents the plain text description, language information and temporal coverage
as far as these could be determined automatically

• User: edits the plain text description, languages and dates covered, enters additional urls
(mirrors), keywords and so on

• System: asks the user to confirm the registration

• User: confirms or cancels the archive registration

• System: in case of confirmation, saves the changes

• System: presents a success message or a failure report

Edit archive registration information

• User: enters the archive registration environment and chooses the function to edit the
registration information for an archive

• System: presents a list of archives the user is allowed to edit (in case of a Cycladesadministrator,
all archives, else only those that the user has registered herself)

• User: selects an archive to edit

• System: presents the concerning archive information, i. e. available schemas and languages,
temporal coverage, mirror URLs, a textual description, keywords and so on

• User: edits the presented archive information

• System: asks the user to confirm the changes

• User: confirms or cancels the changes

• System: in case of confirmation, saves the changes

• System: presents a success message or a failure report

Unregister an archive

• User: enters the archive registration environment and chooses the function to unregister an
archive

• System: presents a list of archives the user is allowed to manage (in case of a Cycladesadministrator,
all archives, else only those that the user has registered herself)

• User: selects an archive to unregister

• System: presents the archive information

• System: asks the user to confirm the unregistering action

• User: confirms or cancels the unregistering action

• System: in case of confirmation, deletes all entries for this archive from all tables in the
database

• System: presents a success message or a failure report

18 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

2.3 Internal architecture

2.3.1 Overview

Figure 2.1 shows the internal architecture of the Access Service. It consists of the following layers,
respectively components:

• a relational database

• an information retrieval component

• an implementation layer

• an API

• the archive management GUI

• a communication module

In the following, we describe these individual components.

2.3.2 Database

The Access Service has to store data, i. e. records and archive information, persistently. In the first
version of the system, we use the Postgres database system for this purpose. The Access Service
methods, however, will be easily adaptable to any other relational database system as well.

2.3.3 Information retrieval component

This part of the Access Service contains the harvesting and indexing of metadata records, and the
retrieval function. Harvesting and indexing is implemented by Perl scripts that have to be run
periodically, e. g. as Unix cron jobs. Retrieval is implemented as a static Java function that can
be used by the Access Service classes, and also independently from Cyclades. The information
retrieval component communicates with the database via the Perl database interface, and with
external electronic archives via the Open Archives protocol.

2.3.4 Access Service implementation classes

This layer consists of the Java classes implementing the Access Service’s internal and public APIs.
The class implementing the concept of an archive communicates with external electronic archives
via the Open Archives protocol, all classes have access to the database where their data is stored
persistently.

2.3.5 Access Service API

This layer is the API to all Access Service functions that are accessible to the GUI or to other
Cycladesservices. It consists of Java interfaces specifying the available methods. The individual
classes (respectively, from the implementation point of view, Java interfaces) are described below
in section 2.4.

Detailed System Specification Report(D3.0.1) 19

2.3.6 Archive management GUI

This component of the Access Service interacts with the user to manage the information about
the individual archives. It does not use the database directly, but retrieves and saves the archive
data using the Archive and Schema classes contained in the Access Service API. The GUI itself is
implemented by a Java servlet running in the local Web server.

2.3.7 Communication with other services

The Access Service provides data access methods for other Cycladesservices (see next section,
2.4) as the public part of its API. However, the API itself specifies only the available methods,
not how the other services can access them. This is the task of the communication module. In
the first version of Cyclades, the communication between the different services is carried out via
XML-RPC, thus, the Access Service’s communication module is implemented by an XML-RPC
server.

2.4 Data and method specification

2.4.1 Access Service

In the following paragraphs, we describe the classes that are defined by the Access Service API.
The persistent data of this service are registered archives and their metadata schemas.

AccessService

public:

• id
Description: the unique ID of the service, string

• archives
Description: a list of Archive objects that the service manages

• (term,weight)* getIndexedTermsAndWeights(recordId*)
Description: this method exports the indexed terms and their respective weights
Input. list of recordId: the list of ids of the records for which the indexed terms and weights are to be determined
Output. list of pairs (term, weight)

• (Record, (term,weight)*)* getIndexedTermsAndRecords(recordId*)
Description: this method exports the indexed terms and their respective weights for each
record specified
Input. list of recordId: the list of ids of the records for which the indexed terms and weights are to be determined
Output. list of records, each record with a list of pairs (term,weight) associated

• (Record,(term,weight)*)* search(query,maxRecordNo,maxTermNo,timeStamp)
Description: this method determines the records corresponding to query and returns at
most maxRecordNo records gathered after the time specified by timeStamp, and for each
record, maxTermNo indexed terms with their weights.
Input. query: the query string

maxRecordNo: the maximum number of records to be returned
maxTermNo: the maximum number of terms to be returned with each record
timeStamp: a timestamp specifying a date and time, only records gathered after this time will be considered

Output. list of records, each with a list of pairs (term, weight) associated

20 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• (oaiId,textualDescription,keyword*,schema*,language*,temporalCoverage) getArchiveDescrip-
tion(oaiId)
Description: this method returns a complete description of the archive specified by oaiId
Input. oaiId: the id of the archive

Output. oaiId: the id of the archive (string)
textualDescription: a string describing the archive
list of keywords: a list of strings that describe the archive’s topic
list of schemas: a list of schema names (strings) of the metadata schemas available in the archive
list of language: a list of languages (strings) available in the archive
temporalCoverage: a list of pairs (fromYear,toYear) describing the intervals of time covered by the archive

• (term,weight)* getMetadataAttributeTerms(oaiId,schema,attributeName,maxTerm)
Description: this method returns for the archive with the ID oaiId, for the schema and the
specified attribute, at most maxTerm indexed terms with their weights
Input. oaiId: the id of the archive

schema: the name of the schema (string)
attributeName: the name of the metadata attribute (string)
maxTerm: the maximum number of terms to be returned

Output. a list of pairs (term,weight)

• Schema* getSchemas(collectionId*)
Description: this method exports a list of all schemas that the archives that the specified
collections are based on supply (if no collection ids are specified, then all metadata schemas
of all archives are listed)
Input. list of collectionId: the list of collection ids (strings)
Output. a list of Schema objects

• value* getAttributeValues(archiveId*,schemaName,attributeName,maxNo)
Description: this method returns a list of maxNo attribute values from the archives speci-
fied, and for the given schemaName and attributeName
Input. list of archiveId: the list ids of the archives (strings)

schemaName: the name of the metadata schema
attributeName: the name of the metadata attribute
maxNo: the maximum number of values to be returned

Output. a list of values, their type according to the type of the attribute

• Record* getRecords(recordId*)
Description: this method returns the full records for the given record ids
Input. list of recordId: the list ids of the requested records
Output. a list of records

• HTML initiateArchiveManagement(userId)
Description: this method returns the Access Service’s interface for archive management
Input. userId: the id of the user who initiated the archive management
Output. the initial HTML page of the archive management GUI

service internal:

• void saveSchemas(Schema*)
Description: saves the schemas’ data to the database
Input. list of Schemas: the list of Schema objects that are to be saved

• Archive initiateArchiveRegistration(url)
Description: creates a new archive object and collects initial data from the data provider
specified by url
Input. url: the URL of the new archive’s data provider
Output. a new Archive object

Detailed System Specification Report(D3.0.1) 21

Archive

An instance of this class represents one single open archive. public:

• id
Description: this is the unique ID of the archive, a string

• textualDescription
Description: a textual description of the archive, entered by the archive registrator (string)

• schemas
Description: a list of Schema objects, containing the metadata schemas that the archive
exports

• url
Description: the main URL of the archive (string)

• mirrors
Description: a list of further URLs for the archive (list of strings)

• languages
Description: a list of languages that the archive data covers, specified by the archive
registrator (list of strings)

• temporalCoverage
Description: a list of pairs (year,year) that specify the temporal coverage of the archive,
the archive registrator enters this data during registration

• keywords
Description: a list of keywords describing the archive content, entered by the archive
registrator (list of strings)

service internal:

• void saveToDB()
Description: saves this archive’s data to the database

• void readFromDB()
Description: reads this archive’s data from the database

Schema

An instance of this class describes one metadata schema.

• name
Description: the unique name of the schema (string)

• url
Description: the URL of a DTD or namespace for the schema (string)

• attributes
Description: a list of the attributes of the schema, each attribute being a tuple (name,datatype)

• void saveToDB()
Description: saves this schema’s data to the database

• void readFromDB()
Description: reads this schema’s data from the database

22 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

2.4.2 Access Service tables

The Acces Service uses a relational database and creates the following tables:

• schemas

Store information about a the available metadata schemas.
name char(50) the unique name of the schema.
url Varchar the url of a DTD where the schema is described.
namespace Varchar the url where the schema namespace is described.

• schemasAndAttributes

Store the attributes belonging to the available metadata schemas.
schemaName char(50) the name of the schema the attribute belongs to.
attribute char(200) the unique name of the attribute.
type char(50) the type of the attribute.

• archives

Store information about a the archives indexed by the Access Service.
archiveId char(50) the unique archive identifier.
textualDesc Varchar a textual description.
url Varchar the url of the primary data provider.
mirror1 Varchar the url of a data provider mirror.
mirror2 Varchar the url of a second data provider mirror.
mirror3 Varchar the url of a third data provider mirror.
repositoryName Varchar the optional name of the archive.
adminEmail Varchar the e-mail address of the archive responsible.
registeredBy char(100) the id of the user who registered the archive.
regEmail Varchar the e-mail address of the user who registered the archive.
lastFullHarvest timestamp date and time of the last full harvest.
lastIncremHarvesttimestamp date and time of the last incremental harvest.
timeSpentFull integer time spent at last full harvest.
timeSpentIncremalinteger time spent at last incremental harvest .
fullInterval integer interval in hours for the full harvest.
incremInterval integer interval in hours for the incremental harvest.
fullContent Varchar the original content of the Identify record.

• archivesAndIncidents

Stores relevant incidents for each archive.
archiveId char(50) the identifier of the archive.
atTime timestamp date and time when the incident happend.
type Integer internal type of the incident.
code Integer internal warning or error code.
text Varchar explanatory text.

• archivesAndSchemas

Stores which metadata schemas belong to which archives.
archiveId char(50) the identifier of the archive.
schema char(50) the name of the schema.

• archivesAndLanguages

Stores which languages are available in which archives.
archiveId char(50) the identifier of the archive.
language char(50) the name of the language.

• archivesAndKeywords

Stores keywords describing the archives.
archiveId char(50) the identifier of the archive.
keyword char(50) the keyword.

Detailed System Specification Report(D3.0.1) 23

• archivesAndTemporalCoverage

Stores which periods of time are covered by which archives.
archiveId char(50) the identifier of the archive.
fromDate date start date of the period.
toDate date end date of the period.

• records

Stores organizational information about each record.
archiveId char(50) the identifier of the archive the record comes from.
recordId char(200) the identifier of the record itself (inside the archive).
schema char(50) the metadata format of the record (one record can be avail-

able in several formats).
firstGathered timestamp date and time when the record was gathered for the first

time.
deleted timestamp date and time when (if) the record was reported deleted.
lastGathered timestamp date and time when the record was gathered for the last

time.
fullContent Varchar the full XML content of the record.

• valuesDcCreator, valuesDcPublisher, ...

For each schema and attribute, a table to store the normalized values of the attribute for the
individual records.
archiveId char(50) the identifier of the archive the record comes from.
recordId char(200) the identifier of the record itself (inside the archive).
normalizedValue according

to type
the normalized value of this attribute in this metadata
schema for this record.

lengthInTerms if applica-
ble

the length in terms of this attribute value in this record

• indexDcCreator, indexDcPublisher, ...

For each schema and attribute, a table to store the indexed terms of the attribute for the
individual records.
term Varchar the indexed term
archiveId char(50) the identifier of the archive the record comes from.
recordId char(200) the identifier of the record itself (inside the archive).
weight Real the weight of this term concerning this attribute and record.
termFreq Integer the number of times this term occurs in this attribute in

this record (term frequency).

2.4.3 Information retrieval component

In the following paragraphs, we describe the algorithms and concepts used in the information
retrieval component.

Harvesting

Harvesting records from open archives implies the following steps:

• get a list of record identifiers

• for each identifier, get the available metadata formats

• for each identifier and format, get the whole record

If a new metadata schema is found, then the schema must be analyzed, the attributes and their
types stored in the schemasAndAttributes table, and the appropriate value and index tables gen-
erated (see above).

24 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Indexing

Indexing is done in two steps:

Identify index terms and frequencies

This part can be performed for records from a specific archive, according to a specific condition
(e. g. all records from an incremental harvest). It is possible to run this process e. g. for several
archives in parallel.

• get the list of schemas that have attributes for indexing
(there might be schemas where the system does not know how to index the content)

• for each schema, for each attribute a, for each record r of the schema, if the record contains
the attribute a:

– normalize the attribute content and store it in the appropriate values table

– extract the terms

– store the length of the attribute content (in number of terms) l(r,a) in the appropriate
index table

– for each termt, store the number of times it occurs in this attribute a in this record r
(tf(t,r,a)) in the appropriate index table

• for each record r and term r , calculate the number of times the term occurs in any attribute
value of the record (tf(t,r))

• for each record r, calculate its length l(r)) in number of terms

Calculate term weights

This part of the indexing process is done for all terms and records in an archive.

The frequencies tf(t,r,a), tf(t,r), and the lengths l(r,a), l(r) are calculated for each archive seper-
ately, and only for those records that have changed, as specified in the step above.

Additionally, for calculating the term weights, the following values have to be determined first, for
the whole archive:

• for each metadata attribute a to be indexed for the archive, the average attribute value
length (avgl(a)) in number of terms

• the average record length (avgl) in number of terms

• the number of terms in the archive (N)

• for each term t and attribute a, the number of records in the archive in which the term t
occurs in the attribute a (df(t,a))

• for each term t, the number of records in the archive in which the term t occurs anywhere in
the respective record (df(t))

Then, each term t is weighted as follows:

• With respect to one single metadata attribute a and record r :

weight(t, r, a) = (1 −
logdf(t, a)

logN
) ·

tf(t, r, a)

tf(t, r, a) + 0.5 + 1.5 · l(r,a)
avgl(a)

(2.1)

Detailed System Specification Report(D3.0.1) 25

• With respect to one single metadata attribute and archive, but for all records in the archive:
This is the average weight of t over all the records in the archive, i. e. the average of
weight(t,r,a) over all r in the archive.

• With respect to one single record, for all metadata attributes:
This is the same formula as 2.1, but using frequencies and lengths with respect to the whole
record content.

weight(t, r) = (1−
logdf(t)

logN
) ·

tf(t, r)

tf(t, r) + 0.5 + 1.5 · l(r)
avgl

(2.2)

2.4.4 Query language

For the specification of search criteria and for evaluating collection filtering conditions, the Access
Service will use the following abstract query syntax:

query = (collectionQuery)*

collectionQuery = (condition* (,archive)*)

condition = ([weight,] field, fieldCondition+)

fieldCondition = ([subfield,] predicate, value)

weight = "+"| "-" | 1..1000

field = schemaName":"attributeName

In the list of collectionQueries, no archive may appear more than once. CollectionQueries are
implicitly combined by OR. A weight of ”+” means that the condition must be fulfilled, a weight
of ”-” means that the corresponding conditions must not be fulfilled (this corresponds to the
boolean NOT).

For collection filtering conditions, only Dublin Core fields may be specified.

Predicates that will be available:

• lt (less than)

• gt (greater than)

• le (less or equal)

• ge (greater or equal)

• eq (strictly equal)

• $soundex$ (sounding like)

• cw (contains word)

2.5 User interface

The Access Service provides a user interface for archive management. This interface consists of
generated HTML pages and is accessible only to those users who are intitled to register archives
(archive administrators). The rights are managed and checked by the Mediator Service which will
call the Access Service’s archive management interface only if a user has the appropriate rights.

First of all, the user chooses between two possible actions:

• register a new archive

• edit an archive

26 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

2.5.1 Register a new archive

After choosing the action of registering a new archive, the system asks the user for the archive’s
URL. That means that the corresponding form will contain an input field for the URL, and two
buttons, Submit and Clear. The Submit button will submit the URL to the system and bring the
user to the next step of the archive registration process, the Clear button will clear the input field
so that the user can enter another URL. A Cancel button is not needed, as the interface is an
HTML form which the user can leave at any time desired without further consequences.

Once the user has submitted the URL, the system collects that part of the archive information
which is available from the archive itself and presents it to the user. Editing the archive information
is described in the following subsection, and the user interfaces for this step are identical for new
and existing archives.

After having edited and submitted the archive information, the system presents a success message
or a failure report. The HTML page generated for this purpose contains additionally two buttons to
enter the archive management process again, namely register another archive and edit an archive.

2.5.2 Edit an archive

After choosing this action, the user is presented with a list of archives she is entitled to manage.
If the user is an archive administrator, this is a list of all archives registered by this user. If the
user is a Cycladesadministrator, this is a list of all archives registered in the system.

The user highlights one archive on the list and then chooses between two actions:

• edit registration information

• unregister

This page of the user interface also contains a Back button that takes the user back to the first
page of the archive management interface.

Edit registration information

Here, the user can see and edit all the information the system keeps about an archive. In particular,
this includes

• text input fields for

– the archive name

– the main URL

– a textual description

• lists of

– metadata schemas indexed

– additional URLs (mirrors)

– languages used in the archive

– periods of time covered by the archive content

– keywords describing the archive content

• for each list, buttons to

– add an entry

Detailed System Specification Report(D3.0.1) 27

– remove an entry

– edit an entry

• a Submit button

• an Reset button

• a Back button

The text fields can be edited as required.

Lists are manipulated via the buttons Add, Remove, and Edit. Choosing Add or Edit results in a
new form being generated where the user can specify a new entry for the list, or edit the information
about an existing entry. Remove opens a confirmation dialog where the user can confirm or cancel
the remove action.

The Submit button results in the changes being saved and then takes the user back to the list of
archives she is entitled to manage (see above).

The Reset button reloads the current page with the previous values. All changes are lost.

The Back button takes the user back to the list of archives she is entitled to manage, but without
saving the changes.

Unregister

When the user chooses this action for one archive in the list of archives, the system opens a
confirmation dialog to ask whether the archive should really be unregistered. On confirmation, the
user is presented with a success or failure message and a Back button that takes her back to the
list of archives. On cancel, the user gets back to the list of archives still containing the selected
archive.

2.6 Service interaction diagrams

2.7 Service implementation tools

The first prototype of the Access Service will be implemented using the following software:

• Java 2

• Perl 5.6.1 for Linux

• Apache XML-RPC

• Apache Web Server and Tomcat

• Postgres 7.1.2 for Linux

28 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Web browser
other Cyclades services

Access Service

HTML via HTTP

Communication server

XML-RPC via HTTP

Information retrieval component

GUI

AS internal API

AS public API

relational
DB

Access Service classes

Open archives

OAI requests via HTTPOAI requests via HTTP

Figure 2.1: Access Service: internal architecture

Detailed System Specification Report(D3.0.1) 29

Archive registrator

Mediator Access Archive AS Database

initiate archive management
get AS GUI

Identify
archive information

store schemas

schema information

determine available search functions

AS GUI page

present archive management GUI

select metadata schemas, fields, and search functions

store archive information

success or failure notification

gather metadata records

store and index metadata records

Collection

create archive collection

success or failure notification

AS GUI

register archive

ask for URL
URL

getMetadataFormats

schema information

edit description, languages, keywords, temporal coverage
store archive information

success or failure notification

success or failure notification

Figure 2.2: Access Service: register archive (interaction diagram)

30 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Collection

add collection

collectionId

initializeCollection(collectionId,collectionName,

getArchiveDescription(oaiId)

(oaiId,textualDescription,keyword*,Schema*,

ack

Access

collectionDescription,membershipCondition,userId)

language*,temporalCoverage)

addSearchBrowseFormat(collectionId,
subschema,userId)

ack

Figure 2.3: Access Service: create archive collection (interaction diagram)

Chapter 3

Collaborative Work Service

3.1 Functionality

The Collaborative Work Service (CWS) stores the private, community and project folders of the
Cyclades users. These folders may contain metadata records, queries and, in the case of project
folders, also other material. The CWS supports

• folder and contents management,

• collaboration between users by way of folder sharing in communities and projects, including
discussion forums and mechanisms fostering mutual awareness, and

• recommendations management.

3.1.1 Folder and contents management

Folders are the persistent repositories for the storage of metadata records and queries. Folders may
contain other folders and thus form a folder hierarchy. Cyclades folders come in three flavours:
private, community and project folders.

Private folders are for the use of one user only. Community folders are for sharing records and
queries with other users and for building up a common folder hierarchy. Community folders may
also contain discussion forums where notes may be exchanged in threaded discussions (similar to
news groups). All folders of a community are shared by all members of the community.

Project folders are for carrying out shared work connected somehow to metadata records, e. g.
producing a review of literature summarized in metadata records, or writing a scientific paper
including the research of related literature. Consequently, project folders may contain also docu-
ments other than records and queries, and also allow a flexible membership management: project
folders may contain subfolders that are only accessible for a subset or superset of the members of
the parent folder.

Cyclades folders have a set of attributes intended for the support of Cyclades specific activity:
recommendations management, collaboration, and searching and browsing. These attributes are:
recommendation preferences, subscription policy preference (community folders only), and asso-
ciated collections (collections consist of a set of metadata records satisfying a certain criterion; a
user has a personal set of preferred collections).

Folder management is concerned with

• creating folders and subfolders,

31

32 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• moving and copying folders from one location to another, deleting, undeleting and destroying
folders,

• editing folder attributes like name, description, associated collections, recommendation pref-
erences, and subscription policy preference (community folders only),

• keeping the personal sets of preferred collections, which are managed in the Collection Service
(CS), up to date.

Contents management is concerned with

• saving records and queries from a search and browse session in folders,

• deleting, undeleting and destroying records and queries,

• moving and copying records and queries from one folder to another,

• rating and annotating records and queries,

• management (create, delete, move, copy, rate annotate) of other documents (project folders
only).

3.1.2 Collaboration support

Collaboration between users is supported through the possibility of sharing community and project
folders along with their contents and folder structure. Additionally, discussion forums may be
created within folders to allow informal exchange of notes and arguments. Annotations of specific
records and queries also may take the form of discussions among the members of a community or
project. In order not to miss shared activity in the CWS, mutual awareness is supported through
event icons displayed in the CWS and activity reports that are daily received by email. Also, users
may view the list of all existing communities so that they become aware of ongoing community
activity. This does not mean that they can look inside communities, only title, description and
identity of the community managers are available. To become a member, users may directly join
the community if this is allowed by the community’s policy, or may contact the managers to be
invited to the community.

Collaboration support is concerned with

• inviting or removing members to or from a folder,

• assigning members with the manager role,

• leaving a community or project,

• viewing communities,

• joining a community folder (only for folders open to subscription),

• contacting community managers or other users via email,

• creating discussion forums, adding notes to a discussion forum,

• editing event notification preferences (icons, daily report),

• catching up on events noticed,

and as a basic service

• assigning user identifiers and password management.

Detailed System Specification Report(D3.0.1) 33

3.1.3 Recommendations management

Recommendations in Cyclades are generated by the Filtering and Recommendation Service
(FRS) and then forwarded to the CWS. Recommendations are meant for a specific folder and
come in four flavours: the recommendation of records, users, communities and collections. The
records are meant to fit into the folder context, the users and communities are recommended as
potential partners with similar interests, and the recommended collections should cover material
interesting for the folder concerned. Recommendations for a folder are put into a specific recom-
mendations subfolder where the recommendations may be further processed depending on the type
of the recommendation. Users may configure their preferences about receiving recommendations
on a per folder basis, and may also specify whether they want to be recommended as a user to
other users.

Folder profiles, which depend on the records contained in a folder, determine the recommendations
received for a folder. Folder profiles are updated by the FRS from time to time. When a user has
changed the contents of a folder to a great deal, she may also request an immediate update of the
folder profile by the FRS. This is also useful before a search and browse session is started, since
then the filtered search mode will work with the updated folder profile.

Recommendation management is concerned with

• editing folder recommendation preferences,

• editing the personal preference for allowing recommendations as user to other users,

• receiving recommendations from the FRS,

• processing recommendations,

• requesting an update of the folder profile.

3.2 Process flow

The functionality of the CWS is accessible through its graphical user interface and through its
service method interface (API).

User operation interface The graphical user interface of the CWS in its normal state shows
the contents of the current folder as a linear list and has a number of functions that may be selected
by the user. The current folder is the current location of the user in the hierarchy of folders that
is accessible to her.

The functions of the user interface are invoked by selecting options of pull-down or pop-up menus
or by clicking buttons. Function invocation is the starting point of an interaction between user
and system. Navigation in the folder hierarchy is an example of a simple interaction: a subfolder
entry in the current folder listing works like a button: by hitting such an entry the corresponding
subfolder is made the current folder and its contents are shown as a listing of entries. Simple
interactions consist only of a one-step process of user and system action:

• User: hits a function.

• System: executes the function and presents the current folder listing.

The more complex interactions may involve more steps, typically two:

• User: hits a function.

• System: presents a form for entering additional information.

34 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

User
hits

function

User
hits

function

System
presents

form

System
presents

form

User
fills in &
submits

form

User
fills in &
submits

form

System
executes
function &
lists c. fldr

System
executes
function &
lists c. fldr

System

User

Figure 3.1: User operation activity diagram

• User: fills in and submits the form.

• System: executes the function and presents the current folder listing, reflecting the changes
if any.

In the following, we will use this schema for describing the linear process flow of the CWS user
operations.

3.2.1 Create folder

When creating folders we distinguish two cases: the user creates the root of a new folder hierarchy
in her home folder, or the user creates a subfolder within in an existing folder hierarchy. In the
first case, a number of preferences have to be set which in the second case are inherited from the
parent folder.

Create root folder

• User: hits function New community/project/private folder in her home folder.

• System: presents a form for entering

– folder name,

– folder description,

– collections to be associated to the folder (from the personal set of collections),

Detailed System Specification Report(D3.0.1) 35

– recommendation preferences (which of the four varieties of recommendations—records,
users, communities, collections—are welcome to the folder),

– subscription policy preference (open to subscriptions from outside or not—community
folders only).

• User: enters this information and submits the form.

• System: creates the new folder and forwards the recommendation preferences to the Fil-
tering and Recommendation Service (FRS). For every associated collection, the new folder
is added to this collection’s list of folders that have the collection associated—these lists are
needed when a collection is removed from the system. In the case of community folders, the
new community is added to the list of existing communities. The current folder listing is
presented showing the new folder.

Create subfolder

• User: hits function New community/project/private folder in some existing community, project,
or private folder.

• System: presents a form for entering

– folder name,

– folder description.

• User: enters this information and submits the form.

• System: creates the new folder and forwards the recommendation preferences, which are
inherited from the parent folder, to the Filtering and Recommendation Service (FRS). For
every associated collection which are also inherited from the parent folder, the new folder is
added to this collection’s list of folders that have the collection associated—these lists are
needed when a collection is removed from the system. The current folder listing is presented
showing the new folder.

3.2.2 Move and copy

Moving and copying objects within the CWS from one folder to another are generic operations
available for folders, records, queries, discussion forums, and any other type of documents. The
mechanism works with a container called clipboard that every user has apart from her home folder.
More than one object of different type may be moved or copied together.

Moving and copying is a three-step process.

• User: selects the entries in the current folder listing to be moved or copied and then hits
the function Cut (for move) or Copy (for copy).

• System: cuts or copies the selected entries to the clipboard and presents the (changed)
folder listing.

• User: navigates to the destination folder (this may involve several substeps).

• System: presents destination folder.

• User: hits the Paste function.

• System: moves the selected entries from the clipboard into the current folder and presents
the changed folder listing.

Since this operation is generic, it will not be repeated further down for records, queries, discussion
forums, or other documents.

36 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

3.2.3 Delete, undelete and destroy

Again, deleting, undeleting and destroying objects are generic operations within the CWS available
for folders, records, queries, discussion forums, and any other type of documents. The mechanism
works with a container called waste that every user has apart from her home folder and clipboard.
Several objects of different type may be deleted, undeleted or destroyed together.

Delete

• User: selects the objects to be deleted and then hits the Delete function.

• System: moves the selected objects to the waste and presents the changed folder listing.
Note the following:

– Deleted objects are still available and may be undeleted again. In their current location,
the waste, they provide only limited functionality to the user (essentially Undelete and
Destroy).

