
CYCLADES IST-2000-25456
An Open Collaborative Virtual Archive Environment

System Testing Report

D4.2.1

Delivery Type: R
Number: D4.2.1

Contractual Date of Delivery: month 24
Actual Date of Delivery: April 22, 2003

Task: WP4

Name of Responsible: Tom Gross

Fraunhofer FIT
Schloss Birlinghoven
53754 St. Augustin

Germany

E-Mail: tom.gross@fit.fraunhofer.de

Contributors

CNR-IEI: Henri Avancini, Leonardo Candela, M. Elena Renda, Umberto Straccia
University of Dortmund: Gudrun Fischer, Sascha Kriewel, Ting Li, Saadia Malik

FORTH: Nikos Papadopoulos, Dimitris Plexousakis
FhG-FIT: Tom Gross, Thomas Kreifelts, Wido Wirsam, Silvio Caizzi

Abstract: This report provides detailed information on the plan and results of the tests of the
individual components and of the integrated Cyclades system.

Contents

1 Introduction 4

1.1 Systems tested . 4

1.2 Test strategy . 5

1.2.1 Component testing . 5

1.2.2 Integrated system testing . 6

1.2.3 Test report details . 6

2 AS Component Test 7

2.1 Introduction . 7

2.2 AS API test . 7

2.2.1 AS API specification . 7

2.2.2 AS API test . 12

2.3 AS GUI test . 17

2.3.1 AS GUI description . 17

2.3.2 AS GUI test plan . 18

2.3.3 AS GUI test results . 19

3 CWS Component Test 22

3.1 Introduction . 22

3.2 CWS API test . 22

3.2.1 CWS API specification . 22

3.2.2 CWS API test . 27

3.3 CWS GUI test . 37

3.3.1 CWS GUI description . 37

3.3.2 CWS GUI test plan . 42

3.3.3 CWS GUI test results . 49

4 SBS Component Test 57

4.1 Introduction . 57

4.2 SBS API test . 57

4.2.1 SBS API specification . 57

4.2.2 SBS API test . 61

2

System Testing Report(D4.2.1) 3

4.3 SBS GUI test . 65

4.3.1 SBS GUI description . 65

4.3.2 SBS GUI test plan . 68

4.3.3 SBS GUI test results . 70

5 FRS Component Test 76

5.1 Introduction . 76

5.2 FRS API test . 76

5.2.1 FRS API specification . 76

5.2.2 FRS API test . 79

6 CS Component Test 86

6.1 Introduction . 86

6.2 CS API test . 86

6.2.1 CS API specification . 86

6.2.2 XML objects: XML schemas . 89

6.2.3 CS API test . 92

6.3 CS GUI test . 101

6.3.1 CS GUI description . 101

6.3.2 CS GUI test plan . 103

6.3.3 CS GUI test results . 104

7 MS Component Test 106

7.1 Introduction . 106

7.2 MS API test . 106

7.2.1 MS API specification . 106

7.2.2 MS API test . 109

7.3 MS GUI test . 121

7.3.1 MS GUI description . 121

7.3.2 MS GUI test plan . 121

7.3.3 MS GUI test results . 122

8 RMS Component Test 124

8.1 Introduction . 124

8.2 RMS API test . 124

8.2.1 RMS API specification . 124

8.2.2 RMS API test . 125

9 Integrated System Test 130

9.1 Introduction . 130

9.2 Integrated system test plan . 130

9.3 Integrated system test results . 133

Chapter 1

Introduction

1.1 Systems tested

The present report documents the testing of the Cyclades Deliverables D3.1.1 - D3.7.1, i. e. the
Working Prototypes of the Cyclades services, and the testing of Deliverable D4.1.1, the Open
Archives Working Service Environment which consists of the integration of the service components
into one environment.

The goal of Cyclades is to provide an integrated environment for scholars and groups of scholars
that want to use, in a highly personalized and flexible way, open archives, i. e. electronic archives
of documents compliant with the Open Archives Initiative1 (OAI) standard.

The Cyclades system consists of the following services:

• Collaborative Work Service

• Search and Browse Service

• Access Service

• Collection Service

• Filtering and Recommendation Service

• Mediator Service

The Collaborative Work Service provides a folder-based environment for managing metadata
records, queries, external documents, and annotations. Furthermore, it supports collaboration
between Cyclades users by way of folder-sharing in communities and projects. One component
of this service is the Rating Management Service, which manages ratings.

The Search and Browse Service supports the activity of searching records from the various collec-
tions, of formulating and reusing queries, and browsing schemas, attribute values, and metadata
records.

The Access Service is in charge of interfacing with the underlying metadata archives. Only archives
adhering to the Open Archives specification will be accounted for.

The Collection Service manages collections, thus allowing a partitioning of the information space
according to the users’ interests, and making the individual archives transparent to the user.

The Filtering and Recommendation Service provides personalized filtering of queries and query
results, provides recommendations of records, collections, users, and communities deemed relevant
to the user’s interests.

1http://www.openarchives.org

4

System Testing Report(D4.2.1) 5

The Mediator Service acts as a registry for the other services and provides security, i. e. it checks if
a user is entitled to use the system, and ensures that the other services are only called after proper
authentication.

The services of the Cyclades system communicate via HTTP, using XML-RPC 2. XML-RPC is
a simple protocol for implementing cross-platform, distributed applications. As its name suggests,
communication between the distributed applications is done via remote procedure calls. The XML-
RPC protocol is based on Internet standards: method calls and responses are transmitted using
HTTP, and the bodies of the calls and responses are encoded in XML.

Most of the services (i. e. the Collaborative Work Service, the Search and Browse Service, the
Access Service (for archive management), and the Collection Service (for collection management))
provide their own user interfaces. The Mediator Service itself provides the registration and login
interface, and a system administration interface (for assigning access rights, etc.). Additionally,
the Mediator Service integrates the user interfaces of the other services, and makes sure that those
services and their interfaces are called only for authorized users, and only via the Mediator Service.

1.2 Test strategy

Following the system architecture, the Cyclades test strategy has two phases:

• component testing

• integrated system testing

The result of component testing are debugged stand-alone service components, the result of inte-
grated system testing is a debugged version of the complete Cyclades environment.

1.2.1 Component testing

The component testing phase was directly based on the results of WP3, the working prototypes
of each Cyclades service, which form the single components of the Cyclades system. During
this testing phase, the Cyclades service components were tested in a stand-alone manner, i. e.
without communication with other components.

The API of each service component was tested on conformance to the specification. An up-to-date
API specification of each service component is also part of this report. The tests were based on
a number of test data per API method. Attention was also paid to robustness, i. e. the ability to
deal with “wrong” input data. Partners who developed a component carried out a comprehensive
test of their own API. Additionally, developers of components which call another component, also
tested the methods they call.

For components that have a graphical user interface (GUI), the component test included a test
of this GUI. In general, the GUI tests were carried out by the developers of a component. The
GUI tests ensured that the use cases which have been described in the “Process flow” sections of
Deliverable D3.0.1 work according to specification.

The components were tested running on a developing partner’s host, the testing was carried over
the Internet via HTTP, either from an XML-RPC client for the API or a Web browser for the
GUI.

Errors that were detected during the component tests were reported back to the developers of
the component who in turn took care of fixing the bugs. At the end of the component testing
phase, new versions of the components were generated where necessary. The debugged service
components served as basis for the system integration.

2http://www.xmlrpc.com/spec

6 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

1.2.2 Integrated system testing

After the Cyclades system services had been successfully tested, the components were integrated
into a first version of the Cyclades working service environment. This was done by having the
components communicate using the inter-service communication protocol XML-RPC making use of
the diverse service APIs, and by directly invoking the graphical user interfaces of other components
at the integrated Cyclades graphical user interface. The single service components resided on a
developing partner’s host.

1.2.3 Test report details

Every test of a single component or the integrated system is documented in a test report. Test
reports include the following data:

• Name and email address of the tester

• Date and time when the test was performed

• Scope of test, e. g. for component API testing the name and version of the service component
and the part of the API that has been tested

• Test environment including operating system and type of test client, e. g. programming lan-
guage and XML-RPC library used for component API testing, or Web browser used for GUI
testing

• Test plan, i. e. the list of test cases giving method/use case and input parameters used

• Test log listing the outcome of the test case executions (manual testing or automated testing
via scripts)

• Summary of test results

• Recommendation for action when errors had been encountered

Where detailed test plans or test logs were too substantial to be included in this report, an excerpt
and the location of the complete data is given.

Chapter 2

AS Component Test

2.1 Introduction

The Access Service (AS) harvests and indexes metadata records from open archives and makes
them available for other Cyclades services. For this purpose, it provides

• metadata harvesting and indexing

• persistent storage of metadata records

• management of archive information

The AS API consists of 17 methods. For archive management, the AS provides a GUI which
supports the use cases described in sections 2.2.2 of Deliverable D3.0.1, i. e. registering an archive,
editing archive information, and deleting an archive.

2.2 AS API test

2.2.1 AS API specification

The Access Service provides an API to the other Cyclades services, as well as to its own GUI. The
methods of this API may be called using the inter-service communication protocol XML-RPC. For
every method also the services are listed that call this method according to the service interaction
as specified in Deliverable D3.0.1.

public:

• Method: getId
Signature: String getId()
Description: this method returns the ID of the service
Parameters:
Output: Access Service ID
Calling services: any

• Method: getArchives
Signature: Archive* getArchives()
Description: this method exports the registered archives
Parameters:

7

8 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Output: list of Archive
Calling service: SBS

• Method: getIndexedTermsAndWeights
Signature: (term,weight)* getIndexedTermsAndWeights(recordId*,maxTermNo)
Description: this method exports the indexed terms and their respective weights
Parameters:
Input: list of recordId: the list of ids of the records

for which the indexed terms and weights are to be determined
maxTermNo: the maximum number of terms to be returned (-1 for all terms)

Output: list of pairs (term, weight)
Calling service: FRS

• Method: search
Signature: (Record,(term,weight)*)* search(query,maxRecordNo,maxTermNo,timeStamp)
Description: this method determines the records corresponding to query and returns at
most maxRecordNo records gathered after the time specified by timeStamp, and for each
record, maxTermNo indexed terms with their weights.
Parameters:
Input: query: the query string

maxRecordNo: the maximum number of records to be returned
maxTermNo: the maximum number of terms to be returned with each record
timeStamp: a timestamp specifying a date and time,

only records gathered after this time will be considered
(formats YYYY-MM-DD hh:mm:ss and YYYYY-MM-DD)

Output: list of records, each with a list of pairs (term, weight) associated
Calling services: CS, FRS, SBS

• Method: getArchiveDescription
Signature: (oaiId,textualDescription,keyword*,schema*,language*,temporalCoverage)
getArchiveDescription(oaiId)
Description: this method returns a complete description of the archive specified by oaiId
Parameters: Input: oaiId: the id of the archive
Output: oaiId: the id of the archive (string)

textualDescription: a string describing the archive
list of keywords: a list of strings that describe the archive’s topic
list of schemas: a list of schema names (strings) of the

metadata schemas available in the archive
list of language: a list of languages (strings) available in the archive
temporalCoverage: a list of pairs (fromYear,toYear) describing

the intervals of time covered by the archive
Calling services: CS, SBS

• Method: getSchemasForArchives
Signature: Schema* getSchemasForArchives(archiveId*)
Description: this method exports a list of all schemas that the specified archives supply (if
no archive ids are specified, then all metadata schemas of all archives are listed)
Parameters:
Input: list of archiveId: the list of archive ids (strings)
Output: a list of Schema objects
Calling services: CS, SBS

System Testing Report(D4.2.1) 9

• Method: getAttributes
Signature: Attributee* getAttributes(schemaName)
Description: this method returns the list of attributes that the Schema schemaName con-
tains
Parameters:
Input: schemaName: the name of the metadata schema
Output: a list of Attribute objects
Calling services: CS, SBS

• Method: getAttributeValues
Signature: value* getAttributeValues(archiveId*,schemaName,attributeName,maxNo)
Description: this method returns a list of maxNo attribute values from the archives speci-
fied, and for the given schemaName and attributeName
Parameters:
Input: list of archiveId: the list ids of the archives (strings)

schemaName: the name of the metadata schema
attributeName: the name of the metadata attribute
maxNo: the maximum number of values to be returned

Output: a list of values, their type according to the type of the attribute
Calling service: SBS

• Method: getRecords
Signature: Record* getRecords(recordId*)
Description: this method returns the full records for the given record ids
Parameters:
Input: list of recordId: the list ids of the requested records
Output: a list of records
Calling services: CWS, FRS, SBS

• Method: deleteUser
Signature: void deleteUser(userId)
Description: this method deletes a user from the AS database by changing the ownership
of her archives to ’system’
Parameters:
Input: userId: a user identifier.
Calling service: MS

service internal:

These methods are called by the AS GUI, they are not available to other services.