– In shared folders, deleting an object deletes it for all members.

– With some classes, deleting is destroying, i. e. objects of these classes are not moved to
the waste when deleted, but are removed from the system (c.f. operation Destroy below).
This is the case for recommended users, communities and collections.

– Deleting a folder deletes all its contents, too.

Undelete

• User: hits the Waste function.

• System: presents the waste listing, i. e. entries currently contained in the waste.

• User: selects the objects to be undeleted and then hits the Undelete function.

• System: moves the selected objects to the their original folders and presents the changed
waste listing. Note that

– in shared folders, undeleting an object undeletes it for all members.

Destroy

• User: hits the Waste function.

• System: presents the waste listing, i. e. entries currently contained in the waste.

• User: selects the objects to be destroyed and then hits the Destroy function.

• System: removes the selected objects from the system and presents the changed waste
listing. Note the following:

– Destroying a shared folder terminates the membership of the destroyer, but does not
destroy the folder, unless the destroyer is the last member.

– In shared folders, destroying an object other than a subfolder destroys it for all members.
The destroyed object is moved to its owner’s waste, unless the destroyer is the owner.
The reason behind that is to give the owner who originally created the object a final
opportunity to dispose of the object.

– When a community root folder is destroyed by its last member, it is removed from the
list of existing communities. This is not already the case when a community root folder
is deleted by its last member.

– Destroying a folder destroys all its contents, too.

Detailed System Specification Report(D3.0.1) 37

3.2.4 Edit folder attributes

Folder attributes that may be edited by the user are

• name,

• description,

• associated collections,

• recommendation preferences, and

• subscription policy preference (community folders only).

Edit name

This operation is generic for all objects in the CWS.

• User: hits the function Rename for an entry in the current folder listing.

• System: presents a form where the new name may be entered.

• User: fills in and submits the form.

• System: presents the current folder listing showing the new name.

Edit description

This operation is generic for all objects in the CWS.

• User: hits the function Description for an entry in the current folder listing.

• System: presents a form where the new description may be entered.

• User: fills in and submits the form.

• System: presents the current folder listing showing the new description.

Edit associated collections

This operation on a folder is split into two: add collections and remove collections.

Add collections

• User: hits the Add collections function for a folder.

• System: presents a form showing those collections of the user’s personal set of collections
that are currently not associated to the folder.

• User: selects the collections from this list that she wants additionally to associate to the
folder and submits the form.

• System: associates the selected collections to the folder. For each collection that is asso-
ciated, the folder is entered in this collection’s list of folders that are associated to it. The
current folder listing is presented. Note that

– the user may check which collections are currently associated to a folder by having a
look at the folder’s info page (function Info).

38 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Remove collections

• User: hits the Remove collections function for a folder.

• System: presents a form showing the collections currently associated to the folder.

• User: selects the collections from this list that she wants to remove from this list and submits
the form.

• System: removes the selected collections from the list of collections associated to the folder.
For each removed collection, the folder is removed from this collection’s list of folders that
are associated to it. The current folder listing is presented. Note that

– the user may check which collections are currently associated to a folder by having a
look at the folder’s info page (function Info).

Edit recommendation and subscription policy preferences

• User: hits the Edit folder preferences function for a folder.

• System: presents a form showing which type of recommendations are currently requested
for the folder. If the folder is a community root folder, the form also shows the preference
for the community’s subscription policy (open to subscription from outside or not).

• User: sets or resets the preferences for recommendations and subscription policy, the latter
if applicable, and submits the form.

• System: changes the folder preferences, forwards the changed recommendation preferences
to the FRS, and presents the current folder listing. Note that

– the user may check which preferences are currently set for a folder by having a look at
the folder’s info page (function Info).

3.2.5 Rate records

• User: selects one or more records she wishes to rate and hits the Rate function.

• System: presents a form with a rating table: the rows correspond to the records to be rated,
the columns to the available rating values, i. e. very poor, poor, fair, good, excellent.
There is an additional column Not yet rated which is initially checked if the user has not
yet rated that particular record. Otherwise, the option corresponding to the last rating of
that particular record by the user is checked.

• User: enters ratings by checking the appropriate entries in the rating table and submits the
form.

• System: stores the ratings and forwards them to the Rating Management Service (RMS).
The system presents the current folder listing showing an iconized aggregate rating for every
rated record. Note that

– the user may check which single ratings a record has received by having a look at the
record’s info page (function Info).

Rating is a generic operation within the CWS. Apart from the forwarding of record ratings to the
RMS, the operation is equal for queries, recommendations, or other documents and will not be
described again below. Also, mixed types of objects may be rated together in one operation. In
this case, only record ratings are forwarded to the RMS.

Detailed System Specification Report(D3.0.1) 39

3.2.6 Annotate records

Annotations of records take the form of threaded discussions (like the discussion forums treated
below). The first annotation opens the discussion, subsequent annotations are added to the dis-
cussion.

Attach a first annotation to a record

• User: hits the Attach note function for a record.

• System: presents a form to enter a note as annotation of the record. A note has a type
(selectable are Note, Pro, Con, Important, Angry, Idea), a subject line and the free text
annotation as contents.

• User: fills in and submits the form.

• System: stores the annotation and presents the current folder listing. The presence of an
annotation is indicated by a respective icon attached to the record. Hitting this icon will
show the annotation.

Attach more annotations to a record

• User: hits the annotation icon of a record.

• System: presents a view of the discussion showing all existing notes organized in threads.

• User: chooses between

– adding a note as a comment to an existing note by hitting its Reply function, or

– opening a new thread by hitting the Attach note function of the whole discussion (top
level function).

• System: presents in either case a form to enter a new note.

• User: enters a new note and submits the form.

• System: stores the new annotation either as a comment to the note chosen or as initial note
of a new thread, and presents the new state of the annotation.

Annotating is a generic operation within the CWS. The operation is equal for queries, recommen-
dations and other documents, and will not be described again below.

3.2.7 Invite a new member to a folder

The right to invite new members is restricted to managers. Invitation to communities is only
possible in the community root folder and holds for all folders of the community. With project
folders, new members may also be invited to subfolders of a project and then have no access to
the parent folder of the folder they were invited to.

• Manager: hits the Add member function of a folder.

• System: presents a form where to select new members from the list of members known to
the manager (which are in her address book) and to specify an optional invitation message.

• Manager: fills in and submits the form. If some or all of the persons the manager wishes
to invite are not listed, she may also proceed to a form (function Add to address book) where
she may enter user names and/or email addresses of these persons which are then added to
her address book and invited.

40 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• System: adds all invitees who are already registered users as members to the folder. For
non-registered invitees, i. e. where only a email address has been specified, the email address
is forwarded to the Mediator Service for registration and invitation of these persons; an email
address object is created and added as placeholder member to the folder. Finally, the system
presents the current folder listing.

3.2.8 Remove a member from a folder

The right to remove members is restricted to managers. Removal from communities is only possible
in the community root folder and holds for all folders of the community. With project folders,
members may also be removed from subfolders of a project and then have no access to the subfolders
of this folder.

• Manager: hits the members icon attached to the folder in the your location field.

• System: presents a list of the present members of the folder like in a folder listing. Mem-
bers shown only with their email address are invited members who have not yet registered
(placeholders).

• Manager: selects the users she wants to remove and hits the Remove function.

• System: removes these members from the folder having the effect that these users have no
longer access to the folder and its subfolders. The system presents the remaining members
of the current folder.

3.2.9 Assign a member as manager

The right to assign members with the manager role is restricted to managers.

• Manager: hits on the members icon attached to the folder in the your location field.

• System: presents a list of the present members of the folder. Members shown only with
their email address are invited members who have not yet registered (placeholders).

• Manager: selects the Assign role function of that user to whom she wants to assign the
manager role.

• System: presents a form showing the possible roles for that user with the current role
checked.

• Manager: checks the manager role and submits the form.

• System: makes the selected user a manager of the folder and all its subfolders, and presents
the folder members listing. Note that

– the manager may check the current assignment of roles and the functions that are
accessible to those roles by having a look at this folder’s info page (function Info).

3.2.10 Leave a community or project

Leaving a community or project is done by destroying the respective root folder from the user’s
home folder. With projects, one can also leave parts of the project, i. e. part hierarchies of the
project folder hierarchy.

Detailed System Specification Report(D3.0.1) 41

3.2.11 View communities

This operation allows users to become aware of the existing communities.

• User: hits the Communities function.

• System: presents the listing of the folder Communities which has as entries all existing
communities which are shown with name and description. Note the following:

– The Communities folder does not belong to the user’s folder hierarchy starting at her
home folder; to navigate back, the user hits the (iconized) Home function which is always
present.

– The managers of a community are shown on this community’s info page (function Info).

3.2.12 Join a community

This is an operation that is only possible for community objects as listed in the Communities folder
and for community recommendations as listed in the Recommendations folder of some folder. In
both cases, joining is only possible if the community’s policy is open to subscriptions from outside,
and if the user is not already member.

• User: hits the Join community function of the community she wants to join.

• System: makes the user an ordinary member of the community and presents the current
folder (Communities or Recommendations).

3.2.13 Contact community managers

This is an operation that is only possible for community objects as listed in the Communities folder
and for community recommendations as listed in the Recommendations folder of some folder. This
operation is only possible for users not being managers of the community.

• User: hits the Mail community managers function of the community she wants to contact.

• System: presents a form where to enter a message. The addresses of the community man-
agers have already been filled in the To-field.

• User: fills in and submits the form.

• System: sends the message via email to the community managers and presents the current
folder (Communities or Recommendations).

3.2.14 Create discussion forums

• User: hits the Add discussion function for adding a discussion forum to the current folder.

• System: presents a form where to enter the name of the discussion, and type, subject and
contents of the first note of this discussion. This first note is to become the first top level
thread of the discussion.

• User: fills in and submits the form.

• System: creates a new discussion and presents the current folder listing showing the new
discussion as a separate entry.

42 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

3.2.15 Add notes to a discussion forum

• User: hits on the name or icon representing the discussion she wants to add a note to.

• System: presents a view of the discussion showing all existing notes organized in threads.

• User: chooses between adding a note as a comment to an existing note by hitting its Reply
function or opening a new thread by hitting the Attach note function of the whole discussion
(top level function).

• System: in either case presents a form where to enter a new note.

• User: fills in and submits the form.

• System: adds the new note to the discussion as a comment to the note chosen or as initial
note of a new thread and presents the current state of the discussion.

3.2.16 Edit event notification preferences

Awareness configuration in Cyclades is on a per object basis. The default awareness configuration
is valid for all folders of a user and their contents. This default configuration may be overridden
for particular objects concerning the event icons.

Edit default event notification preferences

• User: hits the Default events function.

• System: presents a table representing the user’s current settings of default event notification
preferences. The rows of the table correspond to the activation status of the awareness
mechanisms and the event types (read, create, move, change) and the columns to the
awareness mechanisms (icons, daily reports, immediate email).

• User: configures the personal default preferences by setting or resetting the entries in the
event notification table and submits the form.

• System: stores and activates the new preferences and presents the current folder listing.

Edit object event notification preferences

• User: hits the Events function of the object she wants to override the default settings for.

• System: presents a table representing the user’s current settings of default event notification
preferences.

• User: configures the specific object’s preferences by setting or resetting the entries in the
event notification table and submits the form.

• System: stores and activates the new object preferences and presents current the folder
listing.

3.2.17 Catching up on events

• User: selects one or more entries (folders, records, queries, discussions, other documents)
she wants to catch up on and hits the Catch up function. This means that she acknowledges
to have seen the event icons and wants these icons to go away, so that the screen is less
cluttered and new event icons become more prominent.

Detailed System Specification Report(D3.0.1) 43

• System: presents the current folder listing; the event icons of the entries that the user has
selected in the first step disappear.

Note that the catch up action is on a per user basis. Other users’ view of the same folder may
be completely different with regard to event icons. The appearance also depends on the event
notification preferences of a user: some users may have chosen to receive no event icons at all.

3.2.18 Edit personal preferences

Personal preferences have to do with email formats, known editors, user profile, user interface
language etc. For Cyclades, an attribute has been added to the personal preferences that states
whether the user allows recommendation of herself to other users.

• User: hits the Preferences function.

• System: presents a form showing the current setting of the user’s personal preferences.

• User: sets or resets the option Allow oneself’s recommendation to other users and
submits the form.

• System: stores and activates the new settings and presents the current folder listing.

3.2.19 Processing recommendations

Recommendations are received from the FRS and put into the Recommendations subfolder of the
folder for which the recommendations are meant.

Processing recommendations includes all operations that dispose of received recommendations.
The type of the operations possible depends on the type of the recommendations (records, users,
communities, collections). Deleting is always possible (and means destroying for user, community
and collection recommendations). Moving and copying is only possible for recommended records.
Joining and contacting managers is only possible for recommended communities. These operations
have been described above in other contexts and are nor repeated here.

For user and collection recommendations, there are two additional operations:

• Invite (a user) and

• Associate (a collection).

Invite to folder

• User: hits the Invite function of a user recommendation in the Recommendations subfolder
of some folder.

• System: adds the recommended user as ordinary member to the folder containing the
Recommendations folder and presents the Recommendations folder listing again.

Associate to folder

• User: hits the Associate function of a collection recommendation in the Recommendations

subfolder of some folder.

• System: associates the recommended collection to the folder containing the Recommendations
folder, adds this folder to the collection’s list of folders that have it associated, and presents
the Recommendations folder listing again.

44 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

3.2.20 Update folder profile

This operation is useful before searching and browsing when folder contents have been changed a
great deal.

• User: hits the Update profile function of a folder.

• System: forwards this request to the FRS and presents the (unchanged) current folder
listing. Note that

– the user may check when a folder profile update was last requested by taking a look at
the folder’s history (function History).

Service method interface The service method interface of the CWS is an API that allows other
Cyclades services to interact with the CWS by way of remote procedure calls. Every method
has a well-defined signature giving its name, parameters and return value. In the following, we
describe the invocation, execution and result of the CWS methods as a three-step interaction:

• Method call: shows method name and required parameters.

• Execution: describes CWS execution of method.

• Return value: describes result of method returned to the calling service.

In the following, we will use this schema for describing the linear process flow of the CWS API
method executions.

3.2.21 Create new user

• Method call: createUser(name, password, emailAddress, folderId)

• Execution: CWS checks name, password, and email address for validity (names must not
contain blanks or at-signs (@), passwords must have a certain length, and email addresses
must conform to the Internet standard). Then a user object is created along with home
folder, clipboard, and waste. If the folder identifier is not an empty string, the CWS checks
whether there is a folder with the given identifier and adds the user as a member to this
folder.

• Return value: User identifier and the URL for requesting display of the folder with the
given identifier or of the user’s home folder when the given folder identifier is the empty
string.

3.2.22 Update password

• Method call: updatePassword(name, password)

• Execution: CWS checks whether there is a user with the given name and the validity of
the new password. The new password is set for the user.

• Return value: Void

Detailed System Specification Report(D3.0.1) 45

External
service

calls CWS
method

External
service

calls CWS
method

CWS
executes
method &
retÕs result

CWS
executes
method &
retÕs result

External
service
receives

result

External
service
receives

result

CWS

External
Service

Figure 3.2: API method activity diagram

3.2.23 Get folder information

There are numerous methods for getting information about the folder hierarchies of a user including
all folders of a given user and name, description, members, associated collections, records, queries,
parent folder and subfolders of a given folder. Since the execution of these methods is rather
straightforward, we list these methods with their call and return value.

• Method call: getFolders(userId)
Return value: a list of identifiers of all folders to which the user with the given identifier
has access.

• Method call: getName(folderId)
Return value: the name of the folder with the given identifier.

• Method call: getDescription(folderId)
Return value: the description of the folder with the given identifier.

• Method call: getMembers(folderId)
Return value: a list of the user identifiers of all members of the folder with the given
identifier.

• Method call: getRecords(folderId, timestamp)
Return value: a list of pairs containing the identifier and classifier label of all records that
have been saved, moved or copied into the folder with the given identifier since the time given
by the timestamp.

46 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Method call: getQueries(folderId)
Return value: a list of identifiers of all queries that are contained in the folder with the
given identifier.

• Method call: getParent(folderId)
Return value: the identifier of the folder that contains the folder with the given identifier.

• Method call: getChildren(folderId)
Return value: a list of identifiers of all subfolders of the folder with the given identifier.

• Method call: getCollections(folderId)
Return value: a list of identifiers of all collections that are associated to the folder with
the given identifier.

• Method call: getCommunity(folderId)
Return value: the identifier of the community to which the folder with the given identifier
belongs, or an empty string if the folder does not belong to any community.

3.2.24 Save query

• Method call: saveQuery(folderId, userId, query)

• Execution: CWS checks whether the user with the given identifier has access to the folder
with the given identifier, and then creates a query object corresponding to the query given,
which is added as entry to the given folder.

• Return value: Void

3.2.25 Save records

• Method call: saveResults(folderId, userId, records)

• Execution: CWS checks whether the user with the given identifier has access to the folder
with the given identifier. For every record in the given records list, a record object is created
and added as entry to the given folder.

• Return value: Void

3.2.26 Save recommendations

Recommendations come in four flavours: records, users, communities and collections. For every
kind of recommendations there is a service method for saving these recommendations. Recommen-
dations are saved in a Recommendations subfolder of the folder for which the recommendations
are intended. The execution is essentially the same for all kinds of recommendations.

• Method call:

saveRecommendedRecords(folderId, records)
saveRecommendedUsers(folderId, userIds)
saveRecommendedCommunities(folderId, communityIds)
saveRecommendedCollections(folderId, collectionIds)

• Execution: CWS checks whether the recommendation preferences of the folder with the
given identifier welcome recommendations of the given kind. If this is not the case, false is
returned and the execution stops.
Next, CWS checks whether there is already a Recommendations subfolder of the folder with
the given identifier. If this is not the case, such a subfolder is created.

Detailed System Specification Report(D3.0.1) 47

For every record in the given records list, a record object is created. If there is already a
record entry in the Recommendations folder with the same identifier, the new record object
replaces the old one; otherwise, the new object is added to the Recommendations folder.
For every identifier in the given list of user, community or collection identifiers, it is checked
whether there is a user, community, or collection with the identifier given. Then a recom-
mendation object of the requested kind is created. If there is already a recommendation
entry in the Recommendations folder with the same identifier, the new recommendation ob-
ject replaces the old one; otherwise, the new object is added to the Recommendations folder.
After a successful execution, true is returned.

• Return value: False, if recommendations of the given kind are not welcome to the folder
with the given identifier, true otherwise.

3.2.27 Add or modify collection

This method serves the purpose of notifying the CWS of the creation of a new or the modification
of an existing collection.

• Method call: addModifyCollection(collectionId, collectionName)

• Execution: CWS checks whether it has a collection with the given identifier in its list of
collections. If so, its name is changed to the name given in the method call. If not, a new
collection object is created in the CWS and added to the list of collections.

• Return value: Void

3.2.28 Delete collection

This method serves the purpose of notifying the CWS of the deletion of a collection.

• Method call: deleteCollection(collectionId)

• Execution: CWS checks whether it has a collection with the given identifier in its list of
collections. This collection is then removed from all personal sets of collections and from the
lists of associated collections of all folders that have this collection associated. The collection
itself is then deleted from the list of collections within the CWS.

• Return value: Void

3.2.29 Update personal set of collections

This method serves the purpose of notifying the CWS of the update of a personal set of collections
in the CS.

• Method call: updatePersonalCollections(userId, collectionIds)

• Execution: CWS checks whether there is a user with the given identifier and then replaces
this user’s personal set of collections by the given list of identifiers. If this list contains
identifiers of collections not in the CWS list of collections, the CWS requests the complete list
of collections from the Collection Service (CS) and generates the missing collection objects.

• Return value: Void

48 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

HTTP, HTML

Admin SB CS CWS Exit

CWS GUIStandard
Web

Browser

Standard
Web

Browser

Mediator
Service

Mediator
Service

CWSCWS

Other
CYCLADES

Services

Other
CYCLADES

Services

Other
Services
with GUI

Other
Services
with GUI

API interface
HTTP, XML-RPC

user operations interface
HTTP, HTML

Figure 3.3: Internal architecture of CWS

3.3 Internal architecture

3.3.1 Overview

The CWS provides its functionality via the graphical user interface and via an API to the other
Cyclades services (c.f. Figure 3.3). All user interaction via the graphical user interface is me-
diated by the Mediator Service—that is, both the interaction of the users with the graphical user
interface of the CWS and the interaction of the users with the graphical user interfaces of other
services. Other services can directly access the CWS functionality via the CWS API. In the case of
graphical user interface the communication takes place via HTTP and the format is HTML; in the
case of the API the communication takes place via HTTP and the format is XML and XML-RPC.

The CWS consists of a standard Apache Web server that transmits incoming HTTP requests via
CGI interfaces to the CWS components that serve on the one hand the user operations and on the
other hand the API calls (c.f. Figure 3.4). The CWS is based on the Basic Support for Cooperative
Work system (BSCW).

BSCW supports Web-based shared workspaces (called ‘folders’ in the Cyclades terminology) and
provides basic collaboration support that is adapted and extended for Cyclades. The private,
project, and community folders will be implemented on top of BSCW shared workspaces. The
BSCW kernel provides a modular extension of the World-Wide Web’s client-server architecture
without requiring modification to Web clients, servers or protocols. The core is a standard Web
server extended with the BSCW kernel software, providing both basic shared workspace function-
ality.

BSCW is extended for implementing the CWS functionality via BSCW’s package mechanism (c.f.

Detailed System Specification Report(D3.0.1) 49

CWS ‘Cyclades’ packageCWS ‘Cyclades’ package

CWS APICWS API

Standard Web ServerStandard Web Server

BSCW KernelBSCW Kernel

bscw

HTTP GET/POST
requests

CGI interfaces

rpc2

HTTP responses
(HTML)

HTTP responses
(XML-RPC)

HTTP POST requests
(XML-RPC)

browser interface API interface

Figure 3.4: CWS components

below). The extensions are contained in the package Cyclades. A separate component handles
the incoming API calls (translation and dispatch).

At the highest level of abstraction the CWS can be further decomposed into three layers, which deal
with user request and API call handling, method and operation handling, and persistent object
storage (c.f. Figure 3.5). In the user request handling layer the details of the request are formatted
as an internal representation called a Request, which is then dispatched to a particular operation
handler. In the API call handling layer the call is translated into internal format, its parameters are
checked for correctness, and the call is dispatched to particular method handler. Both operation
and method handlers implement the functionality requested, such as getting the contents of a
community folder, or saving results from a search and browse session. The operation and method
handlers interact with the persistent store to process the request or call, creating, deleting and
modifying objects as necessary, before generating a response. The response is returned to the
request or call handling layer for translation into a concrete format suitable for the access method
employed. So, for requests via the API the response format is XML-RPC, and for requests via the
graphical user interface the format is HTML, which can be displayed in the Web browser.

Each of these three layers provides a well-defined interface, and it is possible to extend the CWS
and integrate specialised application services at each level. As well as introducing new request
handling components for different methods of access, new operation handlers can be added to
provide new functionality or as wrappers around application services, and the persistent store can
be accessed to store new kinds of objects without modifying the storage routines themselves.

The BSCW package mechanism The CWS extends the BSCW kernel making use of the
BSCW package mechanism. This works as follows. The BSCW kernel may be enhanced by ad-

50 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Method call
and response

translation

Request and
response
translation

HTTP
Requests

HTTP
Responses

Persistent
Object

Storage

List
documents

Add
member

Get
children

Save
results

Standard
Web

Server

bs
cw

rp
c2

Request and
response

dispatching

request

response

call

response

Procedure
checking and
dispatching

User request and
response handling

API method call and
response handling

User operation
handlers

Method handlers

Figure 3.5: CWS server kernel

ditional software packages, which may be added or removed at run-time. The implementation
of external packages is organised just like the kernel. It may consist of class definition mod-
ules (cl *.py), utility modules (bs *.py), operation handlers (op *.py), interface template files
(*.html, *.txt, *.gif) and configuration modules (config*.py). In order to facilitate the
independent development of kernel code and package code, packages are stored in a separate
directory, e. g. packages/Cyclades. Each package directory itself is structured like the kernel
directory, i. e. it contains a subdirectory src for the code and a messages directory for user in-
terface templates. As Web servers cannot retrieve icons from several icon directories, the icons
of a package must be stored in the same directory as the kernel’s icons. By calling the function
bs config.init packages(some module) in a central kernel module, the corresponding package
module some module will be imported after importing the kernel module some module. This
may be used to re-define variables or to add functions and class definitions in a package. This
mechanism is particularly useful for the Action Table, the global variable containing all actions
available.

Currently, the following modules will re-import their counterparts in all packages (if present):

• cl action.py the central module containing all Action objects and the ActionTable,

• bs iconconfig.py user interface icon definitions,

• bs config.py for config.py, the central configuration file,

• bs html ui config.py for config html ui config.py, the u/i action configuration file,

• lg msgconfig.py language dependent user interface strings.

Detailed System Specification Report(D3.0.1) 51

3.3.2 User request/response handling

A requirement for Cyclades is that all user functionality must be accessible from unmodified Web
browsers. This requires that all CWS user operations and parameters to these can be composed as
requests in standard HTTP, and that all user interface presentations can be composed in standard
HTML.

Specifying the request The current standard of the HTTP is supported by all recent Web
browsers and is therefore the baseline for specifying requests to the CWS. A request to the kernel
is specified using either the HTTP GET request method (when clicking on an HTML anchor or
typing a URL into the browser), or the HTTP POST method (when submitting an HTML form).
Both GET and POST are treated similarly here for specification purposes. The only difference is
that parameters for a GET request are given as part of the URL anchor (separated from the URL
information by a ‘?’) while for POST requests they are given as fields in the request data (the
MIME types application/x-www-form-urlencoding and multipart/form-data are supported). The
format of a typical URL used in GET requests is:

http : //www.gmd.de/bscw/bscw.cgi/212/619?op= rename&id = 532

Where www.gmd.de is the host address, bscw is the script alias, bscw.cgi is the CGI request
handler, 212/619 is the context information, and op=rename&id=532 is the operation and param-
eters. Note that it is not expected that the user will type this URL in a Web browser to access a
workspace; rather, this URL is an element of HTTP interacting with the CWS. The CWS provides
an HTML user interface which hides the details of URLs behind clickable HTML anchors.

The program to execute is called CGI request handler. The role of this script is to format the
request details as provided by the server as a Request to be passed to an operation handler. Thus
the CGI request handler is the interface between the CWS and the World Wide Web, hiding all
Web-specific detail from the other kernel layers.

The context information component of the request URL holds object identifiers that establish the
context for the request. This context consists of two CWS internal object identifiers which serve
different purposes:

• the first one is the previous context, usually an object in the workspace folder hierarchy, which
the user can jump back to. This ‘placeholder’ is a navigation aid, and is useful when the
user wants to explore a separate branch of the workspace hierarchy but return to a previous
folder easily. For the CWS user interface, this mechanism is required for the clipboard and
waste mechanisms.

• the second is the current context, holding the identifier of the folder (or other object) in
which the requested operation takes place. For example, for an ‘add document’ request, this
will be the identifier of the folder to which the document should be added.

By storing the context information in the URL in this way it is possible for users to open several
browser windows to interact with (different parts of) the shared workspace without requiring details
of the context for each browser to be stored by the server. It is also extensible, as new fields can
be introduced to store more context information in the URL as necessary.

The final component of the URL specifies the operation requested and the operation parameters.
This information is formatted as a number of name-value pairs in the standard format for a ‘query’
using the HTTP GET request. For POST requests this information is packaged slightly differently,
but is still sent to the server as name-value pairs. The request handler treats the query parameters
op and id in a special way: the value of op is used to indicate the operation required, while the
id value(s) identify the object(s) to which the operation should be applied. Other parameters can
be supplied if required by the operation (for example, ‘new name’ for the operation handler which

52 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

renames objects). The parameters can be listed in any order following the ‘?’ query separator.
Verification of the parameters is performed by the corresponding operation handler.

For convenience, certain defaults are adopted to simplify the format of the request URL. If no
id parameter is specified it is assumed that the operation applies to the object identified as the
current context. If no op parameter is given the default ‘get’ operation is executed which displays
the contents of an object such as a record or folder.

Access to the CWS is controlled by the Mediator Service which has all the information about user
names and passwords and handles authentication. The Web server hosting the CWS is configured
to accept only requests to the bscw script alias from the Mediator Service host.