• Method: registerArchive
Signature: Archive registerArchive(url,owner)
Description: creates a new archive object and collects initial data from the data provider
at url, and remembers the user owner as the owner of this archive (Caution: the archive
information is not yet saved to persistent storage)
Parameters:
Input: url: the URL of the new archive’s data provider

owner: the ID of the user who registers this archive
Output: a new (not yet persistent) Archive object

10 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Method: getArchive
Signature: Archive getArchive(archiveId,owner)
Description: gets the archive with ID archiveId, and, if the owner is owner, loads the
archive into memory for later changes
Parameters:
Input: archiveId: the ID of the archive

owner: the ID of the user who owns this archive
Output: an Archive object

• Method: saveArchive
Signature: void saveArchive(Archive)
Description: saves the Archive to persistent storage
Parameters:
Input: Archive: an Archive object

• Method: deleteArchive
Signature: void deleteArchive(archiveId,owner)
Description: deletes the archive with the ID archiveId, if it is owned by the user owner
Parameters:
Input: archiveId: the ID of the archive

owner: the ID of the user who wants to delete this archive

• Method: getArchivesForUser
Signature: Archive* getArchivesForUser(owner)
Description: gets the archive that are owned by owner
Parameters:
Input: owner: the ID of the user
Output: a list of Archive objects

• Method: forgetTempForUser
Signature: void forgetTempForUser(owner)
Description: clears all data for user owner from memory (temporary archive information
that the user has not saved explicitly)
Parameters:
Input: owner: the ID of the user

• Method: getMetadataAttributeTerms
Signature: (term,weight)* getMetadataAttributeTerms(oaiId,schema,attributeName,maxTerm)
Description: this method returns for the archive with the ID oaiId, for the schema and the
specified attribute, at most maxTerm indexed terms with their weights
Parameters:
Input: oaiId: the id of the archive

schema: the name of the schema (string)
attributeName: the name of the metadata attribute (string)
maxTerm: the maximum number of terms to be returned

Output: a list of pairs (term,weight)

The class definitions that were used in some API signatures (Archive, Schema, Attribute) and that
translate to XML-RPC <struct>s are as follows:

• Archive

System Testing Report(D4.2.1) 11

– id: the unique ID of the archive, a string

– oaiId: the ID of the archive in open archives, a string

– textualDescription: a textual description of the archive, entered by the archive reg-
istrator (string)

– schemas: a list of Schema objects, containing the metadata schemas that the archive
exports

– url: the main URL of the archive (string)

– owner: the ID of the user that owns the archive (string)

– adminEmail: the e-mail address of the person responsible for the archive, extracted
from the Identify record (string, optional)

– repositoryName: the name of the archive, extracted from the Identify record (string,
optional)

– identifyRecord: the Identify record of the archive (string, optional)

– mirrors: a list of further URLs for the archive (list of strings)

– languages: a list of languages that the archive data

– temporalCoverage: a list of pairs (year,year) that specify the temporal coverage of
the archive, the archive registrator enters this data during registration

– keywords: a list of keywords describing the archive content, entered by the archive
registrator (list of strings)

• Schema

– id: the unique ID of the schema (string)

– name: the name of the schema (string)

– url: the URL of a DTD or namespace for the schema (string)

– attributes: a list of the attributes of the schema, each attribute being an object of
class Attribute

• Attribute

– id: the unique ID of the attribute (string)

– name: the name of the attribute (string)

– type: the abstract datatype of the attribute (string)

– predicates: a list of the predicates available for this attribute, each predicate being an
object of class Predicate

• Predicate

– id: the unique ID of the predicate (string)

– name: the name of the predicate (string)

– description: a free text description of the predicate (string)

The class Record is described in the CWS chapter (3).

12 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

2.2.2 AS API test

In the following we list the API methods by calling services, also indicating test responsibilities for
the methods listed.

• MS (FORTH)

– deleteUser

• FRS (CNR)

– getRecords

– search

– getIndexedTermsAndWeights

• CS (CNR)

– getId

– getArchiveDescription

– getSchemasForArchives

– getAttributes

– getAttributeValues

• SBS (UNIDO/UNIDUE)

– getArchives

• internal (UNIDO/UNIDUE)

– registerArchive

– getArchive

– saveArchive

– deleteArchive

– getArchivesForUser

– forgetTempForUser

– getMetadataAttributeTerms

AS API test (UNIDO/UNIDUE)

• Tester: Saadia Malik (malik@is.informatik.uni-duisburg.de)

• Test date: 6 March 2003

• Scope of test:

Testing CWS API methods called from AS

• Test environment:

Test client was a Java1 application running on Debian Linux, the XML-RPC implementation
of Apache XML Project.

1Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)

System Testing Report(D4.2.1) 13

• Test plan:

Each method was called first with valid parameters, then with invalid parameters of the right
type, then with a wrong number of parameters, and finally, with a wrong parameter type.

With the valid method calls, the semantic result was checked:

– getId did return the service ID

– getArchives the archives known to the AC were returned

– getArchiveDescription returned Archive Description including textual Description,list
of keywords, list of schemas,list of language, temporal coverage

– getSchemasForArchive returned the schemas that the specfied archives supply, or all
metadata schemas, according to input

– getAttribute gives attribute list of the specified archive

– getAttributeValues returns correct Attribute values of specified archiveId, schemaName,attributeName
and maxNo

– deleteUser deletes the specified User

– registerArchive creates a new archive object and collects initial data from data provider
at url, and remembers the user owner as the owner of this archive

– getArchive returns correctly the Archive depending on the archive ID

– saveArchive saves the specified archive correctly

– deleteArchive deletes the archive if it is owned by the user specified

– getArchivesForUser gives the list of Archives of the specified user

– forgetTempForUser clears all the data for the user owner from memory

– getMetadataAttributeTerms returns the correct index terms for the schema, attribute,
and archive specified

With the intentionally invalid calls, it was checked whether the method returned the appro-
priate error code and message.

• Test log:

An excerpt of the last test log is shown below.

...

===
07.03.2003 15:55:15: Method.3=getArchiveDescription
07.03.2003 15:55:15: comment.3=No parameter is given
07.03.2003 15:55:15: flags.3=

07.03.2003 15:55:15: TestService: XML-RPC Fault #10001 -
org.apache.xmlrpc.XmlRpcException: Bad number of parameters
(getArchiveDescription):
got 0, expected 1
07.03.2003 15:55:15: TestService: spent 66 millis for request

===
07.03.2003 15:55:15: Method.4=getArchiveDescription
07.03.2003 15:55:15: comment.4=Incorrect parameter type is given:
Integer instead of String
07.03.2003 15:55:15: flags.4=

14 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

07.03.2003 15:55:15: param.4.1.type=Integer
07.03.2003 15:55:15: param.4.1.value=10
07.03.2003 15:55:15: TestService: XML-RPC Fault #10002 -
org.apache.xmlrpc.XmlRpcException: Bad parameter type
07.03.(getArchiveDescription):
parameter #01 was java.lang.Integer, expected String
07.03.2003 15:55:15: TestService: spent 7 millis for request

===
07.03.2003 15:55:15: Method.5=getArchiveDescription
07.03.2003 15:55:15: comment.5=existing archive id is given as paramater
07.03.2003 15:55:15: flags.5=

07.03.2003 15:55:15: param.5.1.type=String
07.03.2003 15:55:15: param.5.1.value=AIM25
07.03.2003 15:55:15: TestService: getArchiveDescription returned
[AC143_AIM25,no description available,[],[AC143_oai_dc],[],[]]
07.03.2003 15:55:15: TestService: spent 49 millis for request
...

07.03.2003 16:28:24: Method.12=getAttributes
07.03.2003 16:28:24: comment.12=Correct schema name is given
07.03.2003 16:28:24: flags.12=

07.03.2003 16:28:24: param.12.1.type=String
07.03.2003 16:28:24: param.12.1.value=oai_dc
07.03.2003 16:28:24: TestService: getAttributes returned
[[name=contributor,predicates=[
[name=le,description=less or equal,id=AC143_le],
[name=lt,description=less than,id=AC143_lt],
[name=ge,description=greater or equal,id=AC143_ge],
[name=le,description=greater than,id=AC143_le],
[name=eq,description=equal,id=AC143_eq],
[name=ne,description=not equal,id=AC143_ne],
[name=cw,description=contains,id=AC143_cw]],
type=text,id=AC143_contributor],
[name=coverage,predicates=[
[name=le,description=less or equal,id=AC143_le],
[name=lt,description=less than,id=AC143_lt],
[name=ge,description=greater or equal,id=AC143_ge],
[name=le,description=greater than,id=AC143_le],
[name=eq,description=equal,id=AC143_eq],
[name=ne,description=not equal,id=AC143_ne],
[name=cw,description=contains,id=AC143_cw]],
type=text,id=AC143_coverage],
[name=creator,predicates=[
...

===
07.03.2003 16:28:25: Method.17=getAttributeValues
07.03.2003 16:28:25: comment.17=By specifying values
07.03.2003 16:28:25: flags.17=

07.03.2003 16:28:25: param.17.1.type=Vector

System Testing Report(D4.2.1) 15

07.03.2003 16:28:25: param.17.1.1.type=String
07.03.2003 16:28:25: param.17.1.1.value=AIM25
07.03.2003 16:28:25: param.17.2.type=String
07.03.2003 16:28:25: param.17.2.value=oai_dc
07.03.2003 16:28:25: param.17.3.type=String
07.03.2003 16:28:25: param.17.3.value=description
07.03.2003 16:28:25: param.17.4.type=Integer
07.03.2003 16:28:25: param.17.4.value=1
07.03.2003 16:28:25: TestService: getAttributeValues returned
[A detailed and informative series of typescript letters,
1880-1901, from Francis Hall to his father relating to his life and
activities in South Africa (1880-1891) and East Africa (1892-1901).
It also includes typescript copies of four letters, 1883-1884,
from Francis’s brother Albert Lambert Hall to their father,
07.03.miscellaneous letters received, and extracts from Hall’s diary,
07.03.1893-1901.]
07.03.2003 16:28:25: TestService: spent 430 millis for request
...