Building and dispatching the request The Web server receives the URL as part of the HTTP
request, and delegates it to the named request handling script, through the script alias mechanism
described above. The server copies all the details of the request to the environment variables of
the process which the request handling CGI script can then access. The request handling layer
must take the request URL (and the input data in the case of POST requests) and construct a
Request object for dispatching to the operation handling layer. The generic request handler that
a CGI-script calls with a CGI module parameter for parsing the CGI-Environment and generating
the reply is shown subsequently:

def run(module):

Generic Request handler. Call module.parse for setting

up the request (e.g. from the CGI-Environment); call the

operation handler, and let module.reply generate

the reply (e.g. an HTML response)

Create a Request object

request = Request()

try:

Set request attributes

module.parse(request)

Invoke operation handler

response = request.handle_it()

Catch Response and other exceptions

except Response, error_response:

response = error_response

except:

response = unexpected_response()

Generate reply

module.reply(response)

Once a Request is constructed and initialised the request handler dispatches the object by a call to
the request’s handle it method. The operation attribute identifies the operation handler module
that should be invoked (c.f. next code fragment). Depending on request method , handle it calls the
module’s handle GET or handle POST function giving the Request object as parameter. When
the operation is finished, the request handler takes the return value of handle it containing the
success or error message and passes it on to the reply function of the CGI module. The request
handler also catches all exceptions and transforms them into Response objects, which contain
debug information in the case of unexpected program errors.

The code fragment below shows the structure of a Request object and some of the critical parameters
required by operation handlers to service the request. For event logging and access control purposes

Detailed System Specification Report(D3.0.1) 53

it is necessary to know the identity of the user making the request. Hence the User object is recorded
in the user attribute. The Request also records the context information, name of the requested
operation and any parameters from the request URL.

class Request:

Instance attributes

request_method: string

HTTP request method, i.e. "GET" or "POST"

previous_context: Folder

First component of context information in URL

object: Artifact

Current context, second component of context

information in URL

operation: string

Parameter op in Query

selected_objects: list of Artifact

List of objects identified by id parameters in Query

single_object: Artifact

If specified return object identified by id, otherwise

return object. If more than one id parameter is given

raise multiple_values Response.

user: User

The (authenticated) user who has issued the request

language: string

The user’s preferred language

Instance methods

def handle_it(self): Response

Invoke the operation handler in module

op_<operation>.

def want(action, object)

Raise no_access Response if action on object

is not allowed for user.

def verify_atom(name): string

Return parameter name from Query. Raise

missing_parameter Response, if not defined.

def response(name): Response

Return a Response initialized with template name

def refresh(): Response

Commit changes to the persistent store

and return a Response which redisplays the current

context.

Building and formatting the response The Response encapsulates the information to be
returned to the requester (c.f. code fragment below). It is instantiated and initialised by an
operation handler which provides the identifier of the message—a key to some table of parametrised
response message templates—and a set of attributes needed for instantiating the message template.

54 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

This approach allows the operation handler to specify and return a Response without knowing
details of the message format (HTML, plain text, etc.) or the access method (HTTP, email,
etc.). The request handling layer thus translates both request and response to hide details of
the method of access or protocol used by the requester from the operation handling layer. This
arrangement allows extension for additional methods of access with no changes required to the
operation handling (or persistent storage) layers of the system kernel.

class Response:

_request: Request

The original Request

_type: string

Type of response

_message: string

Response template identifier

_ecode: integer

Error or return code

Usually a request handler sets other attributes, which

are needed for substitutions in the message template.

This scheme also supports different languages in a straightforward manner: for each user there
exists a preferences profile that records the language, in which the user wants to interact with the
system. This information is available in the Request and is used in the reply function for retrieval
of a message template in the correct language. By using the same message naming scheme for
message templates in different languages, it is possible to extend the system’s support for additional
languages without changing the implementation of the Response or the request handler.

3.3.3 User operation handling

The request handling layer invokes operation handlers as described in the previous section. Each
operation handler implements an aspect of the basic kernel functionality, such as ‘add member’ or
‘delete document’. As a client processes to the persistent store it is able to retrieve, create, modify,
or delete persistent objects.

For example, the code fragment below shows an operation handler that implements the ‘rename’
operation. The structure is essentially the same for all operation handlers: each must provide at
least one of two functions called handle GET and handle POST, which are the entry points to the
operation handler from the request handling layer. Both functions are invoked with one parameter,
a Request, which is a data structure containing the parameters required by the operation. The
handle GET function is (normally) assumed to return a Response that contains some object data
or that asks for more operation parameters, whereas handle POST actually modifies objects. In
either case, for a CGI interface incoming HTTP GET or POST requests simply result in invocations
of handle GET or handle POST respectively.

def handle_GET(request):

Get the object to be renamed

object = request.single_object

Check, if the operation is allowed for the

requesting user.

request.want(cl_action.rename, object)

Detailed System Specification Report(D3.0.1) 55

Create a Response selecting the rename template

response = request.response(’rename’)

Set response attributes needed by the template

response.name = object.name

response.op = ’rename’

return response

def handle_POST(request):

Get the object to be renamed

object = request.single_object

Check, if the operation is allowed for the

requesting user.

request.want(cl_action.rename, object)

Verify Request parameters

new_name = request.verify_atom(’new_name’)

if object.name != new_name:

Change the object

object.name = new_name

Set the appropriate Event

object.set_event(’RenameEvent’)

Commit changes and redisplay the current context

return request.refresh()

The structure shown in the code fragment above is the same for all operation handlers, though the
details will obviously vary depending on the semantics of the operation itself. For some operations,
such as ‘rename’, the Request will include the object to operate on, and some handlers may take
a list of objects on which to perform multiple operations (see below). These and other attributes
of the Request must be checked for validity—e. g., to ensure that the user provided a folder name
when requesting the creation of a new folder and so on. The access rights must also be checked to
ensure the user can perform the requested operation on the selected objects. After performing the
required operation, a final check is required on committing changed objects back to store due to
the optimistic concurrency control strategy adopted. Whether the operation fails or succeeds, the
handler must create, initialise and return (or raise) a Response object (exception) containing the
appropriate reply.

Handling multiple operations For some operation handlers it is possible that the request
specifies a multiple operation; that is, an operation to be performed on a group of objects rather
than a single object. In this case the Request will contain a list of selected objects to operate on.
Should the operation fail for any of these objects for any reason, then the complete operation is
said to fail, and an appropriate reply is returned to the requester; no ‘rolling back’ is required in
the store as no object updates are committed until the complete operation has been performed.
Treating a multiple operation as atomic ensures consistency and safety; it may be that in some
cases a user wants an operation to complete ‘as much as possible’ and a complete failure requires
more work on their part, but the converse where the user wants ‘all or nothing’ and receives a

56 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

partial completion is clearly to be avoided.

3.3.4 The API method call and response handling

Method calls for the CWS API arrive as HTTP POST requests for the rpc2 CGI script alias; the
call itself is encoded in XML according to the XML-RPC protocol. The program that handles
these incoming requests is the CGI request handler for this script alias which is a Python script
that makes use of F. Lundh’s xmlrpclib, version 0.99, from Secret Labs AB. The role of this script
is to translate the incoming request from its XML encoding into a Python function call and to
format the result of this call as a response in XML-RPC.

Each incoming method call invokes the script’s call procedure with the method name and its
parameter tuple as parameters. For example, a method call to saveRecommendedUser with a
folder idenitfier and a list of and user identifiers as parameters is translated to

call(”saveRecommendedUsers”, (”CW 2068”, [”CW 52”, ”CW 191”, ”CW 126”])).

The method’s two parameters are packaged into an argument-list tuple and are passed to the
call() method as a single argument. The return value of this function (a Python object) is
translated back into a XML-RPC method response and returned to the calling service. When the
execution of the call function raises an XML-RPC exception this is reported back to the calling
service as an XML-RPC fault. Other exceptions are reported back as HTTP error 500 (CYCLADES
Server Error).

Before the method call is dispatched to the method handler, the method name is checked for
validity and the method parameters are checked for number, data type, and null value (optional
parameters). This is done recursively for nested parameter structures (<struct>s and <array>s).
Errors raise an XML-RPC exception and are reported back to the calling service via an XML-
RPC fault. Method name and parameter checking relies on a static description of the RMS API as
(nested) Python objects (lists, tuples and dictionaries depending on the type of the parameters).

The call() procedure then turns each method call over to the CWS API central dispatching
script’s do it procedure with (checked) method name and parameters as arguments.

The following code fragment shows the call procedure.

def call(method, params):

from api_def import *

method defined for the CWS API

if method in API.keys():

import checker

check nested parameter structure

param_defs = API[method][1]

checker.do_scalar_check(param_defs, params, method)

call ’super’ function of CWS API server

func_obj = eval("cws_api.do_it")

return apply(func_obj, (method, params,))

else:

from xmlrpclib import Fault

Detailed System Specification Report(D3.0.1) 57

raise Fault(10002, "No such method: " + method)

The result of the do it procedure is the return value of the call() procedure which becomes the
server’s response to the XML-RPC method call.

3.3.5 The API method handling

For each method of the CWS API there is a dispatch function named after the method with a do

prepended. The dispatch function for, e. g., saveRecommendedUsers is do saveRecommendedUsers.
These dispatch functions are also part of the CWS API dispatching script. The dispatch functions
call the actual method handlers which are part of the Cyclades package. The central do it

procedure sets the operating system environment so that subsequent imports are successful and
calls the respective dispatch function. Eventual errors are reported back as XML-RPC faults.

The following code fragment shows the do it procedure and the do saveRecommendedUsers dis-
patch function.

import os, sys, time, string

BSCW_DIR = ’/servers/bscw-4.0.4/BSCW4/src’

CYC_DIR = ’../packages/Cyclades/src’

CGI_DIR = ’/servers/apache/cgi-bin’

def do_it(method, params):

func = eval(’do_’ + method)

set OS environment to CWS package

os.chdir(BSCW_DIR)

sys.path[0] = ’.’

sys.path.insert(1, CYC_DIR)

call specific dispatch function

response, errcode, errobj = apply(func, params)

switch back to CGI directory

os.chdir(CGI_DIR)

if errcode:

raise fault

import errmsg

msg, xcode = errmsg.msg[errcode]

from xmlrpclib import Fault

raise Fault(xcode, msg % (method, errobj))

return response

...

def do_saveRecommendedUsers(folderId, userIds):

call method handler

import ap_saveRecommendedUsers

return ap_saveRecommendedUsers.handle(folderId, userIds)

...

58 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

The method handlers do the actual work. These handlers, being part of the CWS Cyclades pack-
age, have access to the BSCW persistent store: they may extract information and also persistently
store new information, e. g. user recommendations.

3.4 Data and method specification

The user interface of the CWS and its functionality is implemented by extending BSCW by an
additional CWS package Cyclades. This package includes a number of classes (cl ... files) and
of user operation handlers (op ... files) described below.

The functionality of the CWS API that may be invoked by other Cyclades services is described as
methods of an abstract class CollaborativeWorkService that are available through the XML-RPC
communication protocol. The functionality of this service interface is implemented by API method
handlers (ap ... files) of the CWS Cyclades package. This is also described below.

3.4.1 The classes of the CWS package

The CWS package Cyclades needs classes to implement the central CWS concepts users, folders,
records and queries. Additionally, new classes are needed for dealing with communities, collections
and recommendations. The extension classes build on BSCW core classes contained in cl core,
namely Artifact, User, Folder, and Document. Core class User has to be modified slightly for the
CWS.

All objects belonging to these classes have unique object identifiers. They are stored persistently
in the CWS using the persistent storage facilities of BSCW which allows retrieving objects by
their identifiers. All new classes are derived from the core class Artifact and thus inherit (amongst
others) the standard attributes identifier, name and description.

Folders

Classes are needed that correspond to Cyclades private, community and project folders with
their respective functionality. An extra class is needed for community root folders because of the
fact that community member management is only possible in the root folder of a community.
These classes inherit from the BSCW core class Folder and have a similar behaviour with regard
to associated collections and recommendations. Therefore we also create an intermediate class
CYFolder. In addition, we need a folder class that is to contain the recommendations which CWS
receives from the Filtering and Recommendation Service.

The class hierarchy is as follows (class definition file is cl cyfolder):

cl_core.Folder

|

+-- CYRecommendations

|

+-- CYFolder

|

+-- CYPrivateFolder

|

+-- CYProjectFolder

|

+-- CYCommunityFolder

|

+-- CYCommunityRoot

Detailed System Specification Report(D3.0.1) 59

CYFolder The class CYFolder is a subclass of cl core.Folder and has the following additional
attributes:

• ass colls: collections associated to a folder (list of CYCollection)

• want recos: recommendation preferences (integer between 0 and 15, bit encoded for records
(0), users (1), collections (2) and communities (3), i. e. a value of 5 signals preference for
recommendations of records and collections)

• reco folder: the folder’s recommendations folder (CYRecommendations or None)

Objects of class CYFolder have the following modifications w. r. t. their behaviour:

• When a subfolder of a CYFolder is created, it inherits the attribute values for the associated
collections and the recommendation preferences. Subfolders also inherit the members of the
parent folder.

• With project folders, membership may be managed down along the hierarchy, adding new
and removing old members, which is not the case for private and community folders.

• A CYFolder has at most one recommendations folder (attribute reco folder).

• There is an additional user operation Update folder profile.

CYPrivateFolder This class corresponds to private folders and is a subclass of CYFolder. It
has no additional attributes and methods, but is restricted as follows:

• Only records, queries and other private folders may be added to a private folder.

• No further members may be invited to private folders.

CYCommunityFolder and CYCommunityRoot The class CYCommunityFolder corresponds
to community folders and is a subclass of CYFolder. It has two additional attributes

• subscribe: subscription policy preference (0 or 1)

• managers: the managers of the community (list of cl core.User)

The ‘subscribe’ attribute indicates whether any registered user may subscribe (invite herself) to
this community. This attribute may only be set or changed in the community root folder of class
CYCommunityRoot, which is a subclass of CYCommunityFolder. The ‘managers’ attribute is
computed from the access rights of the community members as set by the managers. The original
creator of a community is its first manager. The only difference between ordinary community
folders and community root folders is that member management of the community is only possible
in the root folder. Restrictions concern the following:

• Only records, queries, discussion forums and other community folders may be added to a
community folder.

• New members may only be invited in a community root folder.

• Existing members may only be removed in a community root folder.

• Adding and removing members in the community root folder are valid for all the community’s
subfolders.

• Only community managers have the right for membership management (apart from subscrip-
tion if the community allows that).

60 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Community root folders represent communities within CWS. Creation and deletion of such folders
have to be reflected in the list of all communities in the system (c.f. class CYCommunities be-
low); this concerns the operation handler for creation of community root folders and the standard
on delete method of CYCommunityRoot which has to be overridden to modify the community list
accordingly when a community root folder is destroyed.

CYProjectFolder This class corresponds to project folders and is a subclass of CYFolder. It
has no additional attributes and methods. The only restriction is that only project folders may be
created within a project folder.

CYRecommendations This class represents folders that contain recommendations that are re-
ceived from the FRS. At most one CYRecommendations folder may be contained in CYFolders.
The CYRecommendations folder may contain only recommended records, users, communities and
collections, represented by objects of type CYRecord, CYRecoUser, CYRecoComm and CYReco-
Coll, respectively. The recommendations are meant for the folder containing the recommendations
folder.

The CYRecommendations class is a subclass of cl core.Folder. It has no additional attributes or
methods, but the following modifications concerning its behaviour:

• Recommendations folders are not created by a user, but by the system when the first recom-
mendations for this folder arrive from the FRS.

• Recommendations folders have the name Recommendations and cannot be renamed.

• Recommendations folders may not be moved or copied, but may be deleted.

• Recommendations folders may only contain recommendations.

• Recommendations are not added to a recommendations folder by a user, but by the system.

Records and queries

Records and queries are implemented as subclasses of the core class Document. The class hierarchy
is as follows:

cl_core.Artifact

|

+-- cl_core.Document

|

+-- CYRecord (cl_cyrecord)

|

+-- CYQuery (cl_cyquery)

Records and queries essentially are XML documents (mime type ‘text/xml’) which are viewed
using a corresponding viewer that is external to the CWS (a primitive XML viewer is included
e. g. in the MS Internet Explorer).

CYRecord This class corresponds to the abstract Cyclades class Record which has attributes
id, name, metadata and classifierLabel. The CYRecord class is a subclass of class cl core.Document
with a mime type of ‘text/xml’, and the body of the document is exactly the XML metadata of
the record. Additional attributes take care of the other attributes of the abstract class:

• external id: record identifier assigned by the Access Service (AS) (string).

Detailed System Specification Report(D3.0.1) 61

• classifier label: a label indicating the classification of the record by the FRS (string).

Other attributes that are needed internally,

• container id: the identifier of the folder containing the record (string in Cyclades object
identifier format),

• save timestamp: the time when the record has been put into its present container, saved
from the Search and Browse Service (SBS) or pasted from other folders (seconds since the
epoch in UTC),

are computed on the fly from other attributes (history, path) when needed. Restrictions and
modifications w. r. t. behaviour are:

• Records are created only by the system on behalf of a user having saved these records in a
search and browse session, or as recommendations from the FRS. Records from both sources
are represented by CYRecord objects.

• Records are not edited, versioned, or locked, but may be replaced (by the system when records
with the same external identifier are saved into, or recommended to, the same folder).

• Records may be moved, copied, deleted, rated and annotated.

• The standard on rate method is overridden to forward ratings of a record to the RMS.

CYQuery This class corresponds to the abstract Cyclades class Query which has attributes
id, name, queryString, and conditionsAndSourceSchema. The CYRecord class is a subclass of
class cl core.Document with the mime type ‘text/xml’, and the body of the document is exactly
the XML conditions and source schema of the query. The query string of the Query object is put
into the description of the CYQuery object. There is one additional attribute:

• external id: query identifier assigned by the Access Service (AS) (string).

Restrictions w. r. t. behaviour are:

• Queries are created only by the system on behalf of a user having saved these queries in a
search and browse session.

• Queries are not edited, versioned, or locked, but may be replaced (by the system when a
query with the same identifier is saved into the same folder).

Users

Users are represented by the core class User, user recommendations by the class CYRecoUser. The
class hierarchy is as follows.

cl_core.Artifact

|

+-- cl_core.User

|

+-- CYRecoUser (cl_cyreco)

cl core.User This core class is extended by two additional attributes:

• allow reco: personal preference w. r. t. allowing oneself’s recommendation to other users (0
or 1)

• my collections: set of the user’s personal collections (CYMyCollections)

62 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

CYRecoUser The CYRecoUser class is a subclass of cl core.Artifact. It wraps cl core.User and
allows only limited access to information about the user (name, address) and limited operations
(send email, invite). Objects of class CYRecoUser are created when a corresponding user has been
recommended to a folder. CYRecoUser objects may only appear as entries in CYRecommendations
folders. CYRecoUser objects have the following additional attribute:

• orig user: the user whose recommendation this object represents (cl core.User).

Restrictions w. r. t. behaviour are:

• Objects of class CYRecoUser are only created when the allow reco attribute of the corre-
sponding user object is set (value 1).

• Objects of class CYRecoUser may not be moved or copied.

• When objects of class CYRecoUser are deleted they are destroyed at the same time, i. e. may
not be undeleted.

Communities

There are three classes for community management

• CYCommunity for objects representing communities in other contexts than folder manage-
ment.

• CYRecoComm for representing recommended communities.

• CYCommunities for representing the list of all communities in the CWS.

The class hierarchy is as follows:

cl_core.Artifact

|

+-- CYCommunity (cl_cycommun)

|

+-- CYRecoComm (cl_cyreco)

|

+-- cl_core.Folder

|

+-- CYCommunities (cl_cycommun)

CYCommunity This class is a subclass of cl core.Artifact and has the following additional
attribute:

• root: the community root folder which this object represents (CYCommunityFolder)

The values of all other attributes (name, description, subscribe, managers) are derived from the
corresponding community root folder. Modifications w. r. t. the behaviour concern:

• Read access to CYCommunity objects is not restricted, i. e. any user may view any CY-
Community object, also non-members of the community. This does not include read access
to community contents.

• Objects of class CYCommunity are not manipulated by normal users, but only indirectly by
community members.

Detailed System Specification Report(D3.0.1) 63

• Objects of class CYCommunity are created when new community root folders are created,
they are destroyed when community root folders are destroyed (not deleted because they
could be undeleted again!).

Since CYCommunity objects derive their attribute values from the corresponding community root
folders, they do not have to be updated if something changes in the community root folder.

CYCommunity objects allow two additional operations: Join community, if the community is open
to subscription, and Mail community managers.

CYRecoComm Objects of this class represent a certain community as recommendation in a
recommendations folder. These objects wrap a community object of class CYCommunity, i. e.
derive name and description from the original community object. The class has an additional
attribute:

• orig comm: the original community represented by this object (CYCommunity)

Functionality is similar to CYCommunity objects. Note that there may be many different CYReco-
Comm objects referring to the same CYCommunity object, but that there is only one CYCommu-
nity object for a given community. Restrictions w. r. t. the behaviour are:

• Objects of class CYRecoComm may not be moved or copied.

• When objects of class CYRecoComm are deleted they are destroyed at the same time, i. e.
may not be undeleted.

CYCommunities This class is a subclass of cl core.Folder and contains the currently existing
CYCommunity objects as normal entries. There is exactly one object of this class in the system.
It is needed when users want to view communities. The CYCommunities object is an attribute
cy communities of the pseudo user Cyclades who is also playing the role of creator of recommen-
dations, and hence not part of nay user’s folder hierarchy.

The CYCommunities object is updated whenever a community root folder is created or destroyed
(c.f. above).

Collections

There are three classes for the management of collections within CWS:

• CYCollection for objects representing collections in folder management.

• CYRecoColl for representing recommended collections.

• CYMyCollections for representing the set of personal collections which is defined and modified
within the Collection Service (CS).

The class hierarchy is as follows:

cl_core.Artifact

|

+-- CYCollection (cl_cycollec)

|

+-- CYRecoColl (cl_cyreco)

|

+-- cl_core.Folder

|

+-- CYMyCollections (cl_cycollec)

64 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

CYCollection This class is a subclass of cl core.Artifact and has the additional attributes:

• external id: the collection identifier assigned by the CS (string)

• flst: the folders that have this collection associated (list of CYFolder)

Objects of this class are created or destroyed when the CWS is notified by the CS of a new collection
or the deletion of an existing collection. Additionally, the CWS carries out a weekly update on
these objects when the CS has not sent any modifications in between.

CYCollection objects keep track of their association to Cyclades folders via the flst attribute.
They have specific methods append content, remove content and on delete to keep this relation up
to date when collections are associated to folders, when such an association is removed, or when
collections are deleted (due to a respective notification of the CS, or detected during a weekly
update).

There is one restriction w. r. t. behaviour:

• Collection objects are never manipulated by normal users, but only created and deleted by
the system itself.

CYRecoColl Objects of this class represent a certain collection as recommendation in a rec-
ommendations folder or as belonging to the personal set of collections. CYRecoColl objects wrap
a CYCollection object, i. e. derive values for name and description attributes from the original
collection object. The class has an additional attribute:

• orig coll: the original collection represented by this object (CYCollection)

Note that there may be many different CYRecoColl objects referring to the same CYCollection
object, but that there is only one CYCollection object for a given collection.

Restrictions w. r. t. behaviour are:

• Objects of class CYRecoColl may not be moved or copied.

• When objects of class CYRecoColl are deleted they are destroyed at the same time, i. e. may
not be undeleted.

CYMyCollections This class is a subclass of cl core.Folder and contains the current set of
personal collections for a given user. It contains only wrapper objects of class CYRecoColl and
has an additional attribute

• user: the user whose personal collection set is represented by this object (cl core.User).

CYMyCollections objects are used when users view their personal set of collections, create folders or
associate new collections to folders or disassociate collections from folders. Through an additional
attribute my collections of class cl core.User the personal collection sets are attached to a user.

CYMyCollections objects are updated when the CWS is notified about the creation or deletion of
collections and during the weekly update.

3.4.2 The user operation handlers of the CWS package

For every user operation we have listed above, there is a respective handler that takes care of the
user input coded as a Request object and generates HTML output as a response for the user coded
as a Response object. A user’s ‘hit’ of a function at the user interface is transmitted to the CWS

Detailed System Specification Report(D3.0.1) 65

as a HTTP GET request, a user’s submittal of a form in a two-step interaction as a HTTP POST
request. Consequently, the operation handler for a two-step interaction has a handle GET and a
handle POST procedure; for one-step interaction, there is no handle POST procedure.

In the following, the name of the file that contains the respective handler of the CWS package is
listed for most user operations. All file names for operation handlers start with op followed by
the operation name. For those operations that are generic and hence are handlers of the BSCW
core (like Get, Info, Cut, Copy, Delete, Edit name etc.) the handler file names are not given.

• create community root folder: op addcycommunroot

• create other folders

– community: op addcycommunityf

– project: op addcyprojectf

– private: op addcyprivatef

• edit associated collections

– add associated collection: op addcycollection

– remove associated collection: op remcycollection

• view my collections: op showmycycollections

• edit recommendation and subscription policy preferences

– community root folders: op efolder prefs

– other folders: op folder prefs

• view communities: op showcycommunities

• join a community

– in the Communities folder: op join community

– in a Recommendations folder: op join reco comm

• contact community managers

– in the Communities folder: op mail managers

– in a Recommendations folder: op mail reco comm mgr

• invite recommended user to folder: op invite reco user

• contact recommended user: op mail reco user

• associate recommended collection to folder: op assoc reco coll

• update folder profile: op update profile

For the following operations, BSCW core handlers have to be modified to reflect the modified or
extended functionality for the CWS.

• edit personal preferences: op chprefs

• invite to folder: op addmb

66 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

3.4.3 Abstract CWS classes, API methods and thier handlers

The abstract CWS classes that define the external view of the CWS by other Cyclades services
concern the CWS itself and its methods plus the classes that are used as parameters in method
signatures: records and queries.

Query

• id
Description: this is the unique identifier of the query.

• name
Description: this is a string containing the name of the query. This attribute is optional,
i. e. is only present if the user has given the query a name.

• queryString
Description: this is a string containing the actual query.

• conditionsAndSourceSchema
Description: this is a string containing the query conditions and the source schema for the
query coded in XML.

Record

• id
Description: this is the unique identifier of the record.

• name
Description: this is a string containing the name of the record, e. g. the title of the document
referenced by the record.

• metadata
Description: this is a string containing the metadata of the record coded in XML.

• classifierLabel
Description: this is a string containing a label indicating the classification of the record
by the Filtering and Recommendation Service. This attribute is optional, i. e. only records
which have been originally recommended by this service have a value for this attribute.

CollaborativeWorkService

Below we list the methods of the abstract class CollaborativeWorkService which constitute the API
of the CWS. These methods may be called from other services using the Cyclades inter-service
communication protocol XML-RPC. For every method we also list the name of the file in the CWS
package that contains the respective method handler as a procedure.

• id
Description: this is the unique identifier of the service.

• (userId, homeFolderId) createUser(name, password, emailAddress)
Description: this method is invoked in order to create a new user within the CWS with
the given name, password and email address.
Input: name: a valid user name (unique, longer than 2 characters,

no blanks or at-signs (@)).
password: a password.
emailAddress: an email address conforming to RFC 822.

Detailed System Specification Report(D3.0.1) 67

Output: userId: the identifier of the newly created user.
homeFolderId: the identifier of the user’s home folder.

File: ap usermgmt

• void updatePasswd(name, password)
Description: this method is invoked in order to set a new password for the user with the
given name.
Input: name: a user name of an existing user.

password: a password.
File: ap usermgmt

• folderId* getFolders(userId)
Description: this method may be invoked in order to get a list of identifiers of folders to
which a specific user has access.
Input: userId: a user identifier.
Output: a list of folder identifiers.
File: ap folderInfo

• name getName(folderId)
Description: this method may be invoked in order to get the name of a folder.
Input: folderId: a folder identifier.
Output: a string containing the folder name.
File: ap folderInfo

• description getDescription(folderId)
Description: this method may be invoked in order to get the description of a folder.
Input: folderId: a folder identifier.
Output: a string containing the folder description.
File: ap folderInfo

• userId* getMembers(folderId)
Description: this method may be invoked in order to get the identifiers of the users who
have access to a folder.
Input: folderId: a folder identifier.
Output: a list of user identifiers.
File: ap folderInfo

• (recordId, classifierLabel)* getRecords(folderId, timestamp)
Description: this method may be invoked in order to get the identifiers and classifier labels
of the records that have been saved into, or moved to, a folder since a certain time.
Input: folderId: a folder identifier.

timestamp: a point in time in UTC.
Output: a list of pairs containing a record identifier and a classifier label; a missing classifier
label is signaled by an empty string.
File: ap folderInfo

• queries getQueries(folderId)
Description: this method may be invoked in order to get the queries that are contained in
a folder.
Input: folderId: a folder identifier.
Output: a list of objects of class Query.
File: ap folderInfo

• folderId getParent(folderId)
Description: this method may be invoked in order to get the identifier of the folder that
contains a given folder.
Input: folderId: a folder identifier.