07.03.2003 16:28:26: Method.23=registerArchive
07.03.2003 16:28:26: comment.23=correct URL and owner are given
07.03.2003 16:28:26: flags.23=

07.03.2003 16:28:26: param.23.1.type=String
07.03.2003 16:28:26: param.23.1.value=http://publications.uu.se/portal/OAI
07.03.2003 16:28:26: param.23.2.type=String
07.03.2003 16:28:26: param.23.2.value=system
07.03.2003 16:28:26: TestService: registerArchive returned
[url=http://publications.uu.se/portal/OAI,id=AC143_DiVA.se,
oaiId=DiVA.se,owner=system,mirrors=[],schemas=[[attributes=[],name=oai_dc,
url=http://www.openarchives.org/OAI/2.0/oai_dc.xsd,id=AC143_oai_dc]],
languages=[],keywords=[],identifyRecord=
...

• Test summary:

All methods called from the AS were tested. All the methods worked according to the
specification for all sets of correct input parameters. Correct calls did not produce errors,
incorrect calls produced the appropriate error codes and messages.

AS API test (CNR)

• Tester: Henri Avancini (avancini@iei.pi.cnr.it)

• Test date: 24 February 2003

• Scope of test: Testing AS API2 methods called from FRS.

• Test environment: Test client was a Java3 application running on Linux (2.4.18-19.8.0),
the XML-RPC implementation of Apache XML Project4.

2http://cyclades.cs.uni-dortmund.de:15200
3Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)
4http://xml.apache.org/xmlrpc

16 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Test plan: Test is divided in two stages. First, all user and folder identifiers are gathering
from MS and CWS respectively (using MS getUserIds method and CWS getFolders method).
Second, a user defined number of iterations are executed testing AS methods.

Each iteration consist of:

– Select both a random5 valid user and folder identifier.

– Call using AS methods: getRecords, getIndexedTermsAndWeights, search. Write down
returned values. “Record identifiers” are gathered from CWS using getRecords method.
“Maximun number of records” to be retrieved as well as “Maximun number of terms”
are generated randomly as previously presented. “Query” is readed from a user defined
file.

• Test log: An excerpt of test log is show bellow (file: frsCalledAPITest detailed.log). The
complete test log is available on-line6.

Method called: frsCalledAPITest
Mon Feb 24 12:21:05 CET 2003
Initialize {AS, CWS, MS, RMS}Clients.

Method called: frsCalledAPITest
Mon Feb 24 12:21:06 CET 2003
Starting {AS, CWS, MS, RMS} API test..
Query file: query
Min.loop: 10

Method called: msclient.getUserIds ()
[CW665_7225, CW665_13620, CW665_6971, CW665_7131, CW665_7471, ...]
...
Loop: 1
Selected user: CW665_10244
Selected folder: CW665_12163

cwsclient.getRecords. Folder: CW665_12163
[[AC832_oai_dc_oai:caltechcstr:00000027,],
[AC832_oai_dc_oai:caltechcstr:00000348,],
[AC832_oai_dc_oai:caltechcstr:00000367,],
[AC832_oai_dc_oai:RIACS:00000040,]]
...
Subset of record ID selected:
[AC832_oai_dc_oai:caltechcstr:00000027, AC832_oai_dc_oai:caltechcstr:00000367,
AC832_oai_dc_oai:caltechcstr:00000348, AC832_oai_dc_oai:RIACS:00000040]

asclient.getRecords (recordIDs):
[{name=Logic from Programming Language Semantics, ...
, id=AC832_oai_dc_oai:caltechcstr:00000027}, {name=Synthesizing Dynamic ...
, id=AC832_oai_dc_oai:RIACS:00000040}]

asclient.getIndexedTermsAndWeights:
maxTermNo: 7. Terms & weights:
[[logic, 0.21334425], [finit, 0.178864], [program, 0.17145575],
[the, 0.17012675], [of, 0.16318175], [formula, 0.15183675], [ltl, 0.1495975]]

5http://java.sun.com/j2se/1.4/docs/api/java/util/Random.html
6http://project.iei.pi.cnr.it:8080/FRS/publicLogs/

System Testing Report(D4.2.1) 17

asclient.search:
query:
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE query SYSTEM

"http://localhost:15210/ac/query.dtd"><query schema="dc">
<collection-query><condition weight="+" field="title">
<field-condition predicate="cw" value="logic"/>
</condition></collection-query></query>

maxRecordNo2AS: 5. maxTermNo: 3. timestamp: -9223372036854775808
Response:
[[{name=Synthesis and Biological Evaluation of bis ...
, id=AC832_oai_dc_oai:CPS:medichem/0204001}, ...
[{name=New ecological state of the ground after the war in Bosnia ...
, id=AC832_oai_dc_oai:CPS:envchem/0107002},

{AS, CWS, MS, RMS} API calls sumatory: 45

’FRSServer.log’ contains FRS server side log, which correspond to the test period. The
file ’frsCalledAPITest.log’ contains console outputs from the client side and error messages.
Lastly, ’startfrs.sh.log’ file contains console outputs from the server side and error messages.

• Test summary: All methods called from FRS were tested. All methods tested worked
according to specification for all set of correct input parameters. A total of 120 API calls
were executed7. No errors occurred during the test run, except for the ones produced by
adhoc bad parameters, e.g. call with a bad record identifier.

2.3 AS GUI test

The graphical user interface of the Access Service allows a user to register a new archive, to edit
the information of an existing archive she owns, or to delete an existing archive she owns.

2.3.1 AS GUI description

The AS GUI is used for archive management. It presents a (possibly empty) list of archive objects
owned by the user (figure 2.1).

Each archive object can be selected for multi-object actions. At the moment, the only possible
multi-object action is deletion, however, more actions may be added in the future. Multi-object
actions are available as buttons above the list of archives.

At the right end of each entry in the archives list, the user can open an actions menu containing
the following options:

• edit edit the information stored for this archive, e. g. description, keywords, etc.

• delete delete this archive

The same funtionality can also be found in the Edit menu. Choosing Edit leads to a page with
the archive information which can be edited and saved (or discarded) by the user.

The Archive menu contains only one option, i. e. Register new, for registering a new archive. After
choosing this option, the user is presented first with an input form for the new archiv’e URL, and
then with the archive information edit form.

7Total number of calls from FRS. As AS, CWS, MS, RMS test were made together, because of his dependencies,
this number correspond to the sumatory of calls made from FRS to other Cyclades services.

18 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 2.1: AS Graphical User Interface

2.3.2 AS GUI test plan

The AS GUI test plan is based on three use cases for archive management listed in Deliverable
D3.0.1. It is verified that the GUI elements invoke the desired action and use cases works. For
this purpose at first each use case is divided into different steps and then test cases are derived.

• register a new archive

– When register a new archive is invoked, the user is prompted for the archive URL.
Test:

1. Cancel Registration
2. Register without giving URL information
3. Try to register an invalid url
4. Give incomplete url information
5. Give valid information.

– Then initial archive information is shown in editable form, where the following fields are
editable: description, mirror, keyword, language. Registration can be completed using
the ’Save’ button, or cancelledn using the ’Cancel’ button.
Test:

1. Cancel Registration
2. Save the form without editing information.
3. Give very long value for each field and save
4. Give valid information and save the form

System Testing Report(D4.2.1) 19

– Success or failure message comes and in case of success message, the user is also informed
that e-mail notification will be sent when the archive is searchable.
Check:

1. E-mail received
2. Is the archive registerd

– Register the same archive again.

• Edit Archive Information Edit archive information can be invoked either by clicking the Edit
menu option, or by choosing one of the actions available in pop menu with each archive

Check:

1. Is edit archive interface invoked in both ways

2. Is information edited saved

3. On aborting is information remained unchanged

• Delete an Archive This operation can be performed for multiple archives and can be invoked
by a menu option, or from the actions popup menu available with each archive.

Test:

1. Can it be invoked in either of above mentioned ways

2. Can all the archives be selected with select All option

3. Can all the archives be unselected with select None menu option.

4. Is Delete All archives functionality ok

5. Is archive deleted by using the pop menu option

2.3.3 AS GUI test results

• Tester: Saadia Malik malik@is.informatik.uni-duisburg.de

• test date:March 21,2003

• scope of test: Complete GUI of AS was tested according to the described test plan

• Test environment:The test client was Mozilla/5.0 running under Linux

• Test log: An excerpt of the test log is presented below:

Register Archive

Case:

Enter to Archive Managment Environment
Action:

Click Menu bar item Archive Managment

Result:
OK

Checked:
Archive Managment windows comes contains listing of registered archives

Case:

Regsiter New Archive
Action

20 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

clicked on Register -> New Archive

Result:
OK

Checked:
A screen comes asking for URL

Case:

Cancel the archive registration
Action:

Cancel Button is clicked

Result:
OK

Checked:
takes to home page register archive

Case: Register none URL

Action
Ok Button is clicked without giving URL

Result:
OK

Checked:
Msg comes ’Please specify valid URL’

Case:

Invalid URL is tried to register
Action:

Register archive OK Button is clciked
Parameter
name:URL
Value:347984

Result:
OK

Checked:
Proper message was comming ’Please specify the valid URL’

Case:

Register archive by giving incomplete URL
Action:

Regsiter Archive OK button is clicked
Parameters:
Name:URL
Value:http://memory.loc.gov/

Result:
OK

Checked:
Message comes ’Sorry could not get archive information’

Case: Regsiter Archive with Valid URL

Parameters:

System Testing Report(D4.2.1) 21

name:URL
Value:http://www.bsz-bw.de/cgi-bin/oai20_send.pl

Result:
OK

Checked:
Proper message comes,archive is registered, an e-mail
notification is received

Case:

Confirm the archive regsiteration
Parameters
mirror=,language=,keword=

Action:
Register Archive -> click save button

Result
OK

Checked:
Archive is registered with given information.

• Test Summary: All test case functions worked according to the use case descriptions and
produced no errors.

Chapter 3

CWS Component Test

3.1 Introduction

The Collaborative Work Service (CWS) stores the private, community and project folders of the
registered Cyclades users along with their contents which may be other folders, metadata records,
queries and discussion forums. Project folders may contain also other material. The service
supports

• folder and contents management,

• collaboration between users by way of folder sharing in communities and projects, discussion
forums and mutual awareness,

• recommendations management.

The CWS has an API supplying 21 methods as well as a graphical user interface (GUI) with a
rich set of functionality described in the 20 use cases of Deliverable D3.0.1, sections 3.2.1 - 3.2.20,
where many use cases comprise several separate functions.

3.2 CWS API test

3.2.1 CWS API specification

The Collaborative Work Service provides an API to the other Cyclades services. The methods
of this API may be called using the inter-service communication protocol XML-RPC. For every
method also the services are listed that call this method according to the service interaction as
specified in Deliverable D3.0.1.

• Method: createUser
Signature: (userId, homeFolderId) createUser(name, password, emailAddress)
Description: this method is invoked in order to create a new user within the CWS with
the given name, password and email address.
Parameters:
Input: name: a valid user name (unique, longer than 2 characters,

no blanks or at-signs (@)).
password: a password.
emailAddress: an email address conforming to RFC 822.

Output: userId: the identifier of the newly created user.
homeFolderId: the identifier of the user’s home folder.