68 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Output: a folder identifier or an empty string, if the given folder is not contained in another
folder.
File: ap folderInfo

• folderId* getChildren(folderId)
Description: this method may be invoked in order to get the identifiers of the folders that
are contained in a given folder.
Input: folderId: a folder identifier.
Output: a list of folder identifiers.
File: ap folderInfo

• collectionId* getCollections(folderId)
Description: this method may be invoked in order to get the identifiers of the collections
that are associated to a folder.
Input: folderId: a folder identifier.
Output: a list of collection identifiers.
File: ap folderInfo

• communityId getCommunity(folderId)
Description: this method may be invoked in order to get the identifier of the community
to which a folder belongs.
Input: folderId: a folder identifier.
Output: a community identifier or an empty string if the folder does not belong to a com-
munity. File: ap folderInfo

• void saveQuery(folderId, userId, query)
Description: this method may be invoked in order to save a query in a folder on behalf of
a user.
Input: folderId: a folder identifier.

userId: a user identifier.
query: a query.

File: ap saveFromSB

• void saveResults(folderId, userId, records)
Description: this method may be invoked in order to save a list of records in a folder on
behalf of a user.
Input: folderId: a folder identifier.

userId: a user identifier.
records: a list of records.

File: ap saveFromSB

• boolean saveRecommendedRecords(folderId, records)
Description: this method may be invoked in order to save a list of recommended records
for a folder.
Input: folderId: a folder identifier.

records: a list of records.
Output: false if record recommendations for this folder are not welcome, true otherwise.
File: ap saveRecommendedRecords

• boolean saveRecommendedUsers(folderId, userIds)
Description: this method may be invoked in order to store a list of user recommendations
for a folder.
Input: folderId: a folder identifier.

userIds: a list of user identifiers.
Output: false if user recommendations for this folder are not welcome, true otherwise.
File: ap saveRecommendedUsers

Detailed System Specification Report(D3.0.1) 69

• boolean saveRecommendedCommunities(folderId, communityIds)
Description: this method may be invoked in order to store a list of community recommen-
dations for a folder.
Input: folderId: a folder identifier.

communityIds: a list of community identifiers.
Output: false if community recommendations for this folder are not welcome, true otherwise.
File: ap saveRecommendedCommunities

• boolean saveRecommendedCollections(folderId, collectionIds)
Description: this method may be invoked in order to store a list of collection recommen-
dations for a folder.
Input: folderId: a folder identifier.

collectionIds: a list of collection identifiers.
Output: false if collection recommendations for this folder are not welcome, true otherwise.
File: ap saveRecommendedCollections

• void addModifyCollection(collectionId, collectionName)
Description: this method may be invoked in order to notify of the creation of a new, or the
modification of an existing, collection.
Input: collectionId: a collection identifier.

collectionName: the collection name.
File: ap addModifyCollection

• void deleteCollection(collectionId)
Description: this method may be invoked in order to notify of the deletion of a collection.
Input: collectionId: a collection identifier.
File: ap deleteCollection

• void updatePersonalCollections(userId, collectionIds)
Description: this method may be invoked in order to notify of the update of a user’s
personal set of collections.
Input: userId: a user identifier.

collectionIds: a list of collection identifiers.
File: ap updatePersonalCollections

3.5 User interface

In context of the CWS, artifacts are considered as files collected in a shared folder. A folder may
contain other folders, which may contain other files or folders. A set of files and/or folders define
a dedicated folder such as a private, a project, or a community folder. Artifacts are either private
to a particular user (in private folders) or shared among the members of a folder (i. e. among the
users belonging to a project or community represented by the particular folder). A registered user
of Cyclades who is a member of a folder in that sense might add, move, delete, read or edit
artifacts within that folder.

The folder listing

The CWS user interface presents the contents of a folder as the main part of page with a header
containing pull-down menus, buttons and action shortcuts. As an example figure 3.6 shows parts
of the user interface of the CWS with an open File menu for creating new objects in the folder.

Several classes of artifacts can be created and shared in a folder: various kinds of Folder, Discussion,
Note. In project folders, additionally the following artifacts may be created and shared: Document,
URL, Search. The Record and Query artifacts are not created via user operations, but transferred
from the Search and Browse Service; they may also be shared in folders.

70 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 3.6: CWS user interface mockup

Each artifact is represented by an entry consisting of an information button, a checkbox (that a
user has to “tick” to select the artifact for some action), the name of the artifact, some icons,
additional data and a pop-up action menu button.

The icon immediately left of the artifact name denotes the artifact type. If the artifact is a
document, the icon may represent its MIME type, if it is a search, the icon informs about the
search area and the search engine employed, if it is a note, the icon may represent a pragmatic
aspect picked by the note’s author.

Most prominent in each entry is the name of the artifact. Obviously, a user should choose names
describing the content or purpose of each individual artifact. To the right of the artifact name the
CWS user interface displays:

• Zero, one or more of the following icons:

– Shared Icon indicates that a folder is shared;

– Lock Icon indicates that someone has set a lock for this artifact;

– Note Icon indicates that a note has been added to the artifact;

– Rate Icon indicates that the document has been rated by one or more community mem-
bers;

• the user name of its owner;

• date and time of the most recent modification;

• zero, one or more icons indicating that some of the following events have occurred:

– New Icon indicates a new artifact;

– Change Icon indicates changes to the artifact;

– Read Icon indicates that someone has read the artifact;

– Modification Icon indicates recent modifications in a sub-artifact;

• a pop-up menu button showing the actions involving the artifact.

Detailed System Specification Report(D3.0.1) 71

Note that different actions are possible for different types of artifacts. Depending on the individual
access rights, the number and type of actions permitted may vary.

Most icons in an artifact entry are “clickable”, i. e. one gets more information on a community, a
lock, a note, a rating etc. when one clicks on it.

The instant access navigation buttons

The upper right hand corner of the interface provides an icon bar showing buttons applicable to
instantly access certain artifacts.

• Home Folder Icon represents a user’s home folder.

• Clipboard Icon recpresents a user’s clipboard, which serves as an intermediate store.

• Waste Icon represents a user’s waste, which helps to prevent unauthorized or unintentional
deletion of artifacts: In the CWS, an artifact can be irrevocably destroyed only from the
Waste of its owner.

• Address Book Icon represents a user’s address book, to be used primarily to invite new
members to the user’s folder.

The menu bar

At the upper left hand corner of the interface there is a menu bar with pull-down menus (and
action shortcut icons for the most frequent actions).

New artifacts are added to the current folder by selecting one of the File menu options:

File → New plus a sub-option from the list Discussion, Private Folder, Community Folder, Project
Folder in order to create an artifact of the specified type directly on the CWS server. For project
folders, also documents, URLs, and searches may be created. Examples are:

• Select File → New → Private Folder in order to create a private folder within the current
private or home folder.

• Select File → New → Community Folder in order to create a community folder within the
current community or home folder.

• Select File → New → Project Folder in order to create a project folder within the current
project or home folder.

• Select File → New → Document to upload a file from the user’s local computer system to
the current project folder.

If one wants to create a new private, community or project folder, the CWS user interface asks for
name, description, collections to be associated to that folder; finally the user is asked to specify
whether recommendations are requested for records, users, collections, or communities, (i. e. tick
the appropriate box). For communities one has to also specify in the creation dialogue whether
the community is open to be joined by external users.

When a new document is identified to be uploaded to the CWS server, one is asked via an additional
dialogue to specify the document’s local URL, name, description, MIME type and encoding.

If one wants to rate the new artifact, one may choose one of the following options: no (for no
rating available), very poor, poor, fair, good, or excellent, by ticking the respective radio button.

The Edit menu is used to transfer existing artifacts to/from from the clipboard by the following
procedure. Select the Paste option in the Edit menu to add artifacts that arrived at the Clipboard

72 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

from somewhere in the user’s folders as a result of the most recent Copy or Cut action to the
current Folder.

Via the Options menu, the user may edit Preferences, personal user Details, user Communication
specifics, user Password, or user Default Events.

To navigate among the particular entities one can also use the GoTo menu.

• Select GoTo → Home to get to the user’s home folder.

• Select GoTo → Clipboard to get to the user’s clipboard.

• Select GoTo → Waste to get to the user’s waste.

• Select GoTo → Address Book to get to the user’s address book.

• Select GoTo → Communities to get to the current list of communities.

• Select GoTo → User Info to receive the specifics of the user information stored in the system.

The multi-action buttons

Preceding the list of artifacts, the CWS user interface provides a number of buttons for actions to
be applied to several selected artifacts.

In general, an artifact is selected by marking the checkbox to the left of its name. The Select all
and Select none buttons are shortcuts for selecting or de-selecting all artifacts within the current
folder.

Hitting, e. g., the copy button invokes copying, and hitting the cut button triggers transfer of the
selected artifacts to the user’s clipboard; hitting the delete button invokes transfer of the selected
artifacts to the waste. Certain buttons such as send and rate trigger actions that can be applied
only to artifacts of specific types.

Note that artifacts transferred from a folder to the clipboard or to the waste are no longer visible
to the members of the folder.

The single action pop-up menus

At the right end of the entry containing the artifact name in the folder listing, the CWS user
interface provides for every entry an action pop-up menu for operations to be applied only to that
particular artifact. Here one gets all the actions that are applicable to the artifact, including generic
ones like Open, Catch up, History, Info, or actions that depend on the nature of the artifact, e. g.
Rate, Attach note for records or Add Collections, Remove Collections for Cyclades folders.

Here in the single action menu the actions more specific to CWS are to be found that do not appear
in the menu bar or the multi-actions:

• Add Collections to associate additional collections to a Cyclades folder,

• Remove Collections to remove collections from the set of collections associated to a Cyclades

folder,

• Edit Folder Prefs to modify the preferences for the recommendations sought for and/or joining
rights,

• Update Folder Profile to request an immediate update of the folder profile in the Filtering
and Recommendation Service,

• Join Community to join the selected community,

Detailed System Specification Report(D3.0.1) 73

• Mail Community Mgrs to send an electronic letter to the manager(s) of a particular commu-
nity (e. g. to get permission to join a community).

The configuration of the Action menu depends on the type of artifact—for example, different
actions are appropriate for a URL artifact, a folder or a document.

What actions are applicable to which artifacts? Access right management in the CWS is based on
roles, whereby a role defines the set of artifacts and actions a user may apply for a specific task. As
a consequence, the CWS will not display the single action menu entries for actions that a user may
not perform on the specific artifact w. r. t. to the role assigned to the particular user. On the other
hand, one may invite, for example, new community members assigning roles to them. Moreover,
roles define access profiles which can be attached to any artifact in the CWS. A set of pre-defined
roles serves as a starting point: manager, owner (originally the creator; also accountable for the
disk space used), member and restricted member (read-only access). Role assignments are inherited
along the folder hierarchy and can be modified at any time.

Context Sensitive Help

The context sensitive help feature provides assistance to navigate the system. In a number of
application environments one may click the Question Mark button to get an explanation of the
action to be launched.

3.6 Service interaction diagrams

Service interaction diagrams describe the interaction between a user or external service with the
CWS in executing one of its functions or methods.

3.6.1 Diagrams for user operations

In the following, service interaction diagrams are given for all user operations that involve a call of
the CWS to other services. The diagrams for user operations that do not involve such external calls
are very simple and easily derivable from the information on operations and operation handlers
presented above.

For the interaction of the user with the CWS, we give the name of the operation invoked by the
user (op=... part of the HTTP GET request) plus the parameters filled in by the user, if any.
Context information like the id of the current folder, the ids of the objects concerned (if different
from the current folder) and the id of the user carrying out the operation is not represented in
the diagrams, but of course encoded in the request. The HTML output returned to the user as
response is described informally.

Create folders

The creation of folders is described for the case of community root folders. When the user actually
creates a folder and sets the recommendation preferences, these are forwarded to the FRS. The
creation of all other types of folders involves the FRS in exactly the same way as in the creation of
community root folders, even if the preferences are inherited from the parent folder and not directly
set by the user. The respective diagrams are very similar—only the names of the operations are
different—and hence not given.

74 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Filtering & Re-
commendation

Service
 User

addcycommunroot

folder creation form

Collaborative
Work

Service

addcycommunroot(name, descr,
 recoprefs, subscrprefs)

current folder listing

setRecommendationYesNo
 (folderId, value)

void

handle_GET

handle_POST

Figure 3.7: Create a community root folder

Edit recommendation preferences

When a user edits the recommendation preferences of a folder, changed preferences are forwarded
to the FRS (which of course is not done if the user has left the preferences unchanged). There are
two different operations for editing recommendation preferences: one for community root folders
(allowing also the editing of the subscription policy preference) and one for all other cases. We
represent the latter in the diagram, the diagram for the other case is identical apart from the
operation name.

Rate records

The ratings of records are forwarded to the Rating Management Service (RMS). Rating is done
using a core operation handler op rate which is not part of the Cyclades package. The forwarding
to the RMS is done by the on rate method of the CYRecord class which is called whenever an
Artifact is rated. This internal detail is not represented in the respective diagram.

Invite a recommended user

Only inviting users which are not already registered involves the Mediator Service (MS). This case
is treated in the respective diagram. The later phase of the complete process when the invitee
actually registers and becomes a member of the folder to which she has been invited, is not given
in the diagram because this is a user operation of the MS.

Detailed System Specification Report(D3.0.1) 75

Filtering & Re-
commendation

Service
 User

folder_prefs

form for editing folder
recommendation prefs

Collaborative
Work

Service

folder_prefs(recordp, userp,
 communityp, collectionp)

current folder listing

setRecommendationYesNo
 (folderId, value)

void

handle_GET

handle_POST

Figure 3.8: Edit recommendation and subscription policy preferences

Update folder profile

Requesting the update of a folder profile is a one-step user operation. The request is simply
forwarded to the FRS.

3.6.2 Diagrams for API invocations

Invocation of a CWS API method never involves a call to other services. Consequently, the
respective service interaction diagrams are very simple and equal in structure. As an example, the
service interaction diagram for creating a new user is given.

3.7 Service implementation tools

In order to install and run the CWS you need the following software:

• Python, Version 2.0
http://www.python.org/

• xmlrpclib, Version 0.99
http://www.pythonware.com/products/xmlrpc/index.htm

• Apache Web server, Version 1.3
http://www.apache.org/

76 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Rating
Management

Service
 User

rate

rating table form

Collaborative
Work

Service

rate((recordId, ratingValue)*)

current folder listing
with ratings

saveRating(recordId, folderId,
 userId, ratingValue)

void

handle_GET

handle_POST

for every
rating

Figure 3.9: Rate records

• BSCW, Version 4
http://www.orbiteam.de/

Detailed System Specification Report(D3.0.1) 77

Mediator
Service

 User

addmb

invitation form

Collaborative
Work

Service

addmb(emailAddr)

current folder listing

inviteUser(emailAddr, folderId)

void

handle_GET

handle_POST

Figure 3.10: Invite a recommended user to a folder

78 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Filtering & Re-
commendation

Service
 User

update_profile

Collaborative
Work

Service

current folder listing

updateFolderProfile(folderId)

void

handle_GET

Figure 3.11: Update folder profile

Detailed System Specification Report(D3.0.1) 79

createUser(name, passwd,
 emailAddr, folderId)

Collaborative
Work

Service

(userId, folderUrl)

Figure 3.12: Create a new user

Chapter 4

Search and Browse Service

4.1 Functionality

The Search and Browse Service (SBS) offers the Cyclades user multilevel hypertext searching
and browsing, in the form of a user interface to search and browse Cyclades metadata records,
attribute values, and schemas.

4.1.1 Searching and browsing

The first thing to decide for the user is the source for the search. The user can decide to search
all Cyclades metadata records, or only records from a specific virtual collection (for a definition
of virtual collection, please refer to the chapter on the Collection Service).

Then, she can formulate a new query or re-use an existing one from the active folder in the folder
workspace (for a description of folders, please refer to the chapter on the Collaborative Work
Service).

For query formulation, the user can browse the metadata schemas available for the chosen virtual
collection, and, where applicable, the values that can be found for specific metadata attributes
(e. g. a list of person names). For future re-use, the user can save the query to the folder system.

She can also decide to skip formulating a query explicitly and instead use the current folder as an
implicit query by asking for new records for the active folder (for this variant, please refer to the
chapter on the Filtering and Recommendation Service).

After submitting an explicitly formulated query or the request for new records for the current
folder, the user is presented with a ranked list of results. This list can be returned as it is, or it
can be filtered using the current folder profile (see the chapter on the FRS for details). From the
result list, she can select records to be saved to the current folder in her workspace.

4.2 Process flow

In this section, we describe the search and browse process in more detail. For the personalized
variants, please refer to the chapter on the Filtering and Recommendation Service.

4.2.1 Searching and browsing without personalization (SU 8)

One basic assumption in Cyclades is that the user is always in a current folder. Thus, the Search
and Browse Service functionality is called with the id of the current folder.

80

Detailed System Specification Report(D3.0.1) 81

The search and browse process consists of the following steps:

• System: determines the list of collections that are associated to the user’s current folder,
or (if there are no collections associated to the folder) the user’s personal list of collections,
and presents the list to the user to browse

• User: selects collections to search, or requests to search

– all collections associated to the folder, or

– all of her personal collections, or

– all collections in the system

• System: determines the list of queries stored in the user’s current folder, and the list of
queries the user has submitted during the same search and browse session before (if there
are none, this step and the following step are skipped)

• User: selects an existing query, or decides to formulate a new one

• System: presents the user the query formulation interface, with the appropriate fields filled
in if the user selected an existing query in the previous step

• User: edits the query
this comprises

– adding, changing, or deleting query conditions

– browsing the metadata schemas available for the selected collections

– for a specific metadata schema, browsing attribute values (if applicable)

• User: saves the query to the current folder, if she wants to re-use it later (this results in the
system copying the query to the Collaborative Work Service for persistent storing)

• User: submits the query, with or without personalization

• System: executes the query and presents a result set of records to the user, ranked by
estimated relevance

• User: browses the result set, or previous result sets still existing from this search and browse
session, possibly selects records to be saved to the current folder

• System: if there are any records to be saved, the system passes them to the Collaborative
Work Service

4.3 Internal architecture

4.3.1 Overview

Figure 4.1 shows the internal architecture of the Search and Browse Service. It consists of the
following layers, respectively components:

• the SBS API

• an implementation layer

• the search and browse GUI

• communication modules

In the following, we describe these individual components.

82 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

other Cyclades services

other Cyclades services

XML-RPC via HTTPservice internal communication:
XML-RPC via HTTP

XML-RPC via HTTP

Search and Browse Service API

Search and Browse session
server part

Communication server

Search and Browse Service classes

Communication client Search and Browse Service

GUI

Search and Browse session
client part

Web browser

Figure 4.1: Search and Browse Service: internal architecture

4.3.2 Search and Browse Service API

This layer is the API to all Search and Browse Service functions that are accessible to the GUI
or to other Cyclades services. It consists of Java interfaces specifying the available methods.
The individual classes (respectively, from the implementation point of view, Java interfaces) are
described below in section 4.4.

As the Search and Browse Service works with records, metadata schemas, and archives, all of
which are classes primarily by other services and thus described in the corresponding chapters, the
Search and Browse Servive will have to use and implement the corresponding Java interfaces for
those classes, too.

4.3.3 Search and Browse Service implementation classes

This layer consists of the Java classes implementing the Search and Browse Service’s API.

4.3.4 Search and Browse GUI

This component of the Search and Browse Service interacts with the user in a search and browse
applet, thus implementing the SBS’s main task.

4.3.5 Communication modules

The GUI communicates with the SBS itself via XML-RPC calls for which there is an extra client
and server module added between the two parts of the Search and Browse session implementation.
The client module translate method calls of SearchAndBrowseSession objects (and other instances

Detailed System Specification Report(D3.0.1) 83

of Cyclades entity classes, like Archive etc.) into remore procedure calls that are answered at
the SBS server by the corresponding server module.

The Search and Browse Service uses methods of the other Cycladesservices (see next section,
4.6). In the first version of Cyclades, the communication between the different services is carried
out via XML-RPC, thus, the Search and Browse Service’s module for external method invocation
is implemented as an XML-RPC client running at the SBS (which is different from the client for
internal communication running in the Web browser with the GUI applet).

The only request that the SBS accepts from another service is the initialization of a Search and
Browse session by the Mediator Service. Thus, the SBS contains a second communication server
module for external communication.

As the whole of the communication is encapsuled by special modules, it can later be changed to
other protocols as needed.

4.4 Data and method specification

4.4.1 Search and Browse Service

The Search and Browse Service provides the search and browse functionality of the system. This
service has no persistent data.

SearchAndBrowseService

This class implements the Search and Browse Service. It maintains a list of search and browse
sessions.

public:

• id
Description: this is the unique ID of the service (string)

• sessions
Description: a list of SearchBrowseSession objects

• HTML initiateSearch(folderId,userId)
Description: this method can be called to initiate a search and browse session for the given
folderId and userId, it returns the initial SBS interface page to the caller
Input. userId: the id of user who started the search

folderId: the id of the folder the user started the search from
Output. the first page of the Search and Browse Service GUI

service internal:

• SearchBrowseSession initiateSearch(folderId,userId)
Description: this method can be called to initiate a search and browse session for the given
folderId and userId
Input. userId: the id of user who started the search

folderId: the id of the folder the user started the search from
Output. a new SearchBrowseSession object

• Record* getNewForFolder(sessionId)
Description: determines the list of new records that are relevant to the current folder topic,

84 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

by calling the Input. sessionId: the id of the SearchBrowseSession object this method refers to
Output. a list of records

• Record* search(sessionId, query)
Description: returns a list of records that are deemed relevant with respect to the specified
query, by calling the search method on the appropriate SearchBrowseSession
Input. sessionId: the id of the SearchBrowseSession object this method refers to

query: the query to be evaluated
Output. a list of records

• Record* filteredSearch(sessionId, query)
Description: returns a list of records that are deemed relevant with respect to the specified
query, filtered with respect to the current folder topic, by calling the filteredSearch method
on the appropriate SearchBrowseSession
Input. sessionId: the id of the SearchBrowseSession object this method refers to

query: the query to be evaluated
Output. a list of records

• void saveResults(sessionId, recordId*)
Description: saves the records specified by recordId* to the user’s folder, by calling the
saveResults method on the appropriate SearchBrowseSession
Input. sessionId: the id of the SearchBrowseSession object this method refers to

list of recordId: the list of record ids of the records that are to be stored to the user’s folder

• (Collection*, Schema*) getCollections(sessionId)
Description: returns the list of collections and the corresponding schemas available in a
search and browse session
Input. sessionId: the id of the SearchBrowseSession object this method refers to

Output. list of Collection: list of Collection objects
list of Schema: list of Schema objects

• value* getAttributeValues(sessionId, schemaName, attributeName, maxNo)
Description: returns the list of values for the specified attribute and schema available in a
search and browse session
Input. sessionId: the id of the SearchBrowseSession object this method refers to

schemaName: the name of the schema
attributeName: the name of the attribute
maxNo: the maximum number of values to be returned

Output. a list of attribute values, ordered by the default order according to the attribute’s
type

SearchBrowseSession

One instance of this class corresponds to one user-service interaction sequence, i. e. this is the class
that interacts with the user (through a separate user interface).

public:

• id
Description: the unique ID of the session

• expirationTime
Description: the timestamp when this object will be deleted, i. e. when the session will
expire

• userId
Description: the ID of the user that initiated the search

Detailed System Specification Report(D3.0.1) 85

• activeFolderId
Description: the ID of the folder the search was initiated from

• queryHistory
Description: the list of all queries formulated during this search session (list of strings)

• resultHistory
Description: the list of result sets obtained during this search session, each result set being
a set of Record objects

• relevantRecords
Description: a list of those records marked as relevant by the user

service internal:

• folderId
Description: the id of the folder the search was initiated from

• Record* getNewForFolder()
Description: determines the list of new records that are relevant to the current folder topic
Output. a list of records

• Record* search(query)
Description: returns a list of records that are deemed relevant with respect to the specified
query
Input. query: the query to be evaluated
Output. a list of records

• Record* filteredSearch(query)
Description: returns a list of records that are deemed relevant with respect to the specified
query, filtered with respect to the current folder topic
Input. query: the query to be evaluated
Output. a list of records

• void saveResults(recordId*)
Description: saves the records specified by recordId* to the user’s folder
Input. list of recordId: the list of record ids of the records that are to be stored to the user’s folder

• (Collection*,Schema*) getCollections()
Description: returns the list of collections and the corresponding schemas available in this
search and browse session
Output. list of Collection: list of Collection objects

list of Schema: list of Schema objects

• value* getAttributeValues(schemaName, attributeName, maxNo)
Description: returns the list of values for the specified attribute and schema available in
this search and browse session
Input. schemaName: the name of the schema

attributeName: the name of the attribute
maxNo: the maximum number of values to be returned

Output. a list of attribute values, ordered by the default order according to the attribute’s
type

86 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

4.5 User interface

In this section, we describe the search and browse user interface. From the user’s perspective, it
consists of a set of dialogs for the individual steps of the search and browse process (as described
in section 4.1). For more flexibility, we decided to implement this GUI as a Java applet. The
user can leave the search and browse environment at any time by selecting one of the other main
functionalities (e. g. the collaborative work environment). Then, all search and browse windows
that might have been opened by the applet are closed, and the search and browse session is ended.

4.5.1 Query formulation dialog

This is the central dialog of the Search and Browse GUI. It always contains the current query, at
the beginning, this is an empty query.

The dialog contains the name of the user’s current folder, the list of collections that the query
refers to, the name of a metadata schema to be used, a list of query conditions, and the following
elements:

• Select collections button
this button opens the Collection selection dialog where the user can choose the source col-
lections for the search and browse process

• Select query button
this button opens the Query selection dialog where the user can choose a previous query from
the same search and browse session, or a query that has been stored in the current folder

• Select metadata schema button
this button opens the Metadata schema selection dialog where the user can browse the avail-
able metadata schemas

• for every query condition:

– a drop-down menu to choose a field from the selected metadata schema

– possibly another drop-down menu to choose a subfield of the selected field

– a drop-down menu to choose the predicate to be used in this condition (e. g. equality)

– an input field for a reference value for the predicate, combined with a button to open a
Value browsing dialog (if applicable)

– an input field combined with a drop-down menu to specify the weight of the condition
(+, -, or a number)

– Remove condition button to remove the respective condition from the query

• Add condition button
this button adds a new query condition

• Get new records relevant to folder topic button
this button ignores the current query (if any) and submits a search request based on the
profile of the current folder

• Submit as is button
this button submits the query without personalization

• Submit personalized button
this button submits the query with personalization

• Clear all button
this button resets all conditions and selections to their defaults

Detailed System Specification Report(D3.0.1) 87

Any form of submitting the query, respectively requesting records relevant to the folder topic,
results in a Result list being opened.

4.5.2 Collection selection dialog

In this dialog, the user can specify which collections the system should use as a source for the
following search and browse process.

The dialog contains a list of collections. By default, this is the list of collections associated to
the user’s current folder. The user can click on a button to switch from this set of collections to
her folder-independent personal set of collections. From the list shown in the dialog, the user can
highlight one or more collections.

Furthermore, the dialog contains five buttons:

• Search in selected collections
this button is active whenever there is at least one collection highlighted

• Search in all folder collections
this button is active when the dialog shows the list of collections associated to the folder

• Search in all personal collections
this button is active when the dialog shows the list of personal collections

• Search the whole system
this button is always active and results in a search without any collection restriction

• Cancel
this button closes the Collection selection dialog without changing the Query formulation
dialog

If the user had already chosen a query or metadata schema or formulated query conditions in the
Query formulation dialog before, then the Collection selection dialog contains also a warning that
switching the collections may result in different metadata schemas being available, i. e. part of the
other selections and all the previously formulated query conditions might be dropped.