22

System Testing Report(D4.2.1) 23

Calling service: MS

• Method: updatePasswd
Signature: void updatePasswd(name, password)
Description: this method is invoked in order to set a new password for the user with the
given name.
Parameters:
Input: name: a user name of an existing user.

password: a password.
Calling service: MS

• Method: getUserInfo
Signature: UserInfo* getUserInfo(userIds)
Description: this method is invoked to get information stored about users in the CWS
(i. e. user identifier, full name, organization, phone and fax numbers, postal address, URL of
homepage and image, and email address).
Parameters:
Input: userIds: a list of user identifiers
Output: a list of UserInfo objects.
Calling service: AS, CS, MS

• Method: deleteUser
Signature: void deleteUser(userId)
Description: this method deletes a user (including her recommendations, personal collec-
tion list, address book) and calls RMS’ internal function anonymizeUserRatings, which sets
the userId of all ratings of the respective user to ’anonymous’.
Parameters:
Input: userId: a user identifier.
Calling service: MS

• Method: getFolders
Signature: folderId* getFolders(userId)
Description: this method may be invoked in order to get a list of identifiers of folders to
which a specific user has access.
Parameters:
Input: userId: a user identifier.
Output: a list of folder identifiers.
Calling service: FRS

• Method: getName
Signature: name getName(folderId)
Description: this method may be invoked in order to get the name of a folder.
Parameters:
Input: folderId: a folder identifier.
Output: a string containing the folder name.
Calling service: FRS

• Method: getDescription
Signature: description getDescription(folderId)
Description: this method may be invoked in order to get the description of a folder.
Parameters:

24 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Input: folderId: a folder identifier.
Output: a string containing the folder description.
Calling service: FRS

• Method: getMembers
Signature: userId* getMembers(folderId)
Description: this method may be invoked in order to get the identifiers of the users who
have access to a folder.
Parameters:
Input: folderId: a folder identifier.
Output: a list of user identifiers.
Calling service: FRS

• Method: getRecords
Signature: recordId* getRecords(folderId, timestamp)
Description: this method may be invoked in order to get the identifiers and classifier labels
of the records that have been saved into, or moved to, a folder since a certain time.
Parameters:
Input: folderId: a folder identifier.

timestamp: a point in time in UTC.
Output: a list of record identifiers.
Calling service: FRS

• Method: getQueries
Signature: queries getQueries(folderId)
Description: this method may be invoked in order to get the queries that are contained in
a folder.
Parameters:
Input: folderId: a folder identifier.
Output: a list of Query objects.
Calling service: FRS

• Method: getParents
Signature: folderId* getParents(folderId, userId)
Description: this method may be invoked in order to get the identifiers of the folders that
contain a given folder, and of which the user with the given identifier is a member. If the
user identifier is an empty string, the identifiers of all folders are returned that contain the
given folder.
Parameters:
Input: folderId: a folder identifier.

userId: a user identifier.
Output: a list of folder identifiers or a list containing an empty string, if the given folder is
not contained in any folder.
Calling service: FRS

• Method: getChildren
Signature: folderId* getChildren(folderId)
Description: this method may be invoked in order to get the identifiers of the folders that
are contained in a given folder.
Parameters:
Input: folderId: a folder identifier.

System Testing Report(D4.2.1) 25

Output: a list of folder identifiers.
Calling service: FRS

• Method: getCollections
Signature: collectionId* getCollections(folderId)
Description: this method may be invoked in order to get the identifiers of the collections
that are associated to a folder.
Parameters:
Input: folderId: a folder identifier.
Output: a list of collection identifiers.
Calling service: FRS, SBS

• Method: getCommunity
Signature: communityId getCommunity(folderId)
Description: this method may be invoked in order to get the identifier of the community
to which a folder belongs.
Parameters:
Input: folderId: a folder identifier.
Output: a community identifier or an empty string if the folder does not belong to a com-
munity.
Calling service: FRS

• Method: saveQuery
Signature: void saveQuery(folderId, userId, query)
Description: this method may be invoked in order to save a query in a folder on behalf of
a user.
Parameters:
Input: folderId: a folder identifier.

userId: a user identifier.
query: a Query object.

Calling service: SBS

• Method: saveResults
Signature: void saveResults(folderId, userId, records)
Description: this method may be invoked in order to save a list of records in a folder on
behalf of a user.
Parameters:
Input: folderId: a folder identifier.

userId: a user identifier.
records: a list of Record objects.

Calling service: SBS

• Method: saveRecommendedRecords
Signature: boolean saveRecommendedRecords(folderId, recordIds)
Description: this method may be invoked in order to save a list of recommended records
for a folder.
Parameters:
Input: folderId: a folder identifier.

recordIds: a list of recordIdentifiers.
Output: false if record recommendations for this folder are not welcome, true otherwise.
Calling service: FRS

26 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Method: saveRecommendedUsers
Signature: boolean saveRecommendedUsers(folderId, userIds)
Description: this method may be invoked in order to store a list of user recommendations
for a folder.
Parameters:
Input: folderId: a folder identifier.

userIds: a list of user identifiers.
Output: false if user recommendations for this folder are not welcome, true otherwise.
Calling service: FRS

• Method: saveRecommendedCommunities
Signature: boolean saveRecommendedCommunities(folderId, communityIds)
Description: this method may be invoked in order to store a list of community recommen-
dations for a folder.
Parameters:
Input: folderId: a folder identifier.

communityIds: a list of community identifiers.
Output: false if community recommendations for this folder are not welcome, true otherwise.
Calling service: FRS

• Method: saveRecommendedCollections
Signature: boolean saveRecommendedCollections(folderId, collectionIds)
Description: this method may be invoked in order to store a list of collection recommen-
dations for a folder.
Parameters:
Input: folderId: a folder identifier.

collectionIds: a list of collection identifiers.
Output: false if collection recommendations for this folder are not welcome, true otherwise.
Calling service: FRS

• Method: addModifyCollection
Signature: void addModifyCollection(collectionId, collectionName, collectionDescription,
parentCollectionId)
Description: this method may be invoked in order to notify of the creation of a new, or the
modification of an existing, collection.
Parameters:
Input: collectionId: a collection identifier.

collectionName: the collection name.
collectionDescription: a description of the collection.
parentCollectionId: an identifier of the parent collection.

Calling service: CS

• Method: deleteCollection
Signature: void deleteCollection(collectionId)
Description: this method may be invoked in order to notify of the deletion of a collection.
Parameters:
Input: collectionId: a collection identifier.
Calling service: CS

• Method: updatePersonalCollections
Signature: void updatePersonalCollections(userId, collectionIds)

System Testing Report(D4.2.1) 27

Description: this method may be invoked in order to notify of the update of a user’s per-
sonal set of collections.
Parameters:
Input: userId: a user identifier.

collectionIds: a list of collection identifiers.
Calling service: CS

The class definitions that were used in some API signatures (Record, Query, UserInfo) and that
translate to XML-RPC <struct>s are as follows:

• Query

– id: the unique identifier of the query.

– name: a string containing the name of the query. This attribute is optional, i. e. is only
present if the user has given the query a name.

– queryString: a string containing the actual query.

• Record

– id: the unique identifier of the record.

– name: a string containing the name of the record, e. g. the title of the document
referenced by the record.

– metadata: a string containing the metadata of the record coded in XML.

• UserInfo

– userId: the unique identifier of the user.

– fullName: a string containing the first name, (middle name), and last name.

– organization: a string containing the name of the user’s organization.

– workPhone: a string containing the user’s office phone number.

– workFax: a string containing the user’s office fax number.

– homePhone: a string containing the user’s home phone number.

– mobilePhone: a string containing the user’s mobile phone number.

– postalAddress: a string containing the user’s postal address.

– homePage: a string containing the URL of the user’s home page.

– imageUrl: a string containing the URL of the user’s picture on the WWW.

– mailAddress: a string containing the user’s email address.

3.2.2 CWS API test

In the following we list the API methods by calling service indicating test responsibilities for the
methods listed.

• MS (FORTH)

– createUser

– updatePasswd

– getUserInfo

– deleteUser

28 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• FRS (CNR)

– getFolders

– getName

– getDescription

– getMembers

– getRecords

– getQueries

– getParents

– getChildren

– getCollections

– getCommunity

– saveRecommendedRecords

– saveRecommendedUsers

– saveRecommendedCommunities

– saveRecommendedCollections

• SBS (UNIDO)

– getCollections

– saveQuery

– saveResults

• CS (CNR)

– getUserInfo

– addModifyCollection

– deleteCollection

– updatePersonalCollections

• AS (UNIDO)

– getUserInfo

In the following we summarize the results of the CWS API tests as conducted by FIT and the
partners responsible for services calling the CWS API.

CWS API test (FIT)

• Tester: Wido Wirsam (wido.wirsam@fit.fraunhofer.de)

• Test date: 5 November, 2002 15:12 GMT

• Scope of test: Complete API of CWS v0.21 was tested via several Python scripts which
tested every method of the API with a number of parameter sets that were read from a test
data file.

• Test environment: Test client was a Python 2.2 script running on Windows XP making
use of xmlrpclib module v. 0.9.9, the XML-RPC implementation of Secret Labs AB2.

1http://cosidetti.gmd.de/rpc2/cyc cws.cgi
2http://www.pythonware.com/products/xmlrpc/

System Testing Report(D4.2.1) 29

• Test plan: The CWS XML-RPC test platform provides a tool to automatically create CWS-
users. All API-methods that are provided by the CWS-service are performed on these users
and their folders.

The platform consists of the following python programs:

– definitions.py This configuration file defines a set of values necessary for the creation of
the test-users and the behaviour of the testrun.

– TestFieldGenerator.py This script performs the generation of test-users. All relevant
information about the generated users is stored in a log file.

– logfile.py This class provides access to all information about the users created by the
TestFieldGenerator.

– main.py This script executes all XML-RPC calls provided by the CWS-services on the
users generated by the TestFieldGenerator.

The first step necessary to test the CWS API is to create some dummy users that populate
the cyclades system. In the definitions.py file the number of users that will be created can be
specified. The run of TestFieldGenerator.py uses the API method ’createUser()’ to generate
the specified number of users. ’createUser()’ returns a unique user-ID and a folder-ID that
are stored in a logfile. For each user a password is randomly generated. It is stored in the
logfile as well. The generated logfile looks like this (to improve readability some spaces have
been removed):

ID userName userPwd userMail userID userFolder

0 Karlvugz cyhpjoagvj wirsam@web.de CW111_4882 CW111_4885
1 Karlwlyv prmoqmypxa wirsam@web.de CW111_4925 CW111_4928
2 Karljiiu sdysuff wirsam@web.de CW111_4968 CW111_4971

The second step is to call all CWS API methods. Most of the methods require a user-Id
or a folder-Id as parameters. All methods of the CWS API that require a user-Id and no
folder-Id as parameter are called once for every user, with that specific user-Id as parameter.
All methods that require a folder-Id as parameter are called once per folder of every user.
Each call of every method and its results are logged the ’Access.txt’ file. The ’Access.txt’ file
looks like this:

AccessLogfile created Tue Nov 05 15:12:57 2002

result = s.service.getFolders(’CW111_11179’)
[’CW111_11200’, ’CW111_11204’, ’CW111_11211’, ’CW111_11218’]

result = s.service.getUserInfo([’CW111_11179’])
[{’fullName’: ’Karlitpqr’, ’userId’: ’CW111_11179’}]

result = s.service.getUserInfoFromNames([’Karlitpqr’])
[{’fullName’: ’Karlitpqr’, ’userId’: ’CW111_11179’}]

result = s.service.updatePersonalCollections(’CW111_11179’, testCollections)

result = s.service.getChildren(’CW111_11200’)
[]

result = s.service.getName(’CW111_11200’)

30 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

MyCYPrivateFolder

result = s.service.getDescription(’CW111_11200’)
MyDescr

result = s.service.getMembers(’CW111_11200’)
[’CW111_11179’]

This ist the roadmap to test the CWS-API with the python test-program:

– open the definitions.py file and modify the value of the parameter ’numMembersToCre-
ate’ to the number of users you want to be created.

– run the file TestFieldGenerator.py. Via the API method createUsers() the CWS system
is called to create the specified amount of users. For every user one PrivateFolder, one
CommunityRootFolder, one CommunityFolder and one ProjectFolder are created. The
program produces a file called ’TFGLog*.txt’ where * is the smalest number that does
not already exists.

∗ ’TFGLog*.txt’ logs the username, userpassword, userEmail, CWS-userID and CWS-
homeFolder of every user created.

– open the ’definitions.py’ file again and modify the parameter ’testFieldLogFile’ to the
filename that just has been created by the run of TestFieldGenerator.py .

– run the file main.py. The program executes every method provided by the CWS- and
the RMS-services and produces the following log files:

∗ ’Access.txt’ logs every command that is executed by main.py as well as the results
the methods return.

∗ ’Errors.txt’ logs every error that occurs during the test run.

– check the log files.

• Test run: The CWS API test was performed on the server ’http://cosidetti.gmd.de’ which
runs the same version of Cyclades CWS as the ’http://cyclades.gmd.de’ server. The
’http://cosidetti.gmd.de’ server is not connected to the other services so the CWS API func-
tionality can be tested with no side effects on the other services. The test was performed
with 20 computer generated users on November 5th 2002. Every user was generated by the
CWS API method:

createUser(name, password, emailAddress)

The username and password are automatically generated. For the emailAddress argument a
valid eMail address is used. This is the resulting logfile ’TFGLog83.txt’ :

ID userName userPwd userMail userID userFolder

0 Karlitpqr zxtbqo wirsam@web.de CW111_11179 CW111_11182
1 Karlmdx kjooqh wirsam@web.de CW111_11222 CW111_11225
2 Karlthbe qvuxyun wirsam@web.de CW111_11265 CW111_11268
3 Karllvpzij cbahu wirsam@web.de CW111_11308 CW111_11311
4 Karlasg ozjhlt wirsam@web.de CW111_11351 CW111_11354
5 Karlhkrvqf bttfgc wirsam@web.de CW111_11394 CW111_11397
6 Karlcjfb vkgvvjn wirsam@web.de CW111_11437 CW111_11440
7 Karluaje ttkgna wirsam@web.de CW111_11480 CW111_11483
8 Karlselx bbfsovw wirsam@web.de CW111_11523 CW111_11526
9 Karlngj dfxdr wirsam@web.de CW111_11566 CW111_11569

System Testing Report(D4.2.1) 31

10 Karlcrmi gskib wirsam@web.de CW111_11609 CW111_11612
11 Karlmxdtii eouvhmn wirsam@web.de CW111_11652 CW111_11655
12 Karlbavk mccmoqa wirsam@web.de CW111_11695 CW111_11698
13 Karlxno nwjlvbw wirsam@web.de CW111_11738 CW111_11741
14 Karlcldq fkiri wirsam@web.de CW111_11781 CW111_11784
15 Karlfqk izlkeo wirsam@web.de CW111_11824 CW111_11827
16 Karlbkw acabwh wirsam@web.de CW111_11867 CW111_11870
17 Karlwxrf yqxjn wirsam@web.de CW111_11910 CW111_11913
18 Karlwueige hyyaodv wirsam@web.de CW111_11953 CW111_11956
19 Karloed vrsqffj wirsam@web.de CW111_11996 CW111_11999

The file ’TFGLog83.txt’ is available online3. For each user four folders were produced: one
private folder, one project folder, one community root folder and one community folder. This
was done by calling the CWS API method:

createFolder(userID, folderID, folderType)

In the test run all CWS API methods were called. The calls and the results were stored in
a logfile called ’Access.txt’. In the logfile ’Errors.txt’ error messages would have been logged
if any had occured. Most methods take either a userID or a folderID as argument. Every
API method that needs a userID is called once for every user. One example is the method
’getFolders(userID)’. It returns a list of folders that are owned by the user. In our testrun the
method returned the four folders that previously were created. The results of these calls were
stored during the testrun. Thereafter every method of the CWS API that needs a folderID
as argument was called with each of the returned folderIDs for every user. In detail these
were the following methods:

called once per user:

getFolders()
getUserInfo()
updatePersonalCollections()

called once per folder:

getName()
getDescription()
getMembers()
getRecords()
getQueries()
getParents()
getChildren()
getCollections()
getCommunity()
saveQuery()
saveResults()
saveRecommendedRecords()
saveRecommendedUsers()
saveRecommendedCommunities()
saveRecommendedCollections()
addModifyCollection()
deleteCollection()

3http://cyclades.gmd.de/publicLogs/CWS/TFGLog83.txt

32 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

the methods:

updatePasswd()
deleteUser()

have been sucessfully tested in the script ’cleanup.py’ after the other tests have been com-
pleted.

All together 1440 API-Calls have been made.

This is an excerpt of the ’Access.txt’ logfile. The complete file is available online4.

AccessLogfile created Tue Nov 05 15:12:57 2002

result = s.service.getFolders(’CW111_11179’)
[’CW111_11200’, ’CW111_11204’, ’CW111_11211’, ’CW111_11218’]

result = s.service.getUserInfo([’CW111_11179’])
[{’fullName’: ’Karlitpqr’, ’userId’: ’CW111_11179’}]

result = s.service.getUserInfoFromNames([’Karlitpqr’])
[{’fullName’: ’Karlitpqr’, ’userId’: ’CW111_11179’}]

result = s.service.updatePersonalCollections(’CW111_11179’, testCollections)

result = s.service.getChildren(’CW111_11200’)
[]

result = s.service.getName(’CW111_11200’)
MyCYPrivateFolder

result = s.service.getDescription(’CW111_11200’)
MyDescr

result = s.service.getMembers(’CW111_11200’)
[’CW111_11179’]

result = s.service.getRecords(’CW111_11200’, xmlrpclib.DateTime(time.time()
-30000000))
[[’AC_00001’, ’class label 1’], [’AC_00002’, ’class label 231’]]

result = s.service.getParents(’CW111_11200’, "")
[’CW111_11182’]

result = s.service.getCollections(’CW111_11200’)
[’CO111_0005’, ’CO111_0003’]

result = s.service.getCommunity(’CW111_11200’)

result = s.service.saveQuery(’CW111_11200’, ’CW111_11179’, query)

4http://cyclades.gmd.de/publicLogs/CWS/Access.txt

System Testing Report(D4.2.1) 33

result = s.service.saveResults(’CW111_11200’, ’CW111_11179’, results)

result = s.service.saveRecommendedRecords(’CW111_11200’, results)
<Boolean True at a69ed0>

result = s.service.saveRecommendedUsers(’CW111_11200’, testUsers)
<Boolean True at a69ed0>

result = s.service.saveRecommendedCommunities(’CW111_11200’, testCommunities)
<Boolean True at a69ed0>

result = s.service.saveRecommendedCollections(’CW111_11200’, testCollections)
<Boolean True at a69ed0>

During the complete testrun no errors have occured. This is the contens of the error logfile
’Errors.txt’:

ErrorLogfile created Tue Nov 05 15:12:57 2002

ErrorLogfile closed Tue Nov 05 15:50:34 2002

• Test summary: All methods worked according to specification for all sets of input param-
eters. 20 computer generated users were created via the CWS API method ’createUser()’.
On these users all available CWS API methods were executed. No Errors occured during the
testrun. The method calls and the results produced by the CWS system were logged and
made available online.

CWS API test (FORTH)

Logs on a CWS API Test
====================================
Date 21 November 2002
Author Nikos Papadopoulos
ICS-FORTH GREECE
====================================
Method: createUser
Parameters: testuser, testuser, testuser@ics.forth.gr
Result: [CW665_19457, CW665_19460]
====================================
Method: createUser
Parameters: testuser, testuser
Result: Bad number of parameters in createUser: expected 3, got 2
====================================
Method: updatePasswd
Parameters: testuser, testuser2
Result:
====================================
Method: updatePasswd
Parameters: testuser
Result: Bad number of parameters in updatePasswd: expected 2, got 1
====================================

34 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Method: deleteUser
Parameters: CW665_19457 (a correct userID, the one got from createUser before)
Result:
====================================
Method: deleteUser
Parameters: CW665_29457 (a wrong userID)
Result: Bad user id(s): CW665_29457
====================================

CWS API test (CNR)

• Tester: Leonardo Candela (candela@iei.pi.cnr.it)

• Test date: 14 February 2003

• Scope of test: Testing CWS API v0.25 methods called from CS.

• Test environment: Test client was a Java program running on Windows 2000 making use
of Apache XML-RPC v1.0 implementation6.

• Test plan: The first step consists in calling the method getUserInfo. This method require
as parameters some valid user identifiers that can be acquired via the method getUserIds
of MS. Returned results can be checked using the CWS GUI.

Second step consists in calling the method updatePersonalCollections. This method re-
quire as parameters a valid user identifier and a set of valid collections identifiers. Valid
collections identifiers can be acquired via the method listCollections of CS. Results of
method invocation are checked via the CWS GUI (e.g. trying to create a new private folder
a set of collection can be selected among user’s personal collections, if any).

Third step consists in calling the method addModifyCollection. This method is used in
order to notify the creation of a new, or the modification of an existing, collection and
require as parameters a collection identifier, collection name, collection description and parent
collection identifier. Results of method invocation are checked via the CWS GUI (e.g. trying
to create a new private folder a set of collection can be selected among all collection, if no
personal collections are selected).

The last step consists in calling the method deleteCollection. This method is used in order
to notify the deletion of a collection and require as parameter a collection identifier. Results
of method invocation are checked via the CWS GUI (e.g. trying to create a new private
folder a set of collection can be selected among all collection, if no personal collections are
selected).

• Test log: An excerpt of test log is shown below. The complete test log is available on-line7.

CWS run log - created Fri Feb 14 09:16:59 CET 2003
Method: getUserInfo
Parameters:

CW665_7131
Result:

[{... userId=CW665_7131, fullName=Leonardo Candela, ...
...
Method: updatePersonalCollections

5http://cyclades.gmd.de/cgi-bin/cyc cws.cyc
6http://xml.apache.org/xmlrpc
7http://project.iei.pi.cnr.it:8080/CollectionService/publicLogs/CWStestAPI.log

System Testing Report(D4.2.1) 35

Parameters:
CW665_7131

Result:
void

...
Method: addModifyCollection
Parameters:

aaa
bbb
ccc
ddd

Result:
void

...
Method: deleteCollection
Parameters:

aaa
Result:

void
...

• Test summary: All methods tested worked according to specification for all sets of input
parameters. No errors occurred during the test run.

CWS API test (UNIDUE)

• Tester: Gudrun Fischer (Gudrun.Fischer@uni-duisburg.de)

• Test date: 4 March 2003

• Scope of test: Testing CWS API methods called from AS and SBS.

• Test environment: Test client was a Java8 application running on Debian Linux, the
XML-RPC implementation of Apache XML Project.

• Test plan:

Each method was called first with valid parameters, then with invalid parameters of the right
type, then with a wrong number of parameters, and finally, with a wrong parameter type.