After clicking one of these buttons, the Collection selection dialog is closed, and (except for the
Cancel button) the selected collections are listed in the Query formulation dialog, or the Query
formulation dialog shows the information that the folder collections, the personal collections, or
no collections have been chosen.

4.5.3 Query selection dialog

In this dialog, the user can select an existing query (if there is any).

The dialog contains a list of queries. By default, this is the list of queries that the user has
submitted earlier during the same search and browse session, i. e. a query history. The user can
click on a button to switch from this set of queries to the set of queries stored in her current folder.
From the list shown in the dialog, the user can highlight at most one query. Highlighting a query
results in a preview version of the query being shown in the lower part of the dialog window.

Furthermore, the dialog contains the following buttons:

• Use selected query
this button is active whenever there is a query highlighted

• Cancel
this button closes the Query selection dialog without changing the Query formulation dialog

88 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

If the user had already chosen a list of collections or metadata schema or formulated query con-
ditions in the Query formulation dialog before, then the Query selection dialog contains also a
warning that selecting a query may result in different collections being chosen, or in different
metadata schemas being available, i. e. part of the other selections and all the previously formu-
lated query conditions might be dropped.

If the Use selected query button is clicked, the Query selection dialog is closed, and the selected
query with its collections, metadata schema, and conditions is shown in the Query formulation
dialog.

4.5.4 Metadata schema selection dialog

In this dialog, the user can select a metadata schema for the query.

The dialog contains a list of available metadata schemas. From this list, the user can highlight
at most one schema. Highlighting a schema results in a second list being shown, containing the
schema’s attributes. Highlighting an attribute results in information about this attribute being
shown, e. g. the type, or a (third) list of subfields.

Furthermore, the dialog contains the following buttons:

• Use selected schema
this button is active whenever there is a schema highlighted

• Cancel
this button closes the Metadata schema selection dialog without changing the Query formu-
lation dialog

If the user had already chosen a list of collections or formulated query conditions in the Query
formulation dialog before, then the Query selection dialog contains also a warning that selecting a
different schema may result in some collections and all the previously formulated query conditions
being obsolte.

If the Use selected schema button is clicked, the Query selection dialog is closed, and the selected
schema with the remaining collections (those for which the schema is available) is shown in the
Query formulation dialog.

4.5.5 Value browsing dialogs

This kind of dialog depends on the type of data to be browsed. A list of person names might for
instance first be presented as an overview by first character (A, B, C, ..., Z).

Any Value browsing dialog, however, will contain a means to select a value to be used in the current
query, and a Cancel button to close the dialog without using any value.

4.5.6 Result list

This dialog mainly contains a list of records (the result of a query). The user can choose up to 5
1 metadata attributes for the records to be shown. (As a query always uses exactly one metadata
schema, the list of available attributes is easy to determine.) The user can select one or more
records from the list.

The dialog contains the following buttons:

• Save to current folder
this buttons results in the currently selected records being saved to the user’s current folder

1This number was arbitrarily chosen.

Detailed System Specification Report(D3.0.1) 89

Search & Browse

User

Mediator Collaborative Work Collection Access

initiate search and browse

initiateSearch(folderId,userId)

present search and browse GUI

browse collection metadata getCollections(folderId)

collectionId*

getCollectionMetadata(collectionId*)

(collectionId,collectionMetadata)*
(Collection*,Schema*)

select collection

browse search schemas

Schema selection dialog

browse attribute values
getAttributeValues(archiveId*,schemaName,attributeName,maxNo)

value*
value*

GUI page

GUI

getCollections(sessionId)

Collection selection dialog

getAttributeValues
(sessionId,schemaName
attributeName,maxNo)

Value browsing dialog

Figure 4.2: Search and Browse Service: select collections and edit query (interaction diagram)

• Close
clicking this button closes the dialog

4.6 Service interaction diagrams

4.7 Service implementation tools

The first prototype of the Search and Browse Service will be implemented using the following
software:

• Java 2

• Apache XML-RPC

• Apache Web Server and Tomcat

90 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Search & Browse

User

Mediator Collaborative Work Filtering & Recommendation

initiate search and browse
initiateSearch(folderId,userId)

present search and browse GUI

getCollections(folderId)

collectionId*

request new records for folder

browse results

save results
saveResults(folderId,userId,Record*)

getNewRecords(collectionId,maxRecordNo,folderId)

Record*

For each collection:

GUI

getNewForFolder(sessionId)

show ResultList

saveResults(sessionId,recordId*)

GUI page

Figure 4.3: Search and Browse Service: get new records relevant to folder topic (interaction dia-
gram)

User

Search & Browse AccessCollaborative Work

submit non-personalized query
search(query,maxrecordNo,maxTermNo,timeStamp)

(Record,(term,weight)*)*

saveResults(folderId,userId,Record*)

browse results from current

save results

GUI

Record*
show ResultList

and previous queries

saveResults(sessionId,recordId*)

search(sessionId*,query)

Figure 4.4: Search and Browse Service: submit query without personalization (interaction diagram)

Search & Browse

User

Collaborative Work Filtering & Recommendation

submit query with personalization filteredSearch(query,maxRecordNo,folderId)

browse results from current

save results

Record*

saveResults(folderId,userId,Record*)

GUI

filteredSearch(sessionId*,query)

Record*
show ResultList

and previous queries

saveResults(sessionId,recordId*)

Figure 4.5: Search and Browse Service: submit query with personalization (interaction diagram)

Chapter 5

Filtering and Recommendation
Service

5.1 Functionality

The role of the Filtering and Recommendation Service (FRS) is to provide the user with highly
flexible and personalized interaction. It is important to notice that this service provides a kind
of functionality that is “non-fundamental” to Cyclades, in the sense that a Cyclades service
of user access to archive records could, in principle, work and be provided without a filtering and
recommendation functionality.

Personalization of interaction is here a content-based (vs. a form-based) notion. This means that
Cyclades attempts to tailor its behaviour to the user by trying to “understand” the user’s inter-
ests. This personalization paradigm is thus based on automatically generating a “profile” of the
user and of her interests (this is done inductively, through a textual and statistical analysis of the
documents the user has shown interest in), rather than by asking the user to fill in such a profile.
This has obvious advantages, since

• The user is not burdened with the task of filling in a detailed and structured profile of her
interests. It is well-known that few users are willing go to the trouble of doing so. Such a
profile is instead automatically guessed by the system based on the user’s past behaviour.

• Even if the user accepted to fill in such a profile, she would typically not be capable of writing
an “effective” profile, i.e. one that achieves effective personalization to her interests. In fact,
it is well-known that users do not often display fine-grained self-description capabilities, and
it is also well-known (and quite obvious too) that users cannot be expected to know how the
profile they are filling in is going to influence the behaviour of the personalization system.
Automatically guessing a profile from the user’s past behaviour allows instead to obtain fine
grained descriptions of the user’s interest which are specially tailored to improving document
access.

In Cyclades, personalization is achieved by implementing two basic mechanisms, filtering and
recommendation. Filtering refers to an activity of personalizing the interaction between user
and system based on feedback information provided by the user herself, while recommendation
refers instead to an activity of personalizing the interaction between user and system based on
feedback information provided by other users that the system considers “similar” to this user. A
further basic difference between filtering and recommendation is that, while filtering only deals
with records (i.e. it consists in estimating whether a given record is or is not interesting to a given
user), recommendation deals with records, collections, users, and communities (i.e. it consists in
recommending one or more of these to a user if they are deemed interesting to her).

91

92 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

For the Filtering and Recommendation Service, the basic unit of concern is the folder, which may
be viewed as a thematic repository of records. A folder always has an owner, which may be either
an individual user, or a community, or a project. Each folder will typically correspond to one
subject (or discipline, or field) the owner is interested in. However, in order to accomplish a truly
personalized interaction between user and system, this correspondence is fully idiosyncratic to the
owner of the folder; this means that e.g. a folder named Nuclear Waste Disposal and owned by
user Sue will not correspond to any “objective” definition or characterization of what nuclear waste
disposal is, but will correspond to what Sue means by nuclear waste disposal, i.e. to her personal
view of (or interest in) nuclear waste disposal. This user-oriented view of folders is realized by
learning the “semantics of folders” from the current contents of the folders themselves.

In the following sections we give detailed use cases for the Filtering and Recommendation Service,
along with the algorithms that implement the service. The use cases are:

• Update Folder Profile (see Section 5.1.1), whereby the semantic definition of a folder (“folder
profile”), which acts as a filter on what should be retrieved into this folder, is updated by
the system.

• Search On-Demand based on Folder Profile (see Section 5.1.2), whereby the folder profile is
used as a post-filter on records that are retrieved by (explicit or implicit) user queries;

• Receive Recommendations from the System (see Section 5.1.3), whereby recommendations
(of records, collections, users, communities) deemed relevant to a given folder are received
into the folder and displayed to the user.

5.1.1 Update Folder Profile (SU 7)

Folder profiles are updated by bringing to bear records that show a shift in the user’s interests
that are represented by this folder. New records that had originally been retrieved for this folder
and have instead been saved by the user in another folder are an indication that the folder profile
should be updated to exclude them (i.e. to avoid “requesting” records similar to them in the future).
Conversely, new records that have been saved by the user in this folder (and that had possibly
been retrieved for another folder) are an indication that the folder profile should be updated to
include them (i.e. to “request” also records similar to them in the future).

The modification of a folder profile may be explicitly requested by a user (Update Folder Profile
On-Demand – see Section 5.2.1) or may be invoked by the system, typically at regular intervals
(Update Folder Profile at Scheduled Time – see Section 5.2.2). The former is performed for
a single folder profile, while the latter is performed at the same time for all of the folder profiles of
a given user.

5.1.2 Search On-Demand based on Folder Profile (SU 9)

This searching modality is based on a folder profile, i.e. a compact representation of the interests of
the user relative to this folder. Search On-Demand based on Folder Profile is achieved by using the
folder profile as a post-filter on records that are retrieved by a query. The query may be explicit,
i.e. issued by the user, or may be implicit, i.e. issued by the system; this latter case occurs when
the user, instead of issuing an explicit query, simply requests that all new records that are relevant
to the topic corresponding to the folder profile are retrieved.

5.1.3 Receive Recommendation from the System (SU 10)

Recommendations of entities (i.e. records, collections, users, communities) are issued to users based
on other users’ (implicit or explicit) ratings of records within their own folders, and on the perceived
similarity between the interests of the user, as represented by a given folder, and the interests of

Detailed System Specification Report(D3.0.1) 93

Figure 5.1: Process flow diagram of the Update Folder Profile On-Demand use case.

these other users, as represented by their folders. All recommendations are specific to a given user
folder (the current folder); this means that the recommendation of a given entity to a user always
pertains to a given folder, and has to be understood in the context not of the general interests of
the user, but of the specific interests of the user represented by that folder.

The user may choose whether she wants to receive recommendations automatically (“scheduled
recommendations”), or whether she wants to receive them upon an explicit request (“on-demand
recommendations”).

5.2 Process flow

The process flow of the Filtering & Recommendation Service is organized around three basic use
cases (which are further specialized into more detailed use cases): Update Folder Profile (SU 7),
Search On-Demand based on Folder Profile (SU 9), and Receive Recommendation from the System
(SU 10).

The Update Folder Profile use case actually consists of two different use cases, Update Folder Profile
On-Demand (discussed in Section 5.2.1) and Update Folder Profile at Scheduled Time (discussed
in Section 5.2.2).

The Search On-Demand based on Folder Profile use case actually consists of two different use
cases, Search On-Demand based on Folder Profile (discussed in Section 5.2.2) and Search

On-Demand based on Folder Profile (discussed in Section 5.2.2).

The Receive Recommendation from the System use case actually consists of four different use
cases, depending on the object of the recommendation: records, collections, users, and communities
(note that projects cannot be recommended, since participation in them is more restricted than
participation in communities). These four use cases are discussed in the next sections from 5.2.4
to 5.2.7.

5.2.1 Update Folder Profile On-Demand (SU 7-1)

The use case consists of the following sequence (see also Figure 5.1):

• The user decides to request the modification of the profile for the current folder. She does
so by hitting the Modify current folder profile button.

94 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 5.2: Process flow diagram of the Update Folder Profile at Scheduled Time use case.

• The Filtering & Recommendation Service requests to the Collaborative Work Service the set
of record IDs that have been saved into the folder after the last time this folder profile has
been updated; this time is indicated by the ProfileUpdateTimestamp, one for each folder,
maintained by the FRS.

• After receiving this set of record IDs, the Filtering & Recommendation Service requests to
the Access Service the set of indexed terms corresponding to these record IDs (i.e. a vector
of weighted terms for each record).

• After receiving this set of indexed terms, the Filtering & Recommendation Service updates
the folder profile and then updates the ProfileUpdateTimestamp for the folder profile.

This use case is also described by the interaction diagram of Figure 5.11.

5.2.2 Update Folder Profile at Scheduled Time (SU 7-2)

The use case consists of the following sequence (see also Figure 5.2):

• At the scheduled time, for each folder associated to the user, the Filtering & Recommendation
Service requests to the Collaborative Work Service the set of record IDs that have been saved
into the folder after the last time this folder profile has been updated; this is indicated by
the ProfileUpdateTimestamp, one for each folder, maintained by the FRS.

• After receiving this set of record IDs, the Filtering & Recommendation Service requests to
the Access Service the set of indexed terms corresponding to these record IDs (i.e. a vector
of weighted terms for each record).

• After receiving these sets of indexed terms, the Filtering & Recommendation Service updates
the folder profiles and then updates the ProfileUpdateTimestamp for each folder profile.

This use case is also described by the interaction diagram of Figure 5.12.

5.2.3 Search On-Demand based on Folder Profile (SU 9)

The use case consists of the following two sequences (see also Figure 5.3 and Figure 5.4):

Detailed System Specification Report(D3.0.1) 95

Figure 5.3: Process flow diagram of the Search On-Demand based on Folder Profile use case.

Figure 5.4: Process flow diagram of the Search On-Demand based on Folder Profile use case.

Personalized on-demand searching:

• Select collections (from collections associated to the folder) (as in non-personalized search);

• Instead of explicitly issuing a query, the user may simply ask the system to check whether
new records relevant to the topic of the current folder have been gathered for this collection
since the user last checked it (personalized on-demand searching). In order to do so, she hits
the button get new records relevant to folder topic and then hits the enter key. The Search &
Browse Service sends the request to the Filtering & Recommendation Service, indicating the
maximum number of documents to be returned. The Filtering & Recommendation Service
issues the query to the Access Service, including the OnDemandTimestamp relative to the
current folder (which specifies the time of the last such query issued from this folder);

• the Access Service returns the set of records requested, together with an internal represen-
tation for each of them consisting of a set of indexed terms;

• the Filtering & Recommendation Service filters the records received from the Access Service
(using the indexed terms), updates the OnDemandTimestamp relative to the current folder,
returns the filtered records to the Search & Browse Service, and moves to Step 5.2.3;

96 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 5.5: Process flow diagram of the Receive Record Recommendation from the System use
case.

Personalized ad-hoc searching:

• [Edit query (as in non-personalized search)];

• Instead of plainly submitting the query the user may, if she wishes, submit the query with
respect to the folder topic (personalized ad-hoc searching). In this case, she formulates their
query and then hits the button Submit personalised. The Search & Browse Service sends
this query to the Filtering & Recommendation Service, indicating the maximum number of
documents to be returned. The Filtering & Recommendation Service issues the query to
the Access Service, which returns the set of records requested, together with an internal
representation for each of them consisting of a set of indexed terms;

• the Filtering & Recommendation Service filters the records received from the Access Service
(using the indexed terms), returns the filtered records to the Search & Browse Service, and
moves to Step 5.2.3;

• [Look at results (from history/folder) (as in non-personalized search)].

This use case is also described by the interaction diagram of Figure 5.13.

5.2.4 Receive Record Recommendation from the System (SU 10-1)

The use case consists of the following sequence (see also Figure 5.5):

• The Filtering & Recommendation Service selects the k most similar folders to the current
folder. This selection activity uses both folder profiles, which are persistently stored by the
Filtering & Recommendation System, and “folder rating profiles” (i.e. normalized vectors
of the ratings given by a user within the folder), which are also persistently stored by the
Filtering & Recommendation System.

• For each of the k folders selected in the previous step, the Filtering & Recommendation Ser-
vice requests to the Collaborative Work Service the records contained in the folder that have
been retrieved after RecommendRecordTimestamp, a timestamp maintained by the Filtering
& Recommendation Service that records the last date in which this folder was selected for rec-
ommending records to the current folder (RecommendRecordTimestamp is thus an attribute
of a pair of folders, and not of a single folder).

Detailed System Specification Report(D3.0.1) 97

Figure 5.6: Process flow diagram of the Receive Collection Recommendation from the System use
case.

• For each of the records returned, the Filtering & Recommendation Service computes a pre-
diction of the likely rating that the user might give to the document. This computation is
based on the record content and on a comparison between the rating patterns of the user
and those of the users who actually rated the record positively.

• The Filtering & Recommendation Service selects the s “top” documents (i.e. the ones with
the highest predicted rating), where s is determined according to some threshold policy,
communicates these recommendations to the Collaborative Work Service, and updates the
RecommendRecordTimestamp of the k selected folders with respect to the current folder.

This use case is also described by the interaction diagram of Figure 5.14.

5.2.5 Receive Collection Recommendation from the System (SU 10-2)

The use case consists of the following sequence (see also Figure 5.6):

• The Filtering & Recommendation Service selects the k most similar folders to the current
folder, in the way specified for the content similarity for SU 10-1 (see 5.4), and requests to
the Collaborative Work Service the IDs of the collections that are associated to these folders.

• Among the collections returned by the Collaborative Work Service, the Filtering & Recom-
mendation Service selects the s (fixed) “top” collections according to a quality criterion that
prefers those collections that are referred to by the highest amount of selected folders.

• Among the s pre-selected collections, the Filtering & Recommendation Service selects the
s′ ≤ s collections that have not yet been recommended to the current folder, checking against
a list of collections already recommended to the current folder which is maintained by the
Filtering & Recommendation Service.

• The Filtering & Recommendation Service communicates the recommendations for these s′

collections to the Collaborative Work Service, and adds these s′ collections to the list of
collections already recommended to the current folder.

This use case is also described by the interaction diagram of Figure 5.15.

98 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 5.7: Process flow diagram of the Receive User Recommendation from the System use case.

5.2.6 Receive User Recommendation from the System (SU 10-3)

The use case consists of the following sequence (see also Figure 5.7):

• The Filtering & Recommendation Service selects the k most similar folders to the current
folder, in the way specified for the content similarity for SU 10-1 (see 5.4), and requests to
the Collaborative Work Service the IDs of the owners of these folders.

• Among the users returned by the Collaborative Work Service, the Filtering & Recommenda-
tion Service selects the s (fixed) “top” users according to a quality criterion that prefers the
users who own the highest amount of selected folders.

• Among the s pre-selected users, the Filtering & Recommendation Service selects the s′ ≤ s
users that have not yet been recommended to the current folder, checking against a list of
users already recommended to the current folder which is maintained by the Filtering &
Recommendation Service.

• The Filtering & Recommendation Service communicates the recommendations for these s′

users to the Collaborative Work Service.

• The Collaborative Work Service selects from these pre-selected s′ users the s′′ ≤ s users who
have declared their willingness to be recommended to other users, and recommends them to
the current folder. In the meantime, the Filtering & Recommendation Service adds these s′

users to the list of users already recommended to the current folder.

This use case is also described by the interaction diagram of Figure 5.16.

5.2.7 Receive Community Recommendation from the System (SU 10-4)

The use case consists of the following sequence (see also Figure 5.8):

• The Filtering & Recommendation Service selects the k most similar community folders (i.e.
folders owned by a community) to the current folder, in the way specified for the content
similarity for SU 10-1 (see 5.4), and requests to the Collaborative Work Service the IDs of
the communities that are associated to these folders.

Detailed System Specification Report(D3.0.1) 99

Figure 5.8: Process flow diagram of the Receive Community Recommendation from the System
use case.

• Among the communities returned by the Collaborative Work Service, the Filtering & Rec-
ommendation Service selects the s (fixed) “top” communities according to a quality criterion
that prefers the communities who own the highest amount of selected folders.

• Among the s pre-selected collections, the Filtering & Recommendation Service selects the
s′ ≤ s communities that have not yet been recommended to the current folder, checking
against a list of communities already recommended to the current folder which is maintained
by the Filtering & Recommendation Service.

• The Filtering & Recommendation Service communicates the recommendations for these s′

communities to the Collaborative Work Service, and adds these s′ communities to the list of
communities already recommended to the current folder.

This use case is also described by the interaction diagram of Figure 5.17.

5.3 Internal architecture

The Filtering & Recommendation Service provides functionality via API to the other Cyclades

services. All the interaction of the users on the graphical user interfaces of other services are
mediated by the Mediator Service. The internal components of the Filtering & Recommendation
Service are shown in Figure 5.9:

• the FolderDB is the folder profile database where both folder profiles and folder profile ratings
are stored;

• the Filter module performs the filtered search within personalization;

• the Recommender is the module that performs the record, collection, user or community
recommendation to a specific folder, if requested;

• the Profile Management module updates the folder profile performing the UpdateFolderPro-
file method, called by the user (Update Folder Profile On-Demand) or activated by the
system at a certain time (Update Folder Profile at Scheduled Time);

100 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 5.9: Internal architecture of the Filtering & Recommendation Service.

Figure 5.10: Interactions between the Filtering & Recommendation Service and the other Cy-

clades services.

• the Internal Methods Library module contains all methods used/performed internally by the
Filtering & Recommendation Service;

• the Client and Server module contain all Filtering & Recommendation Service’s API, that
allows other services to access the functionalities of the Filtering & Recommendation Service
and viceversa.

Other services can directly access the Filtering & Recommendation Service functionality via the
Filtering & Recommendation Service’s API. The API communication takes place via HTTP and
the format is XML and XML-RPC (see Figure 5.10).

5.4 Data and method specification

5.4.1 The Filtering & Recommendation Service classes

The Filtering & Recommendation Service has a class FilteringRecommendationService and a
class FolderProfile. The persistent data of this service are the folder profiles.

Detailed System Specification Report(D3.0.1) 101

The methods listed below, which constitute the API of the Filtering & Recommendation Service,
may be called from other services using the Cyclades inter-service communication protocol XML-
RPC.

FilteringRecommendationService

• id
Description: this is the unique ID of the class

• folderProfileList
Description: this is the list of all folder profiles known to the Filtering and Recommendation
Service

• Record* filteredSearch(query,maxRecordNo,folderId)
Description: this method may be invoked in order to filter records, retrieved according to
a query, with respect to the profile learnt from the folder.
Input. query: the query according to the syntax specified

by the access service
maxRecordNo: maximal number of records to be retrieved
folderId: the folder ID with respect to which filtering should be performed

Output. list of records

• Record* getNewRecords(collectionId,maxRecordNo,folderId)
Description: this method may be invoked in order to get new records, retrieved with re-
spect to the profile learnt from the folder.
Input. collectionID: a collection ID

maxRecordNo: maximal number of records to be retrieved
folderId: the folder ID with respect to which filtering should be performed

Output. list of records

• void updateFolderProfile(folderId)
Description: this method may be invoked in order to update the folder profile, i.e. to learn
the folder profile.
Input. folderId: the folder ID for which to learn the profile

• void setRecommendationYesNo(folderId,value)
Description: this method may be invoked in order to activate/disactivate the production
of recommendations with respect to a folder
Input. folderId: the folder ID

value: an integer.
The value contains the bit encoded recommendation preferences of the folder:
- a zero value stands for no recommendations;
- bit 0 stands for record recommendations,
- bit 1 stands for user recommendations,
- bit 2 stands for collection recommendations,
- bit 3 stands for community recommendations.

FolderProfile

• id
Description: this is the unique ID of the class

• profile
Description: this is the folder profile computed taking into account folder content and user
ratings

102 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• recommendedRecordsTimeStamp
Description: this is a hash table, that for a give folder maintains a timestamp which is the
most recent time where a folder F has been considered among the top k similar folders to
this current one. The purpose is to avoid duplicated record recommendations

• recommendedCollections
Description: list of recommended collections for avoiding duplicated recommendation

• recommendedUsers
Description: list of recommended users for avoiding duplicated recommendation

• recommendedCommunities
Description: list of recommended Communities for avoiding duplicated recommendation

• onDemandTimeStampList
Description: this is a list of pairs (owner, onDemandTimeStamp). We consider a list, since
in the case of a community folder more than one user may have access to this folder.

• profileUpdateTimeStamp
Description: time and date of last profile update, related to the content of the folder.

• ratingUpdateTimeStamp
Description: time and date of last rating update, related to the ratings of the folder.

5.4.2 The internal Filtering & Recommendation Service methods

In the following we describe the methods used internally in the Filtering & Recommendation
Service, just those already individualized.

• void updateProfileTimestamp(folderId)
Description: this method is performed in order to update the Timestamp, both in case of
on-demand and scheduled folder profile update.
Input. folderId: the folder ID

• void updateRatingTimestamp(folderId)
Description: this method is invoked in order to update the RatingTimestamp, in case of
scheduled folder profile update.
Input. folderId: the folder ID

• void updateOnDemandTimestamp(folderId)
Description: this method is invoked in order to update the OnDemandTimestamp with
respect to the folder profile.
Input. folderId: the folderId

• void Filter(folderId,(record,(term,weight)*)*)
Description: this method is invoked in order to filter new records, with respect to the
folderId.
Input. folderId: the folderId

(record,(term,weight)*)*: a list of records and the pairs (term, weight) associated

• (folderId, simValue)* selectSimilarFolders(folderId)
Description: this method will be performed in order to select the k most similar folders to
the current folder, given as input, in case of recommendations.
Input. folderId: the folderId
Output. list of pairs (folderId,simValue)

Detailed System Specification Report(D3.0.1) 103

• (Id, predictValue)* computePrediction(folderId, recommValue)
Description: this method is invoked in order to compute a prediction of the likely rating
the user might give to the object to recommend (records, users, collections, communities).
Input. folderId: the folderId

recommValue: the object to evaluate (record, user, community, collection)
Output. list of pairs (Id, predictValue)

• Id* selectTop(Id, predictValue)*
Description: this method is performed in order to select only the top s objects to recom-
mend.
Input. List of recordId: the Id of the object (record, user, community, collection)

predictValue: the correspondent prediction value
Output. list of object identifiers

• void updateRecommRecordsTimestamp(folderId)
Description: this method is invoked in order to update the hash table recommendedRecord-
sTimestamp with respect to the last record recommendation.
Input. folderId: the folderId

• void updateRecommendedCollections(folderId,collectionId*)
Description: this method is invoked in order to update the recommendedCollections list
with respect to the last collections recommendation.

• void updateRecommendedUsers(folderId,userId*)
Description: this method is invoked in order to update the recommendedUsers list with
respect to the last users recommendation.

• void updateRecommendedCommunities(folderId,communityId*)
Description: this method is invoked in order to update the RecommendedCommunities list
with respect to the last communities recommendation.

5.4.3 The Filtering & Recommendation Service algorithms

Before giving the detailed description of the algorithms, we fix some notation. By tk, dj , and fi

we will denote a term, a document, and a folder, respectively. Terms are usually identified either
with the words, or with the stems of words, occurring in documents. A document dj is represented
as a vector of weights dj = 〈w1j , . . . , wmj〉, where 0 ≤ wkj ≤ 1 corresponds to the “importance
value” that term tk has in document dj , and m is the total number of terms occurring in at least
one “training document” (i.e. a document which the user has saved in some folder).

The folder profile for folder fi is computed as the centroid of the documents belonging to fi; this
means that the profile of fi may be seen as a document itself (i.e. the mean, or prototypical,
document of fi). The weights of the folder profile for fi are then computed as

wki =
1

|{dj ∈ fi}|
·

∑

{dj∈fi}

wkj (5.1)

The centroid of a folder fi will be denoted by f̆i.

We define the content similarity of two documents d1 and d2, written CSim(d1, d2), as the cosine
of the angle that separates the vectors representing d1 and d2, i.e.