With the valid method calls, the semantic result was checked:

– getUserInfo did return the correct user data

– getCollections returned exactly those collections contained in the folder

– getQueries returned exactly those queries contained in the folder

– saveQuery resulted in the saved queries appearing in the folder

– saveResults resulted in the saved records appearing in the folder

With the intentionally invalid calls, it was checked whether the method returned the appro-
priate error code and message.

• Test log: An excerpt of the last test log is shown below.

8Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)

36 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Mar 4, 2003 9:41:14 AM: Reading from tests_for_partners/cw/CW_CompleteRun.properties
Mar 4, 2003 9:41:14 AM: ServerURL=http://cyclades.gmd.de/cgi-bin/cyc_cws.cgi
Mar 4, 2003 9:41:14 AM: ServerName=service

===
Mar 4, 2003 9:41:14 AM: Method.1=getUserInfo
Mar 4, 2003 9:41:14 AM: comment.1=valid parameters

Mar 4, 2003 9:41:14 AM: param.1.1.type=Vector
Mar 4, 2003 9:41:14 AM: param.1.1.1.type=String
Mar 4, 2003 9:41:14 AM: param.1.1.1.value=CW665_7853
Mar 4, 2003 9:41:15 AM: TestService: getUserInfo returned
[{userId=CW665_7853, fullName=gf, mailAddress=fischer@ls6.cs.uni-dortmund.de}]
Mar 4, 2003 9:41:15 AM: TestService: spent 595 millis for request

===
Mar 4, 2003 9:41:15 AM: Method.2=getUserInfo
Mar 4, 2003 9:41:15 AM: comment.2=list of user IDs contains one invalid ID

Mar 4, 2003 9:41:15 AM: param.2.1.type=Vector
Mar 4, 2003 9:41:15 AM: param.2.1.1.type=String
Mar 4, 2003 9:41:15 AM: param.2.1.1.value=CW665_7853
Mar 4, 2003 9:41:15 AM: param.2.1.2.type=String
Mar 4, 2003 9:41:15 AM: param.2.1.2.value=bla
Mar 4, 2003 9:41:18 AM: TestService: XML-RPC Fault #10102 -
Bad user id(s): [’bla’]
Mar 4, 2003 9:41:18 AM: TestService: spent 3409 millis for request

===
Mar 4, 2003 9:41:18 AM: Method.3=getUserInfo
Mar 4, 2003 9:41:18 AM: comment.3=missing parameter

Mar 4, 2003 9:41:22 AM: TestService: XML-RPC Fault #10001 -
Bad number of parameters in getUserInfo: expected 1, got 0
Mar 4, 2003 9:41:22 AM: TestService: spent 3158 millis for request

===
Mar 4, 2003 9:41:22 AM: Method.4=getUserInfo
Mar 4, 2003 9:41:22 AM: comment.4=wrong parameter type

Mar 4, 2003 9:41:22 AM: param.4.1.type=Integer
Mar 4, 2003 9:41:22 AM: param.4.1.value=10
Mar 4, 2003 9:41:25 AM: TestService: XML-RPC Fault #10002 -
Bad parameter type in getUserInfo: expected array for userIds,
got <type ’int’>
Mar 4, 2003 9:41:25 AM: TestService: spent 3183 millis for request

...

===
Mar 4, 2003 9:42:25 AM: Method.23=saveResults
Mar 4, 2003 9:42:25 AM: comment.23=wrong parameter type
(Integer instead of Vector)

System Testing Report(D4.2.1) 37

Mar 4, 2003 9:42:25 AM: param.23.1.type=String
Mar 4, 2003 9:42:25 AM: param.23.1.value=CW665_7880
Mar 4, 2003 9:42:25 AM: param.23.2.type=String
Mar 4, 2003 9:42:25 AM: param.23.2.value=CW665_7853
Mar 4, 2003 9:42:25 AM: param.23.3.type=Integer
Mar 4, 2003 9:42:25 AM: param.23.3.value=10
Mar 4, 2003 9:42:28 AM: TestService: XML-RPC Fault #10002 -
Bad parameter type in saveResults: expected array for results,
got <type ’int’>
Mar 4, 2003 9:42:28 AM: TestService: spent 3183 millis for request

• Test summary: All methods called from the AS and the SBS were tested. All methods
tested worked according to the specification for all sets of correct input parameters. Correct
calls did not produce any errors, incorrect calls produced the appropriate error codes and
messages.

3.3 CWS GUI test

3.3.1 CWS GUI description

The graphical user interface of the CWS presents the folders to which a registered user of the
Cyclades system has access and allows for navigation among these folders and for adding, moving,
deleting, reading or editing artifacts within those folders. The user interface shows the contents
of one folder at a time in a folder listing. The functionality may be invoked by using menus and
buttons that are part of a folder listing.

The folder listing

The CWS user interface presents the contents of a folder in a tabular representation with a header
containing menus, navigation buttons and action shortcut buttons. As an example figure 3.1
shows a folder listing with an open File menu for creating new objects in the folder.

Several classes of artifacts can be created and shared in a folder: various kinds of folders (private,
project, community), discussion forums containing notes, and annotations of artifacts which also
consist of notes. In project folders, additional kinds of artifacts may be created and shared:
documents and URLs. Records and queries are not created via user operations, but transferred
from the Search and Browse Service; they may also be shared in folders.

Each artifact contained in a folder is represented by an entry in the folder listing. An entry
consists of an information button, a checkbox (that a user has to “tick” to select the artifact for
some multi-action), the name of the artifact, some icons, additional data and an action menu
button.

Most prominent in each entry is the name of the artifact. Obviously, a user should choose names
describing the content or purpose of each individual artifact. The icon immediately left of the
artifact name denotes the artifact type. To the right of the artifact name the CWS user interface
displays:

• Zero, one or more of the following icons:

– shared icon indicates that a folder is shared;

– lock icon indicates that someone has set a lock for this artifact;

– note icon indicates that a note has been added to the artifact;

– rate icon indicates that the document has been rated by one or more folder members;

38 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• the user name of its owner;

• date and time of the most recent modification;

• zero, one or more icons indicating that some of the following events have occurred:

– new icon indicates a new artifact;

– change icon indicates changes to the artifact;

– read icon indicates that someone has read the artifact;

– modification icon indicates recent modifications in a sub-artifact;

• a menu button showing the actions involving the artifact.

Note that different actions are possible for different types of artifacts. Depending on the individual
access rights, the number and type of actions permitted may vary.

Most icons in an artifact entry are “clickable”, i. e. one gets more information on a community, a
lock, a note, a rating etc. when one clicks on it.

The instant access navigation buttons

The upper right hand corner of the interface provides an icon bar showing buttons applicable to
instantly access certain artifacts.

• home folder icon represents a user’s home folder.

• communities icon represents a the existing communities.

• clipboard icon recpresents a user’s clipboard, which serves as an intermediate store.

• waste icon represents a user’s waste, which helps to prevent unauthorized or unintentional
deletion of artifacts: In the CWS, an artifact can be irrevocably destroyed only from the
waste-basket of its owner.

• address book icon represents a user’s address book, to be used primarily to invite new members
to the user’s folder.

• search & browse icon represents the access to the Search & Browse Service.

The menu bar

At the upper left hand corner of the interface there is a menu bar with five menus and action
shortcut buttons for the most frequent actions.

New artifacts are added to the current folder by selecting one of the File menu options:

File → New plus a sub-option from the list Discussion, Private Folder, Community Folder, Project
Folder in order to create an artifact of the specified type directly on the CWS server. For project
folders, also documents, and URLs may be created. Examples are:

• Select File → New → Private Folder in order to create a private folder within the current
private or home folder.

• Select File → New → Community Folder in order to create a community folder within the
current community or home folder.

• Select File → New → Project Folder in order to create a project folder within the current
project or home folder.

System Testing Report(D4.2.1) 39

• Select File → New → Document to upload a file from the user’s local computer system to
the current project folder.

If the user wants to create a new private, community or project folder, the CWS user interface asks
for name, description, collections to be associated to that folder; finally the user is asked to specify
whether recommendations are requested for records, users, collections, or communities, (i. e. tick
the appropriate box). For communities one has to also specify in the creation dialogue whether
the community is open to be joined by external users.

When a new document is identified to be uploaded to the CWS server, the user is asked via
an additional dialogue to specify the document’s local URL, name, description, MIME type and
encoding.

If the user wants to rate the new artifact, she may choose one of the following options: no (for no
rating available), very poor, poor, fair, good, or excellent, by ticking the respective radio button.

The Edit menu is used to transfer existing artifacts to/from from the clipboard by the following
procedure. Select the Paste option in the Edit menu to add artifacts that arrived at the Clipboard
from somewhere in the user’s folders as a result of the most recent Copy or Cut action to the
current Folder.

Via the Options menu, the user may edit Preferences, personal user Details, user Communication
specifics, or user Default Events.

To navigate among the particular entities one can also use the GoTo menu.

• Select GoTo → Home to get to the user’s home folder.

• Select GoTo → Communities to get to the existing communities.

• Select GoTo → Clipboard to get to the user’s clipboard.

• Select GoTo → Waste to get to the user’s waste.

• Select GoTo → Address Book to get to the user’s address book.

• Select GoTo → Search & Browse to get to the Search & Browse Service.

• Select GoTo → User Info to receive the specifics of the user information stored in the system.

System administrators may access the existing collections and services via the following options of
the GoTo menu.

• Select GoTo → Collections

• Select GoTo → Services

The communities listing

The communities listing shows the existing communities in the style of a folder listing. The
communities are represented by their root folders. Community objects in the communities listing
allow the following functions via the action menus (cf. below):

• Join Community to join the community, if it is open to subscription,

• Mail Community Mgrs to send an electronic letter to the manager(s) of a particular commu-
nity (e. g. to get invited to a community).

40 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

The collections and services listing

The collections and services listings are intended mainly for administrators and show the existing
collections and services in the style of a folder listing.

The collections folder allows the function

• Update Collections to update the list of collections from the Collection Service

via the action menu (cf. below). The collection objects have no specific functions other than Info.

The service objects in the services listing indicate the status of the service via the service icon and
allow the functions

• Ping to test the availability of the service,

• Process Queue to process queued calls for this service (administrators only)

via the action menu. The services folder allows the function

• Update Services to update the list of services from the Mediator Service

also via its action menu.

The recommendations folder

Every folder may have up to one recommendations folder that contains the recommendations of
records, collections, users or communities intended for this folder. The title of the recommenda-
tions folder is always Recommendations, it may not be moved. A recommendations folder may
only contain recommended objects inserted by the system when received from the Filtering and
Recommendation Service. Recommended objects allow the following functions via the action menu
(cf. below):

• recommended records may be moved or copied to other folders,

• recommended collections may be associated to the containing folder,

• recommended users may be invited to the containing folder (managers only) or may be
contacted by electronic mail,

• recommended communities may be joined if open for subscription or their managers may be
contacted by electronic mail.

Recommendations may of course also be deleted. All these functions are invoked via the action
menu of the respective entry.

The multi-action buttons

Preceding the list of artifacts, the CWS user interface provides a number of buttons for actions to
be applied to several selected artifacts.

In general, an artifact is selected by marking the checkbox to the left of its name. The Select all
and Select none buttons are shortcuts for selecting or de-selecting all artifacts within the current
folder.

Hitting, e. g., the copy button invokes copying, and hitting the cut button triggers transfer of the
selected artifacts to the user’s clipboard; hitting the delete button invokes transfer of the selected

System Testing Report(D4.2.1) 41

artifacts to the waste. Certain buttons such as send and rate trigger actions that can be applied
only to artifacts of specific types.

Note that artifacts transferred from a folder to the clipboard or to the waste are no longer visible
to the members of the folder.

The action menus

At the right end of the entry containing the artifact name in the folder listing, the CWS user
interface provides for every entry an action menu for operations to be applied only to that particular
artifact. Here one gets all the actions that are applicable to the artifact, including generic ones
like Open, Catch up, History, Info, or actions that depend on the nature of the artifact, e. g. Rate,
Attach note for records or Add Collections, Remove Collections for Cyclades folders.

Here in the single action menu the actions more specific to CWS are to be found that do not appear
in the menu bar or the multi-actions:

• Add Collections to associate additional collections to a Cyclades folder,

• Remove Collections to remove collections from the set of collections associated to a Cyclades
folder,

• Edit Reco Prefs to modify the preferences for the recommendations sought for,

• Allow Subscription to allow subscription to a community,

• Deny Subscription to refuse subscription to a community,

• Update Folder Profile to request an immediate update of the folder profile in the Filtering
and Recommendation Service,

• Join Community to join the selected community,

• Mail Community Mgrs to send an electronic letter to the manager(s) of a particular commu-
nity (e. g. to get permission to join a community).

The configuration of the Action menu depends on the type of artifact—for example, different
actions are appropriate for a URL artifact, a folder or a document.

What actions are applicable to which artifacts? Access right management in the CWS is based on
roles, whereby a role defines the set of artifacts and actions a user may apply for a specific task.
As a consequence, the CWS will not display the single action menu entries for actions that a user
may not perform on the specific artifact w. r. t. to the role assigned to the particular user. On
the other hand, one may invite, for example, new community members assigning roles to them.
Moreover, roles define access profiles which can be attached to any artifact in the CWS. A set of
pre-defined roles serves as a starting point: manager, owner (originally the creator; also accountable
for the disk space used), member and restricted member (read-only access). Role assignments are
inherited along the folder hierarchy and can be modified at any time. In the pre-defined role
definition, member management is reserved to managers.

Context Sensitive Help

The context sensitive help feature provides assistance to navigate the system. In a number of
application environments one may click the question mark button to get an explanation of the
action to be launched.

42 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

3.3.2 CWS GUI test plan

The CWS is based on BSCW. The following test plan lists test cases for functionality that has
been specifically implemented for the CWS; it also lists test cases for functionality that is standard
in BSCW, but only for cases where CWS specific objects are concerned.

The CWS GUI test plan is based on the list of 20 use cases that have been identified for the CWS
in Deliverable D3.0.1. When a use case is too coarse to allow a proper test of functionality, it is
split into a number of appropriate subcases, e.g. “Join community” is split into two subcases:

• Execute ‘Join community’ on a recommended community.

• Execute ‘Join community’ on a community shown in the Communities listing

The interaction sequence for the test cases may involve none, one or two intermediary forms where
to enter parameters that are necessary for the completion of the test case. For the test plan, we
list only the parameters, not a description of the interaction.

Create folder

When creating folders we distinguish two cases: the user creates the root of a new folder hierarchy
in her home folder, or the user creates a subfolder within in an existing folder hierarchy. In the
first case, a number of preferences have to be set which in the second case are inherited from the
parent folder.

• Create root folder
Creation of a root folder of a private domain, a project, or a community is split into three
subcases for each kind of folder since different object types and input parameters are involved.

– Create private root folder
Action: Menu bar File→New→Private Folder in the home folder
Parameters:

∗ folder name
∗ folder description
∗ collections to be associated to the folder (from the personal set of collections when

defined, from the set of all collections when no personal set has been defined)
∗ recommendation preferences (which of the four varieties of recommendations (records,

users, communities, collections) are welcome to the folder)

– Create project root folder
Action: Menu bar File→New→Project Folder in the home folder
Parameters:

∗ folder name
∗ folder description
∗ collections to be associated to the folder
∗ recommendation preferences

– Create community root folder
Action: Menu bar File→New→Community in the home folder
Parameters:

∗ folder name
∗ folder description
∗ collections to be associated to the folder
∗ recommendation preferences

System Testing Report(D4.2.1) 43

∗ subscription policy preference (open to subscriptions from outside or not).
Check:
∗ After creation of a community root folder the respective community should show

up in the communities folder (cf. ‘View communities’ below)

• Create subfolder
Again, the creation of a subfolder in a private domain, a project, or a community is split into
three subcases for each kind of folder since different object types and input parameters are
involved.

– Create private subfolder
Action: Menu bar File→New→Private Folder in a private folder
Parameters:
∗ folder name
∗ folder description
∗ recommendation preferences

– Create project subfolder
Action: Menu bar File→New→Project Folder in a project folder
Parameters:
∗ folder name
∗ folder description
∗ recommendation preferences

– Create community subfolder
Action: Menu bar File→New→Community Folder in a community folder
Parameters:
∗ folder name
∗ folder description
∗ recommendation preferences

Move and copy

Moving and copying objects within the CWS from one folder to another are generic BSCW opera-
tions that are also available for the CWS specific objects: the various kinds of folders, records, and
queries. The mechanism works with a container called clipboard that every user has apart from
her home folder. More than one object of different type may be moved or copied together.

Check:

• Moving and/or copying of certain objects should not be possible: Recommendations and
recommendations folders, communities folder and its communities.

Delete, undelete and destroy

Again, deleting, undeleting and destroying objects are generic operations within the CWS available
for folders, records, queries, discussion forums, and any other type of documents. The mechanism
works with a container called waste that every user has apart from her home folder and clipboard.
Several objects of different type may be deleted, undeleted or destroyed together.

Check:

• Deleting means destroying for some objects: recommendations and recommendations folders.

• Some objects cannot be deleted: communities folder and communities

• The FRS should be notified of deleting and undeleting of records.

44 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Edit folder attributes

Folder attributes that may be edited by the user are

• name

• description

• associated collections

• recommendation preferences

• subscription policy preference (community root folders only)

All in all, we have seven subcases.

• Edit name
Action: action menu ‘Rename’ of a folder entry
Parameters: new folder name

• Edit description
Action: action menu ‘Description’ of a folder entry
Parameters: new folder description

• Add associated collections
Parameters: additional collections Action: action menu ‘Add Collections’ of a folder entry

• Remove associated collections
Action: action menu ‘Remove Collections’ of a folder entry
Parameters: collections to be removed

• Edit recommendation preferences
Action: action menu ‘Edit Reco Prefs’ of a folder entry
Parameters: the new recommendation preferences for

– records

– collections

– users

– communities

• Allow subscription (community root folders only)
Action: action menu ‘Allow Subscription’ of a folder entry

• Deny subscription (community root folder only)
Action: action menu ‘Deny Subscription’ of a folder entry

Check:

• ‘Allow Subscription’ and ‘Deny Subscription’ should toggle.

• Changing the name of a community root folder should also change the name of the corre-
sponding community in the communities folder.

System Testing Report(D4.2.1) 45

Rate records (and other artifacts)

Rating is a generic operation within the CWS. Apart from the notification of the RMS and FRS in
the case of records, the operation is equal for queries, recommendations, or other documents and
was not tested separately. Also, mixed types of objects may be rated together in one operation.
In this case, only record ratings are forwarded to the RMS and FRS.

• Rate record
Action:

– action menu ‘Rate’ of a record entry

– multi-action ‘rate’ for all checked entries in a listing

Parameters: the rating(s)

Annotate records (and other artifacts)

Annotations of records take the form of threaded discussions (like the discussion forums treated
below). The first annotation opens the discussion, subsequent annotations are added to the dis-
cussion.

Annotating is a generic operation within the CWS. The operation is equal for queries, recommen-
dations and other documents, and was not tested separately.

• Annotate record
Action: action menu ‘Attach Note’ of a record entry
Parameters:

– the character of the annotation (Note, Pro, Con, ...)

– the subject of the annotation

– the text body of the annotation

Invite new members to a folder

The right to invite new members is restricted to managers. Invitation to communities is only
possible in the community root folder and holds for all folders of the community. With project
folders, new members may also be invited to subfolders of a project and then have no access to
the parent folder of the folder they were invited to.

Invitation of new members may invoke a two-stage interaction when members are invited who are
not already in the invitor’s address book. This will unvariably the case, when emebers are to be
invited who are not already registered users. In this case, the mail addresses (or login names) of
these new members have first to be added to the invitor’s address book and may then be selected
for invitation.

• Invite new members
Action:

– menu bar File→Share→Invite Member

– short-cut ‘Members Icon’ button

Parameters:

– the role in which new members are invited (Member, Restricted Member, Manager)

– the login names of the new members

46 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

– the mail adresses of the new members to be entered in the the subfunction ‘Add Member
to Address Book’

Check:

• Invitation should only be possible in community root folders and project folders.

• Only managers should be able to invite.

• Invitation to a root folder should be valid for all subfolders.

Remove members from a folder

The right to remove members is restricted to managers. Removal from communities is only possible
in the community root folder and holds for all folders of the community. With project folders,
members may also be removed from subfolders of a project and then have no access to the subfolders
of this folder.

Removal is done in the member listing of a folder. Members shown only with their email address
are invited members who have not yet registered. The member listing of a folder may be viewed
by hitting on the ‘Members Icon’ directly preceding the folder name in the ‘Your location’ part of
the CWS user interface.

• Remove members
Action:

– action menu ‘Remove’ of an entry in the member listing

– multi-action ‘remove’ for all checked entries of the member listing

Check:

• Member removal should only be possible in community root folders and project folders.

• Only managers should be able to remove members.

• Member removal in a root folder should be valid for all subfolders.

Assign a member as manager

The right to assign members with the manager role is restricted to managers. Managers have also
the right to assign managers with the member role. Role assignment may be done for all members
of a folder.

• Assign as manager
Action: action menu ‘Assign Role’ of folder entry
Parameters: for each member

– the new role assignment (Manager, Member, Restricted Member)

Check:

• Role assignment should only be possible in community root folders and project folders.

• Only managers should be able to assign roles to members.

• Role assignment in a community root folder should be valid for the whole community, i.e.
all its folders.

System Testing Report(D4.2.1) 47

Leave a community or project

Leaving a community or project is done by destroying the respective root folder from the user’s
home folder. With projects, one can also leave parts of the project, i.e. part hierarchies of the
project folder hierarchy. Destroying a folder is done like destroying any other artifact and was
treated in a test case above.

Check:

• Leaving a community by one member should leave the community available for the other
members.

• Leaving the community by the last member should remove this community also from the
communities folder (cf. View communities below).

View communities

This operation allows users to become aware of the existing communities.

• View communities
Action:

– menu bar Goto→Communities

– navigation bar ‘Communities Icon’ button

Check:

• Consistency between the existing community root folders and the communities shown.

Join a community

This is an operation that is only possible for community objects as listed in the communities folder
and for community recommendations as listed in the recommendations folder of some folder. In
both cases, joining is only possible if the community’s policy is open to subscriptions from outside,
and if the user is not already member.

• Join a community in the communities listing
Action: action menu ‘Join Community’ of a community entry

• Join a recommended community
Action: action menu ‘Join Community’ of a community recommendation

Check:

• The above conditions for applicability of the operation.

Mail community managers

This is an operation that is only possible for community objects as listed in the communities folder
and for community recommendations as listed in the recommendations folder of some folder. This
operation is only possible for users not being managers of the community.