104 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

d1 . . . dj . . . dn

f1 r11 . . . r1j . . . r1n

f2 r21 . . . r2j . . . r2n

.
fi ri1 . . . rij . . . rin

.
fm rm1 . . . rmj . . . rmn

Table 5.1: The folder-document rating matrix.

CSim(d1, d2) =

∑m
k=1 wk1 · wk2

√

∑m
k=1 w2

k1 ·
√

∑m
k=1 w2

k2

(5.2)

This formula also allows us to determine the content similarity of a document dj and a folder

profile f̆i, since this latter is, mathematically speaking, also a document.

Given a folder fi, a document dj ∈ fi and an user uk, by 0 ≤ rijk ≤ 1 we denote the rating given
by user uk to document dj relative to folder fi. We average out the ratings given by users relative

to the same document-folder pair, by defining rij as rij = 1
Uij

·
∑Uij

k=1 rijk , where Uij is the number

of users for which the rating rijk is defined. As a consequence, we may represent the ratings as a
2-dimensional matrix, where the rows represent folders and the columns represent documents, as
shown in Table 5.1.

We define the rating similarity of two folders f1 and f2 with respect to a set of documents D,
written RSimD(f1, f2), as the Pearson correlation coefficient of the ratings given in the folders f1

and f2 for the documents d ∈ D , i.e.

RSimD(f1, f2) =

∑

dj∈D(r1j − r1) · (r2j − r2)

σ1 · σ2
(5.3)

where ri is the mean of the ratings ri1, . . . , rin, and σi is their standard deviation (see also Ta-
ble 5.1).

In what follows, the similarity Sim(f1, f2) between two generic folders f1 and f2 will be determined
as a linear combination between their content similarity and their rating similarity, i.e.

Sim(f1, f2) = αC · CSim(f̆1, f̆2) + αR ·RSimD(f1, f2) (5.4)

The linear combination parameters αC and αR are to be determined experimentally, according to
a policy yet to be defined. From now on, we will simply speak of the similarity of two folders to
actually mean the similarity of their centroids.

5.4.4 Detailed algorithm specification of Receive Record Recommenda-
tion from the System (SU 10-1)

In order to recommend records to the current folder, a pool of records candidate for recommen-
dation is first assembled. Then, for each of these records, a recommendation score is computed,
representing the likelihood that the user will deem this record relevant to the current folder. Only
the top scoring records are actually recommended.

1. Select the k most similar folders.

The Filtering & Recommendation Service selects the set MSk(fc) of the k most similar
folders to the current folder fc, by computing the similarity Sim(fc, fj) between the current

Detailed System Specification Report(D3.0.1) 105

folder fc and each other folder fj , and then selecting the k folders with the highest similarity
value. How to determine the optimal value of k (i.e. whether to use a fixed or variable value
of k, and how to determine this value) will be left to experimentation.

2. Compute the prediction of the document rating.

The Filtering & Recommendation Service uses the set MSk(fc), selected in the previous step,
to compute a prediction of the likely rating that the user (i.e. the owner of the current folder)
might give to a document. For each folder in MSk(fc), the Filtering & Recommendation Ser-
vice requests to the Collaborative Work Service the records contained in the folder that have
been gathered after the time specified in RecommendRecordTimestamp. The Collaborative
Work Service returns to the Filtering & Recommendation Service the list of these records.
This is the pool of documents, PD , that the Filtering & Recommendation Service has to rate.

The recommendation score for dj wrt fc is computed as a linear combination of a content-
based recommendation score and a ratings-based recommendation score.

The content similarity among document dj and the profile f̆c of the current folder fc is (see
5.2):

pC
cj = CSim(f̆c, dj) (5.5)

while the prediction for the document dj ∈ PD with respect to the current folder fc based
on ratings is (see 5.3):

pR
cj = rc +

∑

fu∈MSk(fc)(ruj − ru) · RSimD(fc, fu)
∑

fu∈MSk(fc) ·RSimD(fc, fu)
(5.6)

where rc is the mean of the ratings in the current folder and ru, fu ∈ MSk(fc), is the mean of
the ratings in its similar folder, i.e. the mean of {riu : fi ∈ MSk(fc), 1 ≤ i ≤ m}. Note that
if dj 6∈ fu, then ruj is not defined and the correspondent term in the sum must be omitted.

For each record dj ∈ PD the recommendation score pcj is computed as a linear combination
of the prediction based on content and the prediction based on ratings:

pcj = βC · pC
cj + βR · pR

cj (5.7)

3. Select the records to recommend

In the previous step, the Filtering & Recommendation Service obtained a ranked list based
on the final prediction pcj computed for each document dj ∈ PD . The System selects from
this list of records the top s1 to recommend to the current folder.

5.4.5 Detailed algorithm specification of Receive Collection Recommen-
dation from the System (SU 10-2)

1. Select the k most similar folders.

The Filtering & Recommendation Service computes the Sim(fc, fj) between the current
folder fc and each other folder fj with respect to the similarity function specified in 5.4,
and the result is a ranked list of similar folders to the current folder, from which the System
selects the top k folders, MSk(fc).

For each of these k folders in MSk(fc), the Filtering & Recommendation Service requests
to the Collaborative Work Service the IDs of the collections that are associated to it. The
Collaborative Work Service sends to the Filtering & Recommendation Service the list of

1
s is fixed. Another possible way to proceed is based on a threshold: in this case only those records whose

prediction value is greater than the threshold value would be recommended to the current folder.

106 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

collections IDs, a pool of collections, PC , that the Filtering & Recommendation Service has
to rate.

2. Compute the prediction of the collection rating.

The Filtering & Recommendation Service has to compute a prediction of the likely rating
that the user, the owner of the current folder, might give to each collection selected in the
previous step. For each fj ∈ MSk(fc) and for each ξi ∈ PC , let is fj(ξi) = 1 if the collection

ξi is associated to the folder fj , 0 otherwise; hξ
i = |{fj : fj ∈ MSk(fc), fj(ξi) = 1}|, i.e. the

number of folders associated to ξi (hits).

For each collection ξi ∈ PC the final prediction pci is computed as follow:

pci = hξ
i ·

∑

fj∈MSk(fc)

Sim(fc, fj) (5.8)

3. Select the collections to recommend.

In the previous step, the Filtering & Recommendation Service obtained a ranked list based
on the final prediction pci computed for each collection ξi ∈ PC . The System selects from this
list of collections the top s to recommend, and recommends those ones not yet recommended,
checking against the list of collections already recommended to the current folder, maintained
by the Filtering & Recommendation Service.

5.4.6 Detailed algorithm specification of Receive User Recommendation
from the System (SU 10-3)

1. Select the k most similar folders.

The Filtering & Recommendation Service computes the Sim(fc, fj) between the current
folder fc and each other folder fj with respect to the similarity function based on content
specified in 5.4, and the result is a ranked list of similar folders to the current folder, from
which the System selects the top k folders, MSk(fc). For each of these k folders in MSk(fc),
the Filtering & Recommendation Service requests to the Collaborative Work Service the
IDs of the owners of these folders. The Collaborative Work Service sends to the Filter-
ing & Recommendation Service the list of users, a pool of users, PU , that the Filtering &
Recommendation Service has to rate.

2. Compute the prediction of the user rating.

The Filtering & Recommendation Service computes a prediction of the likely rating that
the user, the owner of the current folder, might give to each user selected in the previous
step. For each fj ∈ MSk(fc) and for each ui ∈ PU , let is fj(ui) = 1 if the folder fj ∈ ui, 0
otherwise; hu

i = |{fj : fj ∈ MSk(fc), fj(ui) = 1}|, i.e. the number of folders belonging to the
selected user (hits).

For each user ui ∈ PU the final prediction pci is computed as follow:

pci = hu
i ·

∑

fj∈MSk(fc)

Sim(fc, fj) (5.9)

3. Select the users to recommend.

In the previous step, the Filtering & Recommendation Service obtained a ranked list based
on the final prediction pci computed for each user ui ∈ PU . The System selects from this
list of users the top s to recommend, and recommends those ones not yet recommended,
checking against the list of users already recommended to the current folder, maintained by
the Filtering & Recommendation Service.

Detailed System Specification Report(D3.0.1) 107

5.4.7 Detailed algorithm specification of Receive Community Recom-
mendation from the System (SU 10-4)

1. Select the k most similar folders.

The Filtering & Recommendation Service computes the Sim(fc, fj) between the current
folder fc and each other community folder fj , with respect to the similarity function specified
in 5.4, and the result is a ranked list of similar folders to the current folder. The System
selects the top k folders in this list, MSk(fc).

For each of these k folders in MSk(fc), the Filtering & Recommendation Service requests to
the Collaborative Work Service the community, which the folder belongs to. The Collabora-
tive Work Service sends to the Filtering & Recommendation Service the list of communities,
a pool of communities, PC , that the Filtering & Recommendation Service has to rate.

2. Compute the prediction of the community rating.

The Filtering & Recommendation Service computes a prediction of the likely rating that the
user, the owner of the current folder, might give to each community selected in the previous
step. For each fj ∈ MSk(fc) and for each γi ∈ PC , let is fj(γi) = 1 if the folder fj ∈
community γi, 0 otherwise; hγ

i = |{fj : fj ∈ MSk(fc), fj(γi) = 1}|, i.e. the number of folders
∈ MSk(fc) associated to the selected community (hits).

For each community γi ∈ PC the final prediction pci is computed as follow:

pci = hγ
i ·

∑

fj∈MSk(fc)

Sim(fc, fj) (5.10)

3. Select the community to recommend.

In the previous step, the Filtering & Recommendation Service obtained a ranked list based
on the final prediction ptc computed for each community γi ∈ PC . The System selects
from this list of communities the top s to recommend, and recommends those ones not yet
recommended, checking against the list of communities already recommended to the current
folder, maintained by the Filtering & Recommendation Service.

5.4.8 FRS database schema

Several tables are maintained within the FRS. These are listed below.

folder: used to store folder data

Field Type Key Description
folderID varchar PRI folderID of fi

userID varchar userID of owner of fi

type varchar PRI type of fi: 0 private, 1 community, 2 project
recommendYesNo int PRI value stored by the setRecommendationYesNo method
recommendedRecordsTimeStamp date
profileUpdateTimeStamp date
ratingUpdateTimeStamp date

folderProfile: used to represent folder profiles

Field Type Key Description
term varchar PRI index term tk
folderID varchar PRI folderID of fi

weight real weight wki

108 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

folderAuxC: used to store folder collections

Field Type Key Description
folderID varchar PRI folderID of fi

collectionID varchar collectionID collection associated to fi

folderAuxRI: used to store recommended Items

Field Type Key Description
folderID varchar PRI folderID of fi

recommendedItem varchar recommended Item
type varchar type of item, 0 record, 1 user, 2 collection , 3 community

folderAuxOnDemand:

Field Type Key Description
folderID varchar PRI folderID of fi

userID varchar userID of owner of fi

onDemandTimeStamp date

ratings: used to represent ratings

Field Type Key Description
recordID varchar PRI recordID of dj

folderID varchar PRI folderID of fi

userID varchar userID of uk

rating int rating rijk

ratingsAux: auxiliary table to manage ratings

Field Type Key Description
recordID varchar PRI recordID of dj

folderID varchar PRI folderID of fi

sum int value of
∑Uij

k=1 rijk

numRatings int value of Uij

Note that rij = ratingsAux.sum
ratingsAux.numRatings

ratingsProfile: the rating matrix

Field Type Key Description
recordID varchar PRI recordID of dj

folderID varchar PRI folderID of fi

rating real rating rij

ratingsProfileAux: auxiliary table to compute prediction

Field Type Key Description
folderID varchar PRI folderID of fi

sum int value of
∑n

j=1 rij

sumSquare int value of
∑n

j=1 r2
ij

numRatings int number of ratings for folder fi

Note that

Detailed System Specification Report(D3.0.1) 109

Figure 5.11: Interaction diagram for the Update Folder Profile On-Demand (SU 7-1) use case

ri =
ratingsProfileAux.sum

ratingsProfileAux.numRatings

σi =

√

ratingsProfileAux.sumSquare

ratingsProfileAux.numRatings
−

(

ratingsProfileAux.sum

ratingsProfileAux.numRatings

)2

5.5 User interface

The Filtering & Recommendation Service has no user interface of its own.

5.6 Service interaction diagrams

5.7 Service implementation tools

The first prototype of the Filtering and Recommendation Service will be based on the following
development environment and base technology:

• Java 2 Platform SE v1.3.1
http://java.sun.com

• BerkleyDB
http://www.sleepycat.com/

• Apache XML-RPC v1.0
http://xml.apache.org/xmlrpc

• Apache Web Server 1.3.x + Tomcat 4.0.1
http://www.apache.org

110 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 5.12: Interaction diagram for the Update Folder Profile at Scheduled Time (SU 7-2) use
case.

Figure 5.13: Interaction diagram for the Search On-Demand based on Folder Profile (SU 9) use
case.

Detailed System Specification Report(D3.0.1) 111

Figure 5.14: Interaction diagram for the Receive Record Recommendation from the System (SU
10-1) use case.

Figure 5.15: Interaction diagram for the Receive Collection Recommendation from the System (SU
10-2) use case.

112 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 5.16: Interaction diagram for the Receive User Recommendation from the System (SU 10-3)
use case.

Figure 5.17: Interaction diagram for the Receive Community Recommendation from the System
(SU 10-4) use case.

Chapter 6

Collection Service

6.1 Functionalities

6.1.1 Create, Delete and Edit a collection

The Collection Service (CS) accepts requests for the creation, removal and editing of collections
and for the dissemination of information about them. It also maintains information about the
users authorised to manage the collections, i. e. the collection administrator and the collections
owners, and about the underlying information space. A collection create request must specify the
identifier of the user who issues the request, the name and textual description of the new collection,
and the collection membership condition. A user can create a collection only if she is a collection
administrator. If the create request is accepted she becomes the owner of the collection. The owner
of a collection can edit a collection textual description and remove the collection.

The membership condition is a condition on the Membership Application Profile (see Section 6.4.5).
This Profile contains some of the Dublin Core metadata fields, a field that takes as value metadata
descriptions formats and a field that specifies archive identifiers. All the documents that satisfy
the membership condition up to an established threshold belong to the collections.

The create collection accepts also a short form for specifying the membership condition. This
form consists of the name of an existing collection and a refinement condition. This specification
corresponds to the membership condition that is obtained by joining together the conjunction of
the membership condition of the existing collection and the refinement condition.

A collection is created only if there exists no collection with the same name, the membership
condition is correct and the specified user has the required rights, otherwise an error message is
returned.

As a default, the system always maintains a collection named Cyclades which includes all the
documents harvested by Cyclades and a collection for each of the harvested archives. These last
collections have the same name of the corresponding archives and are created when a new archive
is registered.

A new collection is always associated with an empty set of search and browse formats. The Cyclades
collection is associated with the Dublin Core search and browse format.

A delete collection request specifies the name of the collection to be removed and the identifier of
the user. The CS processes this request only if the given name corresponds to an existing collection
and if the user is either the collection owner or the collection administrator. An error message is
returned back if any of these conditions is violated. A deleted collection is removed by any folder
that refers to it.

An edit collection request specifies the name of the collection to be edited and a textual description.

113

114 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

The CS processes this request by replacing the existing description with the input one.

6.1.2 Add and remove a search/browse format

For each existing collection the collection owner can define which format can be used for searching
and browsing on that collection. documents in the collection. Regarding the search, the format
determines the query condition fields, the schema of the records returned as result and how they
are displayed. As far as the browse, it specifies the browsable fields, and, again, the schema of
the records returned as result and how they are displayed. The system allows to associate more
than one search/browse format with the same collection. For example, simple and refined search
formats may be associated with a collection in order to support different search granularity.

Search and browse formats can be added to any existing collection, with the only exception of the
Cyclades collection. Only the owner of the collection and the collection administrator have the
rights of associating new search and browse formats.

The adding process starts by browsing the list of schemas supported for that collection and then
selecting one of them. In so doing the creator defines which will be the schema of the records
returned by the search/browse. Then she chooses the subset of the attributes of selected schema
that will characterize the new search/browse format. This choice defines the subschema that will
be available in the formulation of the query and that will be displayed as result of a search/browse
operation. If the specified subschema is legal and the person who requires the addition of a format
has the rights to do it, the new search/browse format becomes available in all the folders that had
selected the corresponding collection.

A search and browse format on a collection can be removed by sending a request that specifies the
name of the collection and the name of the format to be removed. The request is satisfied only if
it refers to an existing collection and an existing format and if the requester is either the owner
of the collection or the collection administrator. As a result of the processing of this request, the
corresponding search and browse operations become not anymore accessible in any of the folders
that refer to it.

6.1.3 Browse collections

The CS maintains the list of active collections and for each of them a set of descriptive metadata.
Upon receiving a list collection request, it returns a structured list of collection identifiers and, for
each of them, its printable name and its textual description. Specific information about a collection
can be obtained by selecting a collection identifier and then invoking a get collection metadata.

6.1.4 Disseminate collection metadata

The CS generates a set of collection metadata as a result of a successful collection creation. This set
contains the information that the Cyclades services need to support a collection-based structured
view of the information space. In particular, it maintains the list of the archives that disseminate
descriptive records about the documents in the collection and the collection filtering condition.
This condition allows to select, among the records harvested by the associated archives, those
belonging to the collection.

Detailed System Specification Report(D3.0.1) 115

6.2 Process flow

6.2.1 Becoming a collection administrator

The user requests to become a collections administrator. The Mediator Service passes the request
(with user identifier and e-mail) to the Collection Service that initiates the following process:

• If the user is a collections administrator, it shows a message like “WARNING: the user is
already a collections administrator”;

• If not, it displays an appropriate input-form where the user specifies the kind of collections
that he/she wants/thinks to create.

• The user fills in the form and submits the request to the Collection Service administrator.

• The Collection Service administrator checks such data and decides whether grant or deny
the collections administrator rights to the user. Then it notifies such decision via e-mail to
the user. If the Collection Service administrator has granted the rights then the Collection
Service must store such information.

6.2.2 Create collections

A collection is created as a side effect of the registration of a new archive (Case 1) or to satisfy the
need of a community (Case 2). Different activity diagrams apply to the two cases.

Case 1

Figure 6.1: Create a collection - Case 1 - activity diagram

The activity diagram in Figure 6.1 shows the steps involved in the creation of a collection as a side
effect of the registration of a new archive.

The Access Service prepares the collection name, collection description and Membership Condition
of the new archive, then it requests to create a collection to the Collection Service which initiates
the following process:

• It checks the received parameters. If they aren’t correct it raises an exception;

• Otherwise it asks the Access Service to provide a description of the archive that corresponds
to the new collection and stores such information into the database for future uses.

116 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Then the Collection Service generates the collection specific metadata, creates a collection,
and registers it as a new member of the set of existing collections.

• The Collection Service then notifies the identifier and the name of the new collection to the
Collaborative Work Service.

• In the end, the Collection Service requests to the Access Service additional information about
the content of the archive. Then it transforms and stores this information for its internal
purposes.

Case 2

Figure 6.2: Create a collection - Case 2 - activity diagram

The activity diagram in Figure 6.2 shows the steps involved in the creation of a collection in order
to satisfy the need of a community.

The user requests to create a new collection. The Mediator Service passes this request to the
Collection Service that initiates the following process:

• It checks if the user is a collections administrator. If not, it shows a message like “WARNING:
this operation is not allowed. The user isn’t a collections administrator”. Otherwise it
browses all existing collections.

• If the user wants to create a new collection then it click the button “Create new”. The
Collection Service generates an identifier for the new collection and displays to the user an
appropriate input-form for submitting the requested parameters: collection name, collection
description, parent collection and Membership Condition.

Detailed System Specification Report(D3.0.1) 117

• The user fills in the form and submits the initialization request to the Collection Service.

• The Collection Service checks the received parameters. If they aren’t correct, it sends an
error message to the user and re-displays the input-form.

• If the collection defined is already present in the set of Collection Service’s collections (with
or without different name and/or description) the system notifies the user of this trouble.
The user may decide to abort or to continue anyway.

• Then it generates the collection specific metadata, creates a collection, and registers it as a
new member of the set of existing collections.

In the collection’s metadata we have to generate the Filtering Condition that logically con-
tains two elements: a set of archives and a condition on them. If the Membership Condition
does not specify the set of archives involved, the Collection Service must then select an
appropriate set of archives where to find the collection’s element.

• The Collection Service then notifies the identifier and the name of the new collection to the
Collaborative Work Service.

6.2.3 Delete collections

Figure 6.3: Delete a collection - activity diagram

The activity diagram in Figure 6.3 shows the steps involved in the deletion of a collection.

The user requests to delete a collection. The Mediator Service passes this request to the Collection
Service which initiates the following process:

• It checks if the user is a collections administrator. If not, it shows a message like “WARNING:
this operation is not allowed. The user isn’t a collections administrator”. Else, it displays
the user’s collections list.

• The user selects one collection of those listed and click the button “Remove”.

• The Collection Service asks the user’s confirmation. If the user confirms then the specified
collection is also removed from the list of existing collections and DB.

• The Collection Service then notifies the Collaborative Work Service about the removal of the
collection.

118 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 6.4: Add search/browse format - activity diagram

6.2.4 Add search/browse format

The activity diagram in Figure 6.4 shows the steps involved in the action of adding a search/browse
format to a collection’s search/browse formats.

The user requests to edit collection related information. The Mediator Service passes this request
to the Collection Service which displays a user interface where user click the button “Add search/-
browse format”. Then the Collection Service initiates the following process:

• It checks if the user is a collections administrator. If not, it shows a message like “WARNING:
this operation is not allowed. The user isn’t a collections administrator”. Else, it displays
the user’s collections list.

• The user selects one collection of those listed and click the button “Add search/browse for-
mat”.

• The Collection Service displays the list of search/browse formats available in the selected
collection. If the user thinks that no search/browse format meets his/her needs then he/she
has to click the button “Define new search/browse format”.

• The Collection Service displays the list of schemas available in the collection selected. The
user selects one of them as reference schema.

• The Collection Service displays to the user an appropriate input-form for submitting the
search/browse format. The user fills in the form and submits data.

• The Collection Service checks the received parameters. If they aren’t correct, it sends an
error message to the user and re-displays the list of search/browse formats available.

Detailed System Specification Report(D3.0.1) 119

• Then the Collection Service creates the search/browse format and registers it as a new mem-
ber of the list of collection’s search/browse formats.

search/browse format for the collection.

6.2.5 Remove search/browse format

Figure 6.5: Remove search/browse format - activity diagram

The activity diagram in Figure 6.5 shows the steps involved in the action of removing a search/-
browse format from collection’s search/browse formats.

The user requests to edit collection related information. The Mediator Service passes this request
to the Collection Service which displays a user interface where the user click the button “Remove
search/browse format”. Then the Collection Service initiates the following process:

• It checks if the user is a collections administrator. If not, it shows a message like “WARNING:
this operation is not allowed. The user isn’t a collections administrator”. Else it displays the
list of user’s collections metadata. The metadata contains the set of search/browse formats
available for searching and browsing on the specified collection.

• The user selects one of them and click the button “Remove search/browse format”.

• The Collection Service displays the list of search/browse formats. The user selects one of
them and click the button “Remove”.

• The Collection Service asks the user’s confirmation. If the user confirms then the specified
search/browse format is also removed from the list of existing search/browse formats of
collection and DB.

the search/browse format.

6.2.6 Edit collection descriptive metadata

The activity diagram in Figure 6.6 shows the steps involved in the editing of a collection’s descrip-
tive metadata.

The user requests to edit collection related information. The Mediator Service passes this request to
the Collection Service that displays a user interface where the user click the button “Edit collection’s
metadata”. Then the Collection Service initiates the following process:

120 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 6.6: Edit a collection metadata - activity diagram

• It checks if the user is a collections administrator. If not, it shows a message like “WARNING:
this operation is not allowed. The user isn’t a collections administrator”. Else it displays the
list of user’s collections metadata.

• The user selects one collection and click the button “Edit”.

• The Collection Service displays to the user an appropriate input-form where the collection’s
textual description is the only information that the user can edit. The user fills in the form
and submits data.

• Then it updates the collection specific metadata the Collaborative Work Service of the applied
modification.

6.2.7 Select a user’s collection set

Figure 6.7: Select user’s collection set - activity diagram

The activity diagram in Figure 6.7 shows the steps involved in the selection of a user’s collection
set.

The user requests to edit collection related information. The Mediator Service passes this request
to the Collection Service which displays a user interface where the user click the button “Select
personal collection set”. Then the Collection Service initiates the following process:

• It displays the list of user’s collection set, if it has been selected.

• If the user wants to add a collection, then he/she click the button “Add”. The Collection
Service displays the list of existing collections among which to choose the collections. The

Detailed System Specification Report(D3.0.1) 121

user selects one of them and click the button “Add”, then the Collection Service updates the
list of user’s collections set adding the selected collectionto them.

• If the user wants to remove a collection he/she click the button “Remove”. The Collection
Service displays the list of user’s collections set among which to choose the collection to
remove. The user selects one of them and click the button “Remove”, then the Collection
Service update the list of user’s collection set removing the selected collection.

• If the user wants to exit, he/she click the button “Exit”. If the user’s collection set is changed,
the Collection Service notifies the Collaborative Work Service of the new user’s collection set.

6.3 Internal architecture

Figure 6.8: Collection Service internal architecture

Figure 6.8 shows the major components of the Collection Service, and how information flow be-
tween them. We can note that the Collection Service provides functionality via the GUI (Graphical
User Interface) and via an API (ServiceInterface) to the other Cyclades services. The commu-
nication between the users and the Collection Service’s GUI take place via HTTP using HTML;
the communication between a Cyclades service and the Collection Service’s API takes place via
HTTP using XML-RPC protocol.

Collection Service Engine is the core of the Collection Service, it implements all the function-
alities of the service.

ServiceInterface is the API that the Collection Service offers to other services and that other
services “must offers” to the Collection Service Engine. “Must offers” means that the Col-
lection Service Engine needs this information to execute his tasks. Such information may
be partially offered from different external services, so that this component acquires the
partial information supplied from single services, merges them and builds also the informa-
tion needed. This component is strictly bound to other services’ interface and also to the
communication protocol used in Cyclades system.

This allows to have a Collection Service Engine independent of changes in:

- protocol use: if there are changes in the use of protocol, like the encoding of input and
output parameters of a Cyclades service method in a protocol datatype, we have to
update only this component;

122 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

- protocol used: if the communication protocol changes, we have to update only this
component;

- service’s interface: if the name, or the signature, of a methodsupplied from an external
service changes, we have to update only this component.

GUI is the component that provides the graphical user interface for the Collection Service.

Scheduler is the component that periodically updates the information about the underlying in-
formation space stored in the database. The Collection Service Engine uses the data stored
in the database to perform its tasks, so we want that such data will be more similar to real
data stored in archives.

DBInterface is the component that provides a database interface to the other service’s compo-
nent.

Database contains all information needed by the Collection Service’s activity. Moreover, it is a
backup unity of all information about collections, like collections created, user rights and so
on.

6.4 Data and method specification

6.4.1 Abstract CollectionService class

Fields specification

id the unique identifier of the class.

collections the set of registered collections.

Methods specification

Invoking the Collection Service’s method you can throw such default exception:

10000 Generic exception In all cases where an undefined exception exist.
10001 Wrong parameter number If you invoke a method with a wrong parameter number.
10002 Wrong parameter type If you invoke a method with a wrong parameter type.
10003 No such method If the method invoked isn’t defined.

• collectionId addCollection()
Description: this method creates a new collection identifier which can be assigned to a
collection which will be soon created.
Output: collectionId integer the identifier of the new collection that will be created.

• collectionId initializeCollection(collectionId, collectionName, collectionDescription, member-
shipCondition, userId)
Description: this method creates a collection, which parent collection is the Cyclades col-
lection, if the membership condition is legal.
Input: collectionId string the identifier of the new collection.

collectionName string the printable name of the collection.
collectionDescription string textual description of the collection.
membershipCondition string the condition to be verified by all the members of

the collection coded in XML.
userId string the identifier of the user which sends the request.

Output: collectionId string the identifier of the collection that has been initialized.

Detailed System Specification Report(D3.0.1) 123

• collectionId initializeCollection(collectionId, collectionName, collectionDescription, member-
shipCondition, userId, parentCollection)
Description: this method creates a collection whose parent collection is parentCollection,
if the membership condition is legal.
Input: collectionId string the identifier of the new collection.

collectionName string the printable name of the collection.
collectionDescription string textual description of the collection.
membershipCondition string the condition to be verified by all the members of

the collection coded in XML.
userId string the identifier of the user which sends the request.
parentCollection string the identifier of the parent collection in the col-

lection hierarchy.

Output: collectionId string the identifier of the collection that has been initialized.

• void deleteCollection(collectionId, userId)
Description: this method removes a collection from the set of existing collections if: a) the
user is authorized to do it and b) the specified collection exists.
Input: collectionId string the identifier of the new collection.

userId string the identifier of the user which sends the request.

• void addSearchBrowseFormat(collectionId, subschema, userId)
Description: this method adds a new search/browse format if: a) the user is authorized to
do it, b) the subschema is legal.
Input: collectionId string the identifier of the collection.

subschema string the specification of the subschema (coded in XML) used for
querying, browsing and displaying results.

userId string the identifier of the user who sends the request.

• void removeSearchBrowseFormat(collectionId, subschemaName, userId)
Description: this method removes a search/browse format if: a) the user is authorized to
do it, b) the name of the subschema identifies an existing format.
Input: collectionId string the identifier of the collection from which the search/-

browse format has to be removed.
subschemaName string the name of the search/browse format to remove.
userId string the identifier of the user who sends the request.

• (collectionId, collectionName, collectionDescription, parentCollection)* listCollections(userId)
Description: this method returns the list of existing collections whose owner is userId.
Input: userId string the identifier of the user who sends the request
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:

collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent collection.

• (collectionId, collectionName, collectionDescription, parentCollection)* listCollections()
Description: this method returns the list of existing collections.
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:

collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent collection.

• (collectionId, collectionMetadata)* getCollectionMetadata(collectionIds*)
Description: for each specified collection identifier, this method returns the corresponding
descriptive metadata.

124 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Input: collectionIds string* a list of collection identifiers.
Output: A list of pairs (collectionId,collectionMetadata) where:

collectionId string the identifier of the collection.
collectionMetadata string the collection metadata coded in XML.

• void editCollection(collectionMetadata)
Description: Update collection metadata description.
Input: collectionMetadata string new collection metadata coded in XML.

6.4.2 Abstract Collection class

Fields specification

id : string - The unique Identifier of the class.

name : string - A printable name of the collection.

description : string - A textual description of the collection.

membershipCondition : string - The condition which characterizes the member of the collec-
tion.

parentCollection : string - As the collection may have been structured using a hierarchy, this is
the identifier of the parent collection in the hierarchy.

archives : string* - A list of the archives which stores the elements of the collection.

filteringCondition : string - The condition which filters the members of the collection.

schemas : string* - A set of reference to Schema objects associated with the collection.

searchBrowseFormats : string - The set of reference to Subschema objects that specifies the
search/browse formats available on the collection.

ownerId : string - The identifier of the person who created the collection.

6.4.3 Abstract Subschema class

Fields specification

name : string - The unique name of the subschema

url : string - The URL of a DTD or namespace for the subschema

attributes : (string,string)* - A list (name, datatype) of attributes which characterize the sub-
schema.

6.4.4 Database schema

Figure 6.9 shows the schema of the database used to store the information needed by the Collection
Service.

Detailed System Specification Report(D3.0.1) 125

Figure 6.9: Collection Service’s database schema

• Collection

Stores information about a created collection.
Id Varchar the unique identifier of the collection.
Name Varchar the printable name of the collection.
Description Varchar a textual description or the collection.
MembershipC Varchar the pathname of the ASCII file which stores the Member-

ship Condition
FilteringC Varchar the pathname of the ASCII file which stores the Filtering

Condition
OwnerId Varchar the identifier of the user who created the collection.
ParentCollection Varchar the identifier of the parent collection.

• User

Stores information about users.
Id Varchar the unique identifier of the user.
Email Varchar the e-mail address of the user.
CollectionAdmin Boolean true if the user has Collection Administrator’s rights.

• UserCollection

Stores information about user’s selection of personal collection.
UserId Varchar the user’s identifier.
CollectionId Varchar the collection’s identifier.

• Schema

Stores information about a metadata schema.
Name Varchar the unique name of the schema.
Url Varchar the URL of a DTD or namespace for the schema.

126 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• CollectionSchema

Stores information about collection’s schema.
CollectionId Varchar the collection’s identifier.
SchemaId Varchar the schema name.

• Subschema

Stores information about a search&browse format.
Name Varchar the unique name of the search&browse format.
Url Varchar the URL of a DTD or namespace for the subschema.
Schema Varchar the schema’s name from which the subschema is derived.

• CollectionSubschema

Stores information about the collection’s search/browse format.
CollectionId Varchar the collection’s identifier.
SubschemaId Varchar the subschema name.

• Attribute

Stores information about the attribute which characterizes a schema or a subschema.
Name Varchar the attribute name.
Datatype Varchar the attribute datatype.

• SchemaAttribute

Stores information about the schema’s attribute.
SchemaId Varchar the schema name.
Attribute Varchar the attribute name.

• SubschemaAttribute

Stores information about the subschema’s attribute.
SubschemaId Varchar the subschema name.
Attribute Varchar the attribute name.

• Archive

Stores information about a single open archive.
Id Varchar the unique archive’s identifier.
Description Varchar a textual description of the archive, entered by the archive

creator.

• Keyword

Stores information about archive’s keywords. Archive’s keywords describe the archive con-
tent.
ArchiveId Varchar the unique archive’s identifier.
Keyword Varchar a keyword.

• TemporalCoverage

Stores information about the archive’s temporal coverage. Archive’s temporal coverage is a
list of periods, each period is a pair (year, year).
ArchiveId Varchar the unique archive’s identifier.
YearFrom Integer the beginning year of a temporal coverage period.
YearTo Integer the end year of a temporal coverage period.

• ArchiveSchema

Stores information about the archive’s schema.
ArchiveId Varchar the unique archive’s identifier.
SchemaId Varchar the schema name.

• ArchiveLanguage

Stores information about the archive’s language.
ArchiveId Varchar the unique archive’s identifier.
SchemaId Varchar the language name.

Detailed System Specification Report(D3.0.1) 127

• Term

Stores information about the attribute’s value stored in an archive.
ArchiveId Varchar the unique archive’s identifier.
Schema Varchar the schema name.
Attribute Varchar the attribute name.
Term Varchar the attribute value.
Weight Real the weight of such Term in the archive.

6.4.5 The Membership Application Profile: fields and their definition

An application profile is defined as a metadata schema which consists of data elements drawn
from one or more namespaces, combined together by implementors, and optimized for a particular
local application. The idea of application profiles grew out of UKOLN’s work on the DESIRE
project and it is currently one of the most accepted methodological solution for the definition of
new metadata schemas. Application profiles allow the implementor to declare how they are using
standard schemas.

Element name Element definition

dc:title A name given to the resource.
dc:creator An entity primarily responsible for making the content of the re-

source.
dc:subject The topic of the content of the resource.
dc:description An account of the content of the resource.
dc:publisher An entity responsible for making the resource available.
dc:contributor An entity responsible for making contributions to the content of the

resource.
dc:date A date associated with an event in the life cycle of the resource.
dc:format The physical or digital manifestation of the resource.
dc:type The nature or genre of the content of the resource.
dc:language A language of the intellectual content of the resource.
dc:coverage The extent or scope of the content of the resource.
dc:rights Information about rights held in and over the resource.
map:metadataFormat The name of a metadata format.
map:archive An archive identifier.

Table 6.1: Membership Application Profile: fields and their definition

In Table 6.1 the elements of the Collection Service Membership Application Profile and a brief
description of them are reported. This Profile combines elements drawn from the Dublin Core
namespace (dc) with elements of a CSMAP namespace (map). Figure 6.10 shows the XML-schema
for Collection Service Membership Application Profile.

6.5 User interface

When the user enters the Cyclades URL in the Web-browser, the Cyclades start page where
the user can log in (for already registered users) or register as new user is shown.

After the login, a screen with 5 buttons (ADMIN, SB, COLL, CWS, EXIT) and a frame/window
containing the display of the active service is shown. The Mediator Service will call the services
via HTTP cgi calls and will display the HTML code returned by the service in the frame/window.
The pressing of the COLL button starts the Collection Service user interface (UI). Functionality
offered by such UI are:

• Browse collection set

128 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:map="http://..."

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="map" type="map:mapType" />

<xs:complexType name="mapType">

<xs:choice>

<xs:element name="dc:title" type="xs:string"/>

<xs:element name="dc:creator" type="xs:string"/>

<xs:element name="dc:subject" type="xs:string"/>

<xs:element name="dc:description" type="xs:string"/>

<xs:element name="dc:publisher" type="xs:string"/>

<xs:element name="dc:contributor" type="xs:string"/>

<xs:element name="dc:date" type="xs:string"/>

<xs:element name="dc:type" type="xs:string"/>

<xs:element name="dc:format" type="xs:string"/>

<xs:element name="dc:language" type="xs:string"/>

<xs:element name="dc:coverage" type="xs:string"/>

<xs:element name="dc:rights" type="xs:string"/>

<xs:element name="map:metadataFormat" type="xs:string"/>

<xs:element name="map:archive" type="xs:string"/>

</xs:choice>

</xs:complexType>

</xs:schema>

Figure 6.10: Membership Application Profile XML-schema

• Create a new collection

• Delete a collection

• Manage personal collection set

• Add a search/browse format

• Remove search/browse format

• Update collection

The Collection Service UI (Figure 6.11) contains 4 buttons (CREATE, DELETE, MANAGE,
BASKET) and a frame/window containing a list of collection. Such list is shown as a tree which
reflects the hierarchy of collection and it will be the list of all collections defined.

The CREATE button allows to create a new collection. If a collection is selected, hitting on it in the
frame/window, before the user hits the CREATE button, the new collection will become the child
of that collection in the hierarchy, otherwise it will become a child of the default root collection
Cyclades1. A child collection is defined as a “refinement” of the parent collection, such means that
it is specified as the name of the parent collection and a refinement condition. This specification
define a collection whose Membership Condition is obtained by making the conjunction of the
Membership Condition of the parent collection and the refinement condition.

The DELETE button allows to remove a collection from the list of existing collections. The user
selects a collection in the frame/window, hitting on it, and if the selected collection is one of those

1It includes all the documents harvested by Cyclades.

Detailed System Specification Report(D3.0.1) 129

Figure 6.11: Collection Service User Interface

created by the user (a) the DELETE button is enabled and (b) the user hitting on it removes the
collection.

The MANAGE button opens a sub menu which allows users to add or remove a search/browse
format from the list of those associated to a collection or to edit the collection descriptive meta-
data. All that menu options are enabled if the user has selected a collection hitting on it, in the
frame/window. When the user hits the Add search/browse format button or the Remove search/-
browse format button the UI prepare and shows a form to do it. When the user hits the Edit
collection descriptive metadata button the UI prepares and shows a form to do it2.

The BASKET button allows to manage the personal collection set of the user. So, when the user
hits that button the UI shows in the frame/window the list of all collections each one with a check
box. The check box is checked if the collection is in the personal collection set of the user, otherwise
it remains unchecked.

Moreover, the Collection Service must provide the form which allows a user to make a request
to become a collection administrator. This form is reachable hitting the ADMIN button in the
general Cyclades user interface and then hitting the link Administration of collections.

6.6 Service interaction diagrams

Service interaction diagrams describe the interactions between the Collection Service and the user
or another Cyclades service in executing one of Collection Service use case.

6.6.1 Becoming a collection administrator

Figure 6.12 shows the service interaction diagram of this operation.

When a user makes a request to become a collections administrator, the Mediator Service passes
the request to the Collection Service which prepares a form that the user fills in with descriptive
data of the kind of collection he wants to create. The Collection Service administrator using such
data decides to grant or deny the collections administrator rights and notifies the user of the
decision via e-mail.

6.6.2 Create collections

As described in Section 6.2.2, a collection may be created in two different cases. Different Service
Interaction diagrams apply to the two cases.

2Note that a user may update the only collection description.

130 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 6.12: Become a collection administrator - interaction diagram

Case 1

Figure 6.13: Create a collection - Case 1 - interaction diagram

Figure 6.13 shows the service interaction diagram of this operation.

Each time a new archive is registered, the Access Service must create a collection that maintains
all the documents of the new archive. It invokes the method addCollection() to obtain a valid
collection identifier. Then it prepares a name, a description and a Membership Condition that
describes the collection and invokes the method initializeCollection. At this point the Collec-
tion Service creates the new collection and notifies the creation to the Collaborative Work Service
invoking the method addModifyCollection.

Case 2

Figure 6.14 shows the service interaction diagram of this operation.

When a collection administrator (the only user enabled to do it) wants to create a new collection
to satisfy the need of a community, he/she requests to the Mediator Service to show the Collection
Service UI. Then, interacting with UI, the user chooses to create a new collection. The Collection
Service UI prepares a form that the user fills in with the data describing the collection that he wants
to create. So, the user submit the filled in form that invokes the method initializeCollection.

Detailed System Specification Report(D3.0.1) 131

Figure 6.14: Create a collection - Case 2 - interaction diagram

The Collection Service then creates the new collection and notifies the creation to the Collaborative
Work Service invoking the method addModifyCollection.

6.6.3 Delete collections

Figure 6.15: Delete a collection - interaction diagram

Figure 6.15 shows service interaction diagram of this operation.

When the collection creator (the only user enabled to do it) wants to remove a collection he/she
requests to the Mediator Service to show the Collection Service UI. Then, interacting with UI, the
user chooses a collection and hits the button Remove. Hitting such button it invokes the method
deleteCollection. The Collection Service then removes the collection from the list of existing
collections and notifies to the Collaborative Work Service that the collection has been removed
invoking the method deleteCollection.

6.6.4 Add search/browse format

Figure 6.16 shows the service interaction diagram of this operation.

When the collection creator (the only user enabled to do it) wants to add a new search/browse
format to a collection he/she requests to the Mediator Service to show the Collection Service UI.
Then, interacting with UI, the user choose a collection and hits the button Manage, then the
button Add search/browse format. Then the UI shows a form where the user may specify the

132 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 6.16: Add search/browse format - interaction diagram

new search/browse format3. When user submit such filled in form he/she invokes the method
addSearchBrowseFormat. The Collection Service then adds the search/browse format to the list
of collection search/browse format.

6.6.5 Remove search/browse format

Figure 6.17: Remove search/browse format - interaction diagram

Figure 6.17 shows the service interaction diagram of this operation.

When the collection creator (the only user enabled to do it) wants to remove a search/browse
format from that of a collection he/she requests to the Mediator Service to show the Collection
Service UI. Then, interacting with UI, the user chooses a collection and hits the button Manage,
then the button Remove search/browse format. At this point the UI shows a form where the
user may select one of the search/browse format and hit the button Remove. Hitting such button
he/she invokes the method removeSearchBrowseFormat. The Collection Service then removes the
search/browse format from the list of collection search/browse format.

3A search/browse format specify the format used for searching and browsing on a collection.

Detailed System Specification Report(D3.0.1) 133

6.6.6 Edit collection descriptive metadata

Figure 6.18: Edit collection’s metadata - interaction diagram

Figure 6.18 shows the service interaction diagram of this operation.

When the collection creator (the only user enabled to do it) wants to edit collection description,
he/she requests to the Mediator Service to show the Collection Service UI. Then, interacting with
UI, the user chooses a collection and hits the button Manage, then the button Edit collection’s
metadata. At this point the UI shows a form where the user may edit the collection textual descrip-
tion and hit the button Submit. Hitting such button, he/she invokes the method editCollection.
The Collection Service then updates the collection description.

6.6.7 Select a user’s collection set

Figure 6.19: Select user’s collection set - interaction diagram

Figure 6.19 shows the service interaction diagram of this operation.

When a user wants to update the personal collection set, he/she requests to the Mediator Service to
show the Collection Service UI. Then, interacting with UI, the user may hit the button Basket and
then add or remove a collection from his personal set checking on it. When the user hits the button
Set, the Collection Service considers the set of collections checked as the user’s personal collection
set and notifies the Collaborative Work Service invoking the method updatePersonalCollections.

134 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

6.7 Service implementation tools

Development environment and base technology used:

• Java 2 Platform SE v1.3.1
http://java.sun.com

• Apache XML-RPC v1.0
http://xml.apache.org/xmlrpc

• Apache Web Server 1.3.x + Tomcat 4.0.1
http://www.apache.org

• MySQL 3.23 + mm JDBC driver v1.2c
http://www.mysql.com

Chapter 7

Mediator Service

7.1 Functionality

The mediator is the service of the Cyclades System, which integrates and enables the various
services of the system to communicate with each other. It is the service of the Cyclades to which
a service can refer to, in order to get information about other services it wants to communicate
with.

The Mediator is also the service of the Cyclades, that partly handles the registration of the users
in Cyclades and fully handles the loggin of the users to the system. In the case that a new user
registers in Cyclades, it interacts with the Collaborative Work Service so as to obtain that user’s
id (which is created by the Collaborative Work Service) in the System and some other information
for that user. In the case that a user wants to log into Cyclades, the Mediator does all the
appropriate checkings. Also the Mediator, in interaction with the Collaborative Work Service, is
involved in the cases of user’s invitation.

Finally, the Mediator Service is the service of Cyclades to which a service can refer to in order
to ”join” the System. Services are able to ”register” in the System by contacting the Mediator and
executing, following the communication protocol, the appropriate method of the Mediator Service
and specifying the needed parameter.

Thus, the functionalities of the Mediator Service are:

• Inter-System Communication

• User Registration and Login

• Service Registration

7.2 Process flow

7.2.1 Inner-System Communication

Whenever a service (lets say A) needs to communicate with another service (lets say B), it will
refer to the Mediator, according to communication protocol. Then the Mediator will send back a
list of all the (available) services of kind B to A. Service A will then be able to communicate with
each of the services of kind B, using the information contained in that list.

In the Cyclades System each service is described through a class. Hence, the list that the mediator
will send is a list of such classes, each one describing a service. The idea of sending a list of
classes and not the class itself is considered so as to cover the case of having more than one service

135

136 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

performing the same task (e.g. more than one Access Services). Thus, the system is open to accept
more services performing the same task with services that already exist in the system (we could
have for example more than one collection services).

7.2.2 User Registration and Login

Registration

The user is performing the process of registering in the system by filling and submitting a username,
a password an her e-mail address to the Mediator Service.

• The Mediator Service receives the username, password and e-mail address of the user

• The Mediator Service sends these to the Collaborative Work Service, so as the user to be
created in Cyclades

• The Collaborative Work Service, after creation, sends back that user’s id and home folder id
to the Mediator

• the user is presented with her home folder

Logging into system

The user is performing the process of logging into the system by filling and submitting her username
and password to the Mediator Service.

• The Mediator Service receives the username and password of the user

• The Mediator Service checks for matching between that particular username and password

• On error Mediator Service notifies the user

• Otherwise it sends that user’s id to the Collaborative Work Service, which then presents the
user with her home folder

7.2.3 Service Registration

Services are able to ”register” in the System by contacting the Mediator and executing, following
the communication protocol, the appropriate method of the Mediator Service and specifying the
needed parameter.

This methods returns a serviceId, which from that point on will be the id of that service in the
System. It is desirable for new services to make somehow public their own services-methods (maybe
through an on-line page, with probably a short description for each of them), so that others can
use them. Each new service that wants to use the basic services of Cyclades must follow the
communication protocol.

• The new serice executes the appropriate method (addService)

• The Mediator Service adds that service to the services Data Base and generates a unique
service id, which returns to the service for this service

• The new service receives the service id

Detailed System Specification Report(D3.0.1) 137

Figure 7.1: Internal architecture of MS

7.3 Internal architecture

7.3.1 Overview

The MS implements a service API which other Cyclades services may use to invoke MS func-
tionality via the XML-RPC protocol over HTTP. Also MS implemetns a Graphical User Inreface,
via which users are able access Cyclades. The MS consists of the following four components:

• a standard Web server (Apache) for handling HTTP requests and responses,

• MS API with a method call and response handler that deals with the XML-RPC protocol,

• the MS server, and

• a relational database (Orecle8i) for storing and extracting MS data (users and services).

All MS components are implemented in Java.

7.3.2 MS API

XML-RPC call and response translation

XML-RPC calls that arrive via HTTP are translated into Java objects by a Java library provided
by Apache Org. Parameter checking and returned values are handled both by this library. When

138 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

the execution of a method/function raises an XML-RPC exception this is reported back to the
calling service as an XML-RPC fault. Other exceptions are reported back as HTTP error 500
(CYCLADES Server Error).

7.3.3 MS server

The execution of all the functions is being performed by MS server. MS server interacts with
the MS Database, using ”JDBC Technology”, in order to store or to extract MS data. After
exexcution, the result (or an exception) is returned back to the MS method call and response
handler component.

7.4 Data and method specification

The Mediator Service (MS) has a class MediatorService and a class Service. The persistent data of
this service are the various services in the System and the users that have registered the System.

7.4.1 MediatorService Class

• id
Description: a string specifying the unique ID of the MS service.

• (servId, version, address, quality)* getService(type)
Description: this method is used in order to get a list of services of particular type.
Input: type: string a service type.
Output: a list of tuples that describe a service (the ID,

the version number, the address and the quality of a service).

• description getServiceDescription(servId)
Description: this method is used in order to get the description of a service.
Input: servId: string a service ID.
Output: description string the (short) description of the particular service.

• errorLog getErrorLog(servId)
Description: this method is used in order to get the error log file of a service.
Input: servId: string a service ID.
Output: errorLog string the error log file of the particular service.

• void reportError(servId, errorLogs)
Description: this method is used in order to report an error(s) for a service.
Input: servId: string a service ID.

errorLogs: strings* a list of error logs, to be added to the already existing
error log file of the service.

• serviceId addService(version, address, type, description)
Description: this method is used in order to add a service to the system.
Input: version: double the version of the service.

address: string the machine address.
type: string the type of the service.
description: string a short description of the service.

Output: serviceId string a service ID.

Detailed System Specification Report(D3.0.1) 139

• void deleteService(servId)
Description: this method is used in order to delete/remove a service from the system.
Input: servId: string a service ID.

• void updateService(servId, version, address, description)
Description: this method is used in order to update the information (version, machine
address, description) of a service.
Input: servId: string a service ID.

version: double the (new) version of the service.
address: string the (new) machine address.
description: string a (new) short description of the service.

• void resetErrorLog(servId)
Description: this method is used in order to reset the error log file of a service.
Input: servId: string a service ID.

• void setCollectionAccessRight(userId, collectionId, ON/OFF)
Description: this method is used in order to set a user’s access rights for a collection.
Input: userId: string a user ID.

collectionId: string a collection ID.
ON/OFF: boolean a boolean indicating whether to enable or disable

the access right.

• void setArchiveAccessRight(userId, archiveId, ON/OFF)
Description: this method is used in order to set a user’s access rights for an archive.
Input: userId: string a user ID.

archiveId: string an archive ID.
ON/OFF: boolean a boolean indicating whether to enable or disable

the access right.

• void addUser(userId, userName, password)
Description: this method is used in order to add a, newly registered, user to the system.
Input: userId: string a user ID.

userName: string a user name.
password: string the password for that user.

• UserId* getUserIds()
Description: this methods is used in order to obtain the ids of all users.
Output: UserIds a list containing the IDs of all users.

• void inviteUser(mailAddr, folderId)
Description: this method is used in order for a registered user of Cyclades to be able to
invite another unregister user to the system.
Input: mailAddr: string e-mail address of the invitee.

folderId: string the folder into which the invitee is invited.

7.4.2 Service Class

• servId
Description: string this is the unique ID of the service.

• version
Description: double this is the version of the service.

• address
Description: string this is the machine address of the service, so as others can

communicate with it.

140 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• quality
Description: double a number between 0-1, indicating the quality of the service.

• type
Description: string this is the type of the service.

• description
Description: string this is the (short) textual description of the service.

• errorLog
Description: string this is for descriping-holding the various errors that occur.

7.4.3 Database Schema

The schema of the database that is used to store information needed by the MS is described bellow.

Particularly, the tables which have been created and their atributtes are beeing described.

• Services

Stores information about the services in Cyclades.
servId Varchar the unique ID of the service.
version Double the version of the service.
address Varchar the machine address of the service, so as others can

communicate with it.
quality Double a number between 0-1, indicating the quality of the service.
type Varchar the type of the service.
description Varchar the (short) description of the service.
errorLog Varchar for descriping-holding the various errors that occur.

• Users

Stores information (which is needed to MS) about the users in Cyclades.
UserId Varchar the unique ID of the user.
UserName Varchar the username of the user in Cyclades.
Password Varchar the password of the user.
MailAddress Varchar the e-mail address of the user.
HomeFolder Integer the ID of the home folder of the user in Cyclades

• Invited Users

Stores information about the users which have been invited to a folder in Cyclades.
MailAddress Varchar the e-mail of the invited user.
FolderId Integer the ID of the folder where the user has been invited.

• ArchiveAccess

Stores information about the access privileges a users might has regarding an archive.
UserId Varchar this is the unique ID of the user.
ArchiveId Varchar this is the ID of the archive.

• CollectionAccess

Stores information about the access privileges a users might has regarding a collection.
UserId Varchar the unique ID of the user.
CollectionId Integer the ID of the collection in Cyclades.

7.5 User interface

As mentioned above, the MS implements the Graphical User Interface of Cyclades. Through
this a user is able to register and login into Cyclades. Also she is able to access the Cyclades

services (and their GUIs, when provided) and thus navigate through them.

Detailed System Specification Report(D3.0.1) 141

After succesfull login user is presented with an interface where both her home folder and buttons
for accessing Cyclades services are shown. A user can either navigate through her folders or
choose to activate a service. If she chooses to activate another service, then she is presented with
that service’s user interface.

The design of the global GUI for the Cyclades is an ongoing activity.

7.6 Service interaction diagrams

The MS service functional interacts with CWS in case of user registration (cf. Figure 7.2) and
user invitation (cf. Figure 7.3). Finaly, login interaction diagram is shown in Figure 7.4.

Figure 7.2: Registration interaction diagram

7.7 Service implementation tools

The first prototype of the Mediator Service will be based on the following development environment
and base technology:

• Java 2 Platform SE v1.3.1
http://java.sun.com

• Apache XML-RPC v1.0
http://xml.apache.org/xmlrpc

142 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 7.3: Invitation interaction diagram

• Apache Web Server 1.3.x + Tomcat 4.0.1
http://www.apache.org

• Oracle8i Database Family
http://www.oracle.com/oracle8i

Detailed System Specification Report(D3.0.1) 143

Figure 7.4: Login interaction diagram

Chapter 8

Rating Management Service

8.1 Functionality

The Rating Management Service (RMS) stores record ratings that take place within the Collab-
orative Work Service (CWS) and makes them available to other services. The RMS stores the
ratings in form of a table where every row corresponds to a rating with entries for the record that
has been rated, the user that made the rating, the date and time when the rating took place, the
folder in whose context the rating was made, and finally the rating value itself.

The RMS makes its ratings available as ‘projections’ to users, records and folders, i. e. it produces
upon request lists of

• all ratings that a particular user has made,

• all ratings that a particular record has received,

• all ratings that have taken place in a particular folder.

All these ratings lists contain only ratings that happened after a point in time that is specified in
such a service request.

8.2 Process flow

The RMS offers no direct user operations, but only a service method interface to other Cyclades

services. This API may be used by other services to interact with the RMS by way of remote
procedure calls. Every method has a well defined signature giving its name, parameters and return
value. In the following, we describe the invocation, execution and result of the RMS methods as a
three-step interaction:

• Method call: shows method name and required parameters.

• Execution: describes RMS execution of method.

• Return value: describes result of method returned to the calling service.

We will use this schema for describing the linear process flow of the CWS API method executions.

144

Detailed System Specification Report(D3.0.1) 145

External
service

calls RMS
method

External
service

calls RMS
method

RMS
executes
method &
retÕs result

RMS
executes
method &
retÕs result

External
service
receives

result

External
service
receives

result

RMS

External
Service

Figure 8.1: API method activity diagram

8.2.1 Save a rating

• Method call: saveRating(recordId, folderId, userId, ratingValue)

• Execution: The RMS generates a timestamp and stores the given rating into its rating table.
An older rating of the same record by the same user within the same folder is overwritten by
the new rating.

• Return value: Void.

8.2.2 Get all ratings of a user

• Method call: getUserRatings(userId, timestamp)

• Execution: The RMS extracts all ratings from its table that the given user has made since
the time given.

• Return value: A list of triples containing the record identifier, the folder identifier and the
rating value of the extracted ratings.

8.2.3 Get all ratings of a record

• Method call: getRecordRatings(recordId, timestamp)

146 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Execution: The RMS extracts all ratings from its table that the given record has received
since the time given.

• Return value: A list of triples containing the folder identifier, the user identifier and the
rating value of the extracted ratings.

8.2.4 Get all ratings within a folder

• Method call: getFolderRatings(folderId, timestamp)

• Execution: The RMS extracts all ratings from its table that have taken place within the
given folder since the time given.

• Return value: A list of triples containing the record identifier, the user identifier and the
rating value of the extracted ratings.

8.3 Internal architecture

8.3.1 Overview

The RMS implements a service API which other Cyclades services may use to invoke RMS
functionality via the XML-RPC protocol over HTTP. The RMS consists of four components:

• a standard Apache Web server for handling HTTP requests and responses,

• a MySQL relational database for storing and extracting the ratings,

• the RMS method call and response handling that deals with the XML-RPC protocol, pa-
rameter checking and method dispatching, and

• the RMS server that contains the specific method handlers.

The specific RMS components are implemented in Python.

When one of the other Cyclades services such as the FRS sends a request in the form of a HTTP
request in XML-RPC via the CGI interface of RMS Web server (c.f. Figure 8.2), the central script
of the RMS method call and response handling component is executed which translates the XML-
RPC into an internal procedure call, checks the method name and parameters, and dispatches
the call to the RMS server. The RMS server connects to the RMS ratings database and calls the
corresponding method handler to actually execute the procedure call (e. g. save a rating or get
all ratings of a user) making use of the database. It produces the requested result which is then
routed to the requesting service the same way back.

8.3.2 RMS API handling

XML-RPC call and response translation

XML-RPC calls that arrive via HTTP POST requests are translated into Python objects by the
CGI request handler, a Python script that uses F. Lundh’s xmlrpclib, version 0.99, from Secret
Labs AB. Each incoming method call invokes the script’s call procedure with the method name
and its parameter tuple as parameters. For example, a method call to saveRating with record,
folder and user identifiers and the rating value as parameters is translated to

call(”saveRating”, (”AC http : //..../038967”, ”CW 1200”, ”CW 3456”, 4)).

Detailed System Specification Report(D3.0.1) 147

RMS APIRMS API

Standard Web ServerStandard Web Server

CGI interface
rpc2

HTTP responses
(XML-RPC)

HTTP POST requests
(XML-RPC)

RMS ServerRMS Server

responses calls

RMS
Database

Python
DBC

Figure 8.2: Internal architecture of RMS

The method’s four parameters are packaged into an argument-list tuple and are passed to the
call() method as a single argument. The return value of this function (a Python object) is
translated back into a XML-RPC method response and returned to the calling service. When the
execution of the call function raises an XML-RPC exception this is reported back to the calling
service as an XML-RPC fault. Other exceptions are reported back as HTTP error 500 (CYCLADES
Server Error).

Method name and parameter checking

Before the method call is dispatched to the RMS server, the method name is checked for validity and
the method parameters are checked for number, data type, and null value (optional parameters).
This is done recursively for nested parameter structures (<struct>s and <array>s). Errors raise an
XML-RPC exception and are reported back to the calling service via an XML-RPC fault. Method
name and parameter checking relies on a static description of the RMS API as (nested) Python
objects (lists, tuples and dictionaries depending on the type of the parameters).

Method call dispatching

The call() procedure then dispatches each method call to the RMS server using that server’s
central do it procedure with (checked) method name and parameters as arguments.

The following code fragment shows the call procedure.

def call(method, params):

148 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

from api_def import *

method defined for RMS API?

if method in API.keys():

import checker

check nested parameter structure

param_defs = API[method][1]

checker.do_scalar_check(param_defs, params, method)

call ’super’ function of RMS server

func_obj = eval("rms_api.do_it")

return apply(func_obj, (method, params,))

else:

from xmlrpclib import Fault

raise Fault(10002, "No such method: " + method)

8.3.3 RMS server

The RMS server contains the central do it procedure and the method handlers that are named
after the methods they handle with a do prepended:

• do saveRating

• do getUserRatings

• do getRecordRatings

• do getFolderRatings

The central procedure connects to the RMS ratings database using MySQLdb, a Python DBC
package for MySQL. It then calls the corresponding method handler with the original parameters
plus the database connection and a database cursor needed for using the ratings database. The
result (or an exception) is handed back to the RMS method call and response handling component.

The following code fragment shows the do it procedure.

def do_it(method, params):

import MySQLdb

connect to database

try:

db = MySQLdb.connect(host=HOST, user=USER, passwd=PASS, db=DB)

cursor = db.cursor()

except MySQLdb.Error:

from xmlrpclib import Fault

raise Fault(18001, ’%s: %s’ % (sys.exc_type, sys.exc_value))

call method handler

Detailed System Specification Report(D3.0.1) 149

func = eval(’do_’ + method)

p_list = list(params)

p_list.append(db)

p_list.append(cursor)

response = apply(func, p_list)

close database connection

try:

db.close()

except:

pass

return response

As an example, the signature of the method handler for saving a rating is shown:

def do_saveRating(recid, fldrid, usrid, val, db, cursor):

8.4 Data and method specification

8.4.1 The RMS API

The RMS implements the methods saveRating for storing a rating in the RMS database, getUser
Ratings for retrieving all ratings of a specific user, getRecordRatings for retrieving all ratings
of a specific record, and getFolderRatings for retrieving all ratings made in the context of a
specific folder. These methods are methods of the abstract class RatingManagementService, which
constitute the API of the RMS. These methods may be called from other services using the inter-
service communication protocol XML-RPC.

• void saveRating(recordId, folderId, userId, ratingValue)
Description: this method may be invoked in order to store a rating in the RMS rating
table. The rating is specified by the identifier of the record that has been rated, the identifier
of the folder that contained the record when it was rated, the identifier of the user that rated,
and the rating value that was assigned to the record by the user. The rating timestamp is
generated within the RMS.
Input: recordId: a record identifier.

folderId: a folder identifier.
userId: a user identifier.
ratingValue: an integer representing the rating value.

• (recordId, userId, value)* getFolderRatings(folderId, timestamp)
Description: this method may be invoked in order to get all ratings that the records
contained in a given folder received since a given point in time. The ratings are specified by
the identifier of the record that was rated, the identifier of the user who rated, and the rating
value assigned to the record by the user.
Input: folderId: a folder identifier.

timestamp: a point in time coded as an ISO 8601 date/time in UTC.
Output: a list of triples containing a record identifier, a user identifier and a rating value
each.

• (folderId, userId, value)* getRecordRatings(recordId, timestamp)
Description: this method may be invoked in order to get all ratings that a given record

150 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

received since a given point in time, regardless of the folders in which the record was contained
when rated (note that the same record may be contained in several different folders even at
the same time). The ratings are specified by the identifier of the folder that contained the
record when it was rated, the identifier of the user who rated, and the rating value assigned
to the record by the user.
Input: recordId: a record identifier.

timestamp: a point in time coded as an ISO 8601 date/time in UTC.
Output: a list of triples containing a folder identifier, a user identifier and a rating value each.

• (recordId, folderId, value)* getUserRatings(userId, timestamp)
Description: this method may be invoked in order to get all ratings that a given user has
assigned to arbitrary records since a given point in time. The ratings are specified by the
identifier of the record that was rated, the identifier of the folder which contained the record
when it was rated, and the rating value assigned to the record by the user.
Input: userId: a user identifier.

timestamp: a point in time coded as an ISO 8601 date/time in UTC.
Output: a list of triples containing a record identifier, a folder identifier and a rating value
each.

8.4.2 The RMS Ratings Database Schema

The RMS Ratings database has one relation with the following schema:

• ratings

Stores rating information (which record, where, who, how and when)
rec id varchar(200) the identifier of the record that has been rated
folder id varchar(16) the identifier of the folder where the record has been rated
user id varchar(16) the identifier of the user who has rated
value int(2) the rating value
stamp datetime the time when the record was rated

Ratings are identified by the record that has been rated, the user that has rated, and the folder
that contained the record when it was rated. There is no rating identifier.

8.5 User interface

As mentioned above, the RMS has no user interface of its own. The CWS provides the GUI for
the RMS. In the CWS users can select some records in the current folder, hit the Rate function,
and select one of five pre-defined rating values (very poor, poor, fair, good, excellent), the
rating is then shown on the GUI. Furthermore, the ratings are stored in the RMS database via
the saveRating method of the RMS. Figure 8.3 gives an idea of the dialog the CWS provides for
rating records.

8.6 Service interaction diagrams

The RMS service has two types of service interactions: get-requests where other services query
the RMS for information; and put-requests where other services want to store information in the
RMS. Subsequently we will present one example of a get-request: the getUserRatings request
(c.f. Figure 8.4).

Further, we include an example for a put-request: the saveRating request (c.f. Figure 8.5).

Detailed System Specification Report(D3.0.1) 151

Figure 8.3: Rate record user interface of CWS

8.7 Service implementation tools

In order to install and run the RMS you need the following software:

• Python, Version 2.0
http://www.python.org/

• xmlrpclib, Version 0.99
http://www.pythonware.com/products/xmlrpc/index.htm

• Apache Web server, Version 1.3
http://www.apache.org/

• MySQL, Version 3.23.39
http://www.mysql.com/

• MySQLdb, Version 0.91
http://sourceforge.net/projects/mysql-python/

152 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

getUserRatings(userId)
retrieve ratings
from RMS db

Rating
Management

Service

(recordId, FolderId, value)*

Figure 8.4: getUserRatings service interaction diagram

Detailed System Specification Report(D3.0.1) 153

saveRating(recId, fldrId,
userId, value)

store/replace
ratings

Rating
Management

Service

void

Figure 8.5: saveRating service interaction diagram

Chapter 9

Communication protocol

The communication protocol chosen for Cyclades is XML-RPC. In the following, the XML-RPC
protocol is introduced, and it is compared with other available technology. Finally, the parameter
encoding for Cyclades service interaction via the XML-RPC protocol is specified in some detail.

9.1 XML-RPC

XML-RPC is a simple protocol for implementing cross-platform, distributed applications. As its
name suggests, communication between the distributed applications is done via remote procedure
calls. The XML-RPC protocol is based on Internet standards: method calls and responses are
transmitted using HTTP, and the bodies of the calls and responses are encoded in XML.

There are implementations available for numerous platforms (Unix, Windows and MacOS) and
programming languages (C, C++, Java, Perl, PHP, Python, Tcl and others). Many of the imple-
mentations are open source and free to use.

The following example shows a simple XML-RPC method call (without the HTTP header).

<methodCall>

<methodName>sample.sumAndDifference</methodName>

<params>

<param><value><int>5</int></value></param>

<param><value><int>3</int></value></param>

</params>

</methodCall>

Method calls consist of the method name and zero or more parameters as shown. A method
response contains a single parameter or a fault consisting of a fault code and a fault string which
are encoded in XML as

<methodResponse>

<params>

<param>

<array>

<data>

<value><int>8</int></value></param>

<value><int>2</int></value></param>

</data>

</array>

154

Detailed System Specification Report(D3.0.1) 155

</param>

</params>

</methodResponse>

and, for the fault case,

<methodResponse>

<fault>

<value>

<struct>

<member>

<name>faultCode</name>

<value><int>10000</int></value>

</member>

<member>

<name>faultString</name>

<value><string>No such method</string></value>

</member>

</struct>

</value>

</fault>

</methodResponse>

XML-RPC supports the following six scalar data types:

• <int>: a 32 bit signed integer

• <boolean>: either 1 (true) or 0 (false)

• <string>: a string containing any character except < and & which are encoded as < and
&

• <double>: a double-precision signed floating point number

• <dateTime.iso8601>: date and time encoded in the compact version of the ISO 8601 stan-
dard

• <base64>: base64 encoded binary data

and two compound data types:

• <struct>: a collection of <member>s consisting of a <name> and a <value>. Names are
strings and values may be of any XML-RPC data type. Nesting of structs and arrays is
possible.

• <array>: a one-dimensional array of values encoded as a single <data> element with any
number of <value>s. The values may be of any type including structs and arrays. Mixing
of types in one array is possible.

A complete specification of the protocol including the HTTP header requirements is to be found
at http://www.xmlrpc.com/spec. XML-RPC is a trade mark of UserLand Software.

156 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

9.2 Comparison with other protocols

In this section, XML-RPC is compared with other generic XML-based protocols. The comparison
is rather brief and is kept at a high-level due to: (a) the large number of XML-based protocols
available (b) the low-level intricacies of the individual proposals and (c) the domain-specificity of
several of the proposals. The list of XML-based protocols is constantly expanding. The following
are considered as generic XML protocols (in addition to XML-RPC):

• SOAP (http://www.w3.org/TR/SOAP/)

• Open WDDX (http://www.openwddx.org/)

• XMI (http://www.alphaworks.ibm.com/tech/xmiframework)

• Jabber (http://www.jabber.org/)

• ebXML (http://www.ebxml.org/)

• BizTalk (http://www.biztalk.org/)

• Wf-XML (http://www.oasis-open.org/cover/WFXML10a-Alpha.html).

Other XML-based protocols are specifically related to Web services:

• WSDL (http://www.w3.org/TR/wsdl)

• WIDL (http://www.w3.org/TR/NOTE-widl)

• UDDI (http://www.uddi.org/specification.html)

Other domain-specific protocols include:

• P3P (http://www.w3.org/P3P/)

• CCPP (http://www.w3.org/TR/NOTE-CCPP/)

• E-Speak (http://www.e-speak.net/).

A detailed comparison of all these protocols is beyond the scope of this deliverable. In the remainder
of this section we briefly present SOAP and perform a comparison with XML-RPC for the purposes
of implementing the functionality of Cyclades. SOAP is the closest competitor to XML-RPC,
whereas other protocols such as WSDL and UDDI are complementary to the goals of both XML-
RPC and SOAP and can be used for higher-level service descriptions.

9.2.1 SOAP (http://www.w3.org/TR/SOAP/)

According to its specification document, “SOAP is a lightweight protocol for exchange of infor-
mation in a decentralized, distributed environment. It is an XML based protocol that consists of
three parts: an envelope that defines a framework for describing what is in a message and how to
process it, a set of encoding rules for expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and responses.”

SOAP (Simple Object Access Protocol) is a Remote Procedure Call (RPC) protocol that uses
standard protocols for transport—either HTTP for synchronous calls or SMTP for asynchronous
ones. It is language and platform independent and uses XML for the encoding of transmitted
data. It defines two types of messages, namely Request and Response. A SOAP request consists of
the three parts mentioned above. A response is returned as an XML document within a standard
HTTP reply. The XSI/XSD tagging scheme can be used optionally to denote the type of result.

Detailed System Specification Report(D3.0.1) 157

SOAP extends the functionality of XML-RPC by making extensive use of namespacing and at-
tribute specification tags in all parts of messages. One limitation of XML-RPC that is addressed
in the SOAP proposal, is that of unnamed complex structures (structs and arrays). Arrays and
structs can be named in SOAP, whereas in XML-RPC they are anonymous groupings of elements
of mixed data types and anonymous sets of name-value pairs. Furthermore, SOAP allows users to
define enumerated types and their own simple or complex data types.

9.2.2 Evaluation and Summary

XML-RPC, although quite humble in the goals it sets, is a simple and effective way for requesting
and exchanging information using HTTP at the transport level. The design choice of XML-RPC
was to be as simple as possible and still permit complex data structures to be exchanged and
processed. We regard its simplicity, cleanliness and its short learning curve as its main advantages
over SOAP which is quite complex and by no means a “lightweight” protocol. Furthermore, XML-
RPC has been around for quite a while and is stable and open to community feedback. It should
be noted that XML-RPC is not endorsed by any companies or organizations. In contrast, the main
driving forces behind the development of SOAP are Microsoft and IBM. It has been submitted for
endorsement to the World-Wide Web Consortium but its status remains that of a technical note
and is not considered as a candidate recommendation. Although SOAP extends the functionality
of XML-RPC by permitting the customization of the different message portions, we believe that
the overhead it creates for heterogeneous systems to process SOAP messages is far greater than
the benefits (at least for the needs of Cyclades). In addition, the specification of SOAP is not
stable and may change at any time.

9.3 Parameter encoding

Since the XML-RPC protocol is to be used for the communication between the Cyclades services,
the input and output parameters of the Cyclades service methods as specified in this document
have to be encoded as XML-RPC data types with a commonly agreed upon encoding.

¿From the XML-RPC definition it is clear that the input parameter list of a method is a <params>

construct consisting of zero or more single <param>s each having a <value> of a certain data type,
so that

<methodCall>

<methodName>listCollections</methodName>

<params></params>

</methodCall>

and

<methodCall>

<methodName>saveRating</methodName>

<params>

<param><value><string>CW_1001</string></value></param>

<param><value><double>2.55</double></value></param>

</params>

</methodCall>

are both legal method calls. Consequently, no specific construct is needed for encoding the ‘tuple’
of input parameters, even if it is empty.

This is not true for the output parameters. The definition states that the output of a method in
the non-fault case is a <params> construct consisting of exactly one <param> having a <value> of
a certain data type. That means that

158 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

<methodResponse>

<params></params>

</methodResponse>

and

<methodResponse>

<params>

<param><value><string>CW_23456</string></value></param>

<param><value><double>2.55</double></value></param>

</params>

</methodResponse>

are not legal method responses. Consequently, an empty output value (‘void’) and a tuple of output
parameters need a specific encoding.

A review of the signatures of the Cyclades service methods show that there are the following
kinds of parameters:

• booleans

• integers, e. g. fault codes

• floating point numbers, e. g. term weights

• strings, e. g. object names and descriptions

• timestamps

• void representing the empty return value

• object identifiers, e. g. identifiers of users, folders, records etc.

• objects of a certain class, e. g. a record or a query

• tuples, e. g. a pair of object identifier and string

• lists of object identifiers, objects or tuples

There is currently no use of binary data in Cyclades method signatures.

We treat the encoding of the different kinds of parameters in the order they appear in the above
list.

9.3.1 Booleans, integers and floating-point numbers

Parameters of these types are encoded in the corresponding XML-RPC scalar types <boolean>,
<int> and <double>. Note that boolean true is encoded as

<boolean>1</boolean>

and boolean false is encoded as

<boolean>0</boolean>.

9.3.2 Strings

Cyclades strings are meant to be Unicode strings. If no other encoding is given in the XML
header of the XML-RPC message, the standard XML encoding utf-8 is used.

Detailed System Specification Report(D3.0.1) 159

Note that for 8-bit strings entered into the system at the browser interface, it will be impossible
to determine the correct interpretation since the interpretation is a browser setting not accessible
to a service with a user interface. For instance, for the CWS a latin-1 interpretation is used as
default.

9.3.3 Timestamps

Timestamps are encoded in the <dateTime.iso8601> data type which uses the compact version
of the ISO 8601 standard, e. g.

<dateTime.iso8601>20011209T22:10:01</dateTime.iso8601>.

All timestamps in Cyclades are in Universal Time Coordinated (UTC).

9.3.4 Void

Since there is no ‘natural’ way to encode void as a method response, an empty string will be used
to encode a void method response, i. e.

<methodResponse>

<params>

<param><value><string></string></value></param>

</params>

</methodResponse>

A confusion with an empty string as return value is not possible since a method is defined to either
return void or a string.

9.3.5 Object identifiers

Object identifiers in Cyclades are printable ASCII strings (Unicode ordinal numbers 32–127) with
a length greater than 3. The first two characters denote the Cyclades service which generated
the identifier, the third character is a separator, an underscore (‘ ’), and the rest of the object
identifier is the service internal object identifier.

Service denotations are:

• ME: Mediator Service

• CO: Collection Service

• FR: Filtering and Recommendation Service

• AC: Access Service

• SB: Search and Browse Service

• CW: Collaborative Work Service

• RM: Rating Management Service

Since object identifiers are strings, they are encoded like other strings, e. g.

<string>CW 1001</string>.

Note that utf-8 encoding of ASCII strings leaves them unchanged.

160 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

9.3.6 Objects of a certain Cyclades class

Examples of such objects are records and queries. They are encoded as <struct>s where the
<member>s correspond to the class attributes. A record with attributes id, name and metadata is
consequently encoded as

<struct>

<member>

<name>id</name>

<value>

<string>AC_http://arXiv.org/abs/alg-geom/9712032</string>

</value>

</member>

<member>

<name>name</name>

<value>

<string>A morphism of intersection homology</string>

</value>

</member>

<member>

<name>metadata</name>

<value>

<string><?xml version="1.0"?><record>...</record></string>

</value>

</member>

</struct>

Since nesting of <struct>s and <array>s is possible, attribute values may also be lists, tuples or
other objects.

Class attributes may have no value assigned in a particular instance, e. g. the classifier label at-
tribute of a record may be undefined as may be the query string of a query. Depending on the
programming language used, such attributes may be simply missing or may have a default value
assigned, usually a nil value (Null in Java, None in Python). There is no specific nil value in XML-
RPC, and encoding nil as an empty string (as was done for ‘void’) would give rise to confusion.
Therefore the <member>s corresponding to missing or undefined attributes are simply left out in
the encoding of the object.

9.3.7 Tuples and lists

Tuples and lists are encoded as <array>s. Since <array>s may contain values of different types,
and since nesting of a <array>s and <struct>s is possible, no problems arise with tuples containing
objects, lists of objects or other tuples. As an example, the encoding of a list of pairs of terms and
weights is given.

<array>

<data>

<value>

<array>

<data>

<value><string>early</string></value>

<value><double>0.2341</double></value>

</data>

</array>

Detailed System Specification Report(D3.0.1) 161

</value>

<value>

<array>

<data>

<value><string>roman</string></value>

<value><double>0.5325</double></value>

</data>

</array>

</value>

</data>

</array>

9.3.8 Fault codes

Faults are reported in XML-RPC as a distinct type of method response: a struct having as members
a fault code and a fault string. An example was given in the introduction.

In Cyclades, there are general fault codes and strings to be used by all services in a unified
way. Additionally, there are specific fault codes and strings that every service may define and use.
Cyclades fault codes start at 10000, the assignment to the services is as follows:

• 10,000 - 10,999: Cyclades general fault codes

• 11,000 - 11,999: Access Service fault codes

• 12,000 - 12,999: Search and Browse Service fault codes

• 13,000 - 13,999: Filtering and Recommendation Service fault codes

• 14,000 - 14,999: Collection Service fault codes

• 15,000 - 15,999: Collaborative Work Service fault codes

• 16,000 - 16,999: Rating Management Service fault codes

• 17,000 - 17,999: Mediator Service fault codes

The exact values of fault codes and fault strings are to be determined during the course of the
implementation.

9.3.9 Mapping of XML-RPC data types to Java and Python

In Cyclades, two programming languages are used: Java and Python. For Java, the Helma XML-
RPC implementation of H. Wallnöfer (http://xmlrpc.helma.org/) or its adaptation as Apache
XML-RPC (http://www.apache.org/xmlrpc) is used. The XML-RPC data types map to the fol-
lowing Java data types:

• <int> maps to java.lang.Integer

• <boolean> maps to java.lang.Boolean

• <string> maps to java.lang.String

• <double> maps to java.lang.Double

• <dateTime.iso8601> maps to java.util.Date

• <struct> maps to java.util.Hashtable

162 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• <array> maps to java.util.Vector

• <base64> maps to byte[]

For Python, F. Lundh’s xmlrpclib (http://www.pythonware.com/products/xmlrpc) from Secret
Labs/PythonWare is used which has three extra classes to cater for some XML-RPC data types
not readily available in Python. The mapping of data types is as follows:

• <int> maps to int;

• <boolean> maps to xmlrpclib.Boolean;

• <string> maps to string or unicode;

• <double> maps to float;

• <dateTime.iso8601> maps to xmlrpclib.DateTime;

• <struct> maps to dictionary;

• <array> maps to list or tuple;

• <base64> maps to xmlrpclib.Binary.

Appendix A

Terminology

We include here a glossary of technical terms used in this document and in the project. Words
occurring in the term definitions and typeset in sans serif denote other terms defined in the glossary.

• annotated document
An annotated document is an archive document that has been annotated (with comments,
critiques, pointers to other documents, etc.) by one or more Cyclades users (typically
belonging to the same community or project).

• archive
An archive is a set of records, each of which describes a document by means of metadata. An
archive is uniquely identified by a string called the archive identifier.

• archive document
See document.

• collection
A collection is a set of records, defined by a set of archives and an optional filtering query
(i.e. a selection criterion) which uses only attributes of the Dublin Core metadata standard.
The members of the collection are all and only the records from the given archives which
satisfy the query. A collection may be described by different metadata schemas, and different
search services may be associated to each schema. From the user’s point of view, a collection
is a set of documents associated with specific formats of search and browse operations. In
this perspective, a collection is described (i) by a set of criteria specifying which documents
belong to the collection (membership condition) and (ii) by the format of the search and
browse operations.

• community
A community is a set of users sharing a common (scientific or professional) background or
view of the world. Within Cyclades, communities are characterized by a shared interest in
documents and records. This common interest manifests itself as a hierarchy of community
folders where records of common interest are stored and possibly annotated.

• community folder
A community folder is a folder owned by a community. It can be accessed and possibly
manipulated by several users who are members of the community.

• document (also called archive document)
An archive document is a resource described by one or more metadata records that are
contained in, and retrieved from, archives. Note that an archive need not contain actual
documents; depending on the organisation hosting the archive, it might as well contain only

163

164 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

metadata records. An archive document may be a text (e.g. a paper, a report, a journal
article), or may be expressed in any other kind of media.

• external document
An external document is an arbitrary external file that can be stored in a project folder.

• folder
A folder is a repository of metadata records (and, in the case of project folders, of documents
too). A folder can be a private folder, or a project folder, or a community folder. Collections
can be associated to folders; if this is the case, the scope of a query formulated by a user is,
by default, the collection associated to the folder. Queries can be stored in folders, allowing
the user to resubmit or edit them at any later time. Thus, a folder can also be seen as an
“environment” corresponding to a certain topic of interest to its owner.

• home folder
Each user has a special folder called the home folder, which constitutes the root of the folder
hierarchy that is visible to this user.

• metadata record
See record.

• metadata schema
A metadata schema is a set of attribute definitions, each consisting of the attribute name
and the attribute type.

• open archive
An open archive is an archive that complies with the Open Archive Initiative standard.

• private folder
A private folder is a folder owned by a single user. This folder can only be accessed by its
owner, and is invisible to other users.

• project
A project is a group of scholars working together, presumably at a common task. They
might not only want to share records, but also documents, and might want to modify them,
by working in a common workspace (i.e. in a common folder system).

• project folder
A project folder is a folder owned by a project, i.e. accessible to all and only the members of a
project. Only project folders can also contain documents, since private folders and community
folders can contain only records.

• record (also called metadata record)
Records are the entities contained in an archive. Each such record consists of a set of at-
tributes and values describing a document, according to a specific metadata schema. One
document can be described by several metadata records using different schemas. Note that
the document described by the record might not be physically available from the archive
that contains the record. However, this is seldom the case, and in general we assume that
the document is indeed physically available from the same archive that contains a metadata
record pointing to it.

• rating
A rating is a relevance value assigned to a record by a user. The user may rate a record
explicitly by assigning it a certain value, or implicitly by selecting the record from a query
result list and storing it in a folder. In the latter case, the system assumes the record to be
relevant, and automatically assigns to it a positive rating.

Detailed System Specification Report(D3.0.1) 165

• subfolder
A subfolder is a folder that is contained in another folder, called the parent folder. Each
folder can have at most one parent folder. If a subfolder is copied to another folder, then the
folder and its entire contents are actually copied (i.e. it is not the case that only an alias is
created), thus creating a new, distinct folder.

• term
A term is the minimal unit of meaning within a document. A possible approach is to make
the set of terms contained in a document coincide with the set of words occurring in it,
excluding “stop words”. Another possible approach is to use, instead of words, word stems,
i.e. the morphological roots of words. These different approaches will be experimentally
compared in Cyclades.

• term weight
A term weight is a numeric value that denotes the importance of a term in a document. In
Cyclades we use non-binary term weights, i.e. numeric values belonging to the [0,1] interval.

• user
A user is a person registered in the Cyclades environment. A user has an identity, an e-mail
address, a password, and a home folder. Users can have further attributes, such as affiliation,
postal address, telephone number.