• Mail managers of a community in the communities listing
Action: action menu ‘Mail Managers’ of a community entry
Parameters: the subject and text of the message

48 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Mail managers of a recommended community
Action: action menu ‘Mail Managers’ of a community recommendation Parameters: the
subject and text of the message

Check:

• The above conditions for applicability of the operation.

Create discussion forums

Creation of discussion forums is a BSCW generic operation and was not specifically tested.

Add notes to a discussion forum

Adding notes to a discussion forums is a BSCW generic operation and was not specifically tested.

Edit event notification preferences

Editing event notification preferences is a BSCW generic operation and was not specifically tested.

Catching up on events

Catching up on events is a BSCW generic operation and was not specifically tested.

Edit personal preferences

Personal preferences have to do with email formats, known editors, user profile, user interface
language etc. For the CWS, an attribute has been added to the personal preferences that states
whether the user allows recommendation of herself to other users.

• Edit personal preferences
Action: menu bar Options→Preferences
Parameters: check or uncheck ‘Allow recommendation’ box

Check:

• The user may not be shown in recommendations folders even if recommended to others by
the FRS.

Processing recommendations

Recommendations are received from the FRS and put into the recommendations subfolder of the
folder for which the recommendations are meant.

Processing recommendations includes all operations that dispose of received recommendations.
The type of the operations possible depends on the type of the recommendations (records, users,
communities, collections). Deleting is always possible (and means destroying for user, community
and collection recommendations). Moving and copying is only possible for recommended records.
Joining communities and mailing community managers is only possible for recommended commu-
nities (and has already been treated as test cases above). For user and collection recommendations,
there are the operations invite and associate that refer to the parent folder of the recommendations
folder.

System Testing Report(D4.2.1) 49

• Invite a recommended user to the folder
Action: action menu ‘Invite’ of a user recommendation entry

• Associate a recommended collection to the folder
Action: action menu ‘Associate’ of a collection recommendation

• Move/copy recommended records to some other folder
Action: ‘Cut’/‘Copy’ and ‘Paste’ actions

– in menu bar ‘Edit → ’

– in action menu

Check:

• Conditions of applicability for join and mail operations.

• User recommendations should only be received for users not already members of the parent
folder.

• Collection recommendations should not be received for collections already associated to the
parent folder.

• The FRS should not be notified of records being put into, or removed from, a recommenda-
tions folder.

Update folder profile

This operation is useful before searching and browsing when folder contents have been changed a
great deal. With the present policy of direct FRS notification of record movements, it has become
less necessary.

• Update folder profile
Action: action menu ‘Update Folder Profile’ of a folder entry

3.3.3 CWS GUI test results

• Tester: S. Caizzi (caizzi@aliceinchains.com)

• Test date: 28 August, 2002 14:50 GMT

• Scope of test: Complete GUI of CWS v0.1 (http://cyclades.gmd.de/cws/cws.cgi) was
tested according to the above test plan.

• Test environment: Test client was a Internet Explorer running on Windows 2000.

• Test plan: The test plan is contained in the preceding section.

• Test log: During the test of the use cases, the parameters chosen (if any) were documented
along with results. Consistency tests that are possible within an isolated service test are also
documented. An excerpt of the test log is shown below.

Test log, 28-08-2002 14:45
...

Case: create private root folder
Parameters:
Name: Instant favorites
Description: What I am fond of ...

50 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Associated Collections: Antiquities, Late Byzantine Mosaics,
South Pole geographic documentation

Recommendation preferences: Users
Result:
OK

Checked: ‘Instant favorites’ is shown in the folder listing

Case: create project root folder
Parameters:
Name: CWS testing
Description: Metadata somehow ...
Associated Collections: None
Recommendation preferences: Records

Result:
OK

Checked: ‘CWS testing’ is shown in the folder listing

Case: create community root folder
Name: Music community
Description: Information about tour dates, LP releases ...
Associated Collections: None
Recommendation preferences: Collections, Communities
Community may be joined from outside

Result:
OK

Checked:
‘Music community’ is shown in the communities listing

Case: Get information about ‘Music community’
Result:
OK

Case: create private root folder
Parameters:
Name: Favorites
Description: None
Associated Collections: None
Recommendation preferences: None

Result:
OK

Checked: ‘Favorites’ is shown in the folder listing

Case: create project folder in project folder ‘CWS testing’
Parameters:
Name: GUI testing
Description: None
Associated Collections: None
Recommendation preferences: Records

Result:
OK

Checked: ‘GUI testing’ is shown in the ‘CWS testing’ folder listing

Case: create community folder in community folder ‘Music community’
Parameters:

System Testing Report(D4.2.1) 51

Name: Folk Music
Description: None
Associated Collections: None
Recommendation preferences: Records, Communities

Result:
OK

Checked: ‘Folk Music’ is shown in the communities listing

Case: Cut folder ‘Instant favorites’
Result:
OK

Checked: ‘Instant favorites’ is shown in the clipboard listing

Case: Paste folder ‘Instant favorites’ in private folder ‘Favorites’
Result:
OK

Checked: ‘Instant favorites’ is shown in the ‘Favorites’ listing

Case: Cut document ‘Test plan.doc’ from private folder ‘First folder’
Result:
OK

Checked: ‘Test plan.doc’ is shown in the clipboard listing

Case: Paste document ‘Test plan.doc’ in project folder ‘CWS testing’
Result:
OK

Checked: ‘Test plan.doc’ is shown in the ‘CWS testing’ listing

Case: Delete folder ‘First folder’
Result:
OK

Checked: ‘First folder’ is shown in the waste listing

Case: Undelete folder ‘First folder’
Result:
OK

Checked: ‘First folder’ is shown in the folder listing

Case: Delete document ‘Fosse la mia Principessa ...’ from folder ‘First folder’
Result:
OK

Checked: ‘Fosse la mia Principessa ...’ is shown in the waste listing

Case: Destroy document ‘Fosse la mia Principessa ...’ from waste
Result:
OK

Checked: ‘Fosse la mia Principessa ...’ disappeared in the waste listing

Case: Rename project folder ‘First folder’
Parameters:
New Name: ‘Dear all ...’

Result:
OK

Checked: ‘Dear all ...’ is shown in the folder listing

52 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Case: Edit description of project folder ‘CWS testing’
Parameters:

Description: Test reports and so on
Result:
OK

Checked: ‘Test reports and so on’ appears under ‘CWS testing’
in the folder listing

Case: Associate collections to private folder ‘Favorites’
Parameters:
Associated Collections: Antiquities, Late Byzantine Mosaics,
South Pole geographic documentation

Result:
OK

Checked:

Case: Remove collections from private folder ‘Favorites’
Parameters:
Collections to be removed: South Pole geographic documentation

Result:
OK

Checked:

Case: Edit Reco Prefs for private folder ‘Instant Favorites’ in
private folder ‘Favorites’

Parameters:
Recommendation preferences: Users, Collections

Result:
OK

Checked:

Case: Update ‘Music community’ folder profile
Result:
OK

Checked:

Case: Rate document ‘Test plan.doc’ in project folder ‘CWS testing’
Parameters:
Rating: Poor

Result:
OK

Checked: a rating icon appeats right to ‘Test plan.doc’

Case: Annotate document ‘Test plan.doc’ in project folder ‘CWS testing’
Parameters:
Type: Note
Subject: Warning
Message: Should be written as soon as possible ...

Result:
OK

Checked: an annotation icon appeats right to ‘Test plan.doc’

Case: Annotate document ‘Test plan.doc’ in project folder ‘CWS testing’

System Testing Report(D4.2.1) 53

Parameters:
Type: Note
Subject: Second Warning
Message: Hurry up !!!

Result:
OK

Checked:

Case: Invite a new member to the ‘CWS testing’ folder
Parameters:
Type of member: Restricted
New member e-mail: wirsam@web.de
Invitation language: en
Invitation text: For testing purposes only ...

Result:
OK

Checked:

Case: Remove a member from the ‘CWS testing’ folder
Result:
OK

Checked:

Case: Assign a member as manager
Parameters:
Managers: ordosoft@yahoo.com, scaizzi

Result:
OK

Checked:

Case: Leave the TOMs_test_community2 community
Parameters: Delete TOMs_test_community2 from the root folder, click on
the Waste icon and destroy TOMs_test_community2

Result:
OK

Checked: the TOMs_test_community2 community folder disappeared from
the folder listing

Case: View communities
Parameters: Click on the Comms icon
Result:
OK

Checked: community folders are shown in the folder listing

Case: Join the TOMs_test_community2 community in the Communities folder
Parameters: Click on the action arrow and select Join community
Result:
OK

Checked: a TOMs_test_community2 community folder is shown in
the folder listing

Case: Mail community managers
Parameters: Click on the action arrow and select Mail community mgrs
Result:

54 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

OK
Checked:

Case: Create a discussion forum in the ‘Music community’ community folder
Parameters:
Name: Your opinion on metal bands ...
Type: Idea
Subject: Great or has-been ?
Message: These days, mediocrity seems to rule the scene: in fact,
Metallica is dead, Pantera disappointing, SOAD is great but no metal anyway,
Limp Bizkit is pure sh** as well as Korn and ... what the ...
teens have no taste at all and prefer RNB cuz its cool man ... Disgusting ...

Result:
OK

Checked:

Case: Add note to the ‘Your opinion on metal bands ...’ discussion forum
in the ‘Music community’ community folder

Parameters:
Name: Your opinion on metal bands ...
Type: Pro
Subject: Some bands are still great ...
Message: Come on dude, Ya oughta be optimistic: bands like Mushroomhead, Godsmack,
Disturbed are kinda promising and take also a look at Panteras
latest hostility that is Metal Edge: I swear Ya wont be disappointed ...

Result:
OK

Checked:

Case: Edit event notification preferences
Parameters:
Notification preferences: Create Events, Change Events

Result:
OK

Checked:

Case: Edit default event notification preferences
Parameters:
Event Service activated
Notification preferences: Read Events, Create Events, Move Events, Change Events

Result:
OK

Checked:

Case: Catch up on events in root folder
Parameters: Click on the action arrow right to :scaizzi and select Catch up
Result:
OK

Checked:

Case: Edit personal preferences
Parameters:
Format of email messages: plain text
BCC of sent mail

System Testing Report(D4.2.1) 55

one selfs recommendation to others not allowed
Show descriptions by default
No file upload Helper
No ActiveX
User Profile: Expert
Known editors: All of them
Javascript
Language English
Supported languages: Deutsch, English

Result:
OK

Checked:

....

• Test summary: All test case functions worked according to the use case descriptions and
produced no errors or inconsistencies.
The test, however, detected three irregularities in the CWS GUI:

– The function Change Password was provided by the CWS, but should rather be provided
by the Mediator Service only to avoid fatal inconsistencies when logging into the system.

– The function Invite Members provided an input attribute that was subsequently ignored
(language of the invitation message).

– The function Archive for archiving the contents of a folder produced an error when the
compress option was chosen.

These cases were attended to by removing the function Change Password from the CWS
GUI and by removing the language attribute from the input form of the Invite Members
function. The compress option of the Archive function needs the operating system dependent
installation of a compress routine which is outside the scope of the CWS; if need arises, such
a routine will be installed on the target host.

56 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 3.1: CWS user interface

Chapter 4

SBS Component Test

4.1 Introduction

The Search and Browse Service (SBS) provides the search and browse functionality of the Cy-
clades system. The user can select a set of collections to search, choose between the schemas
available for these collections, and formulate query conditions which may be mandatory (the con-
dition must be fulfilled), optional (the condition may be fulfilled), or negative (the condition must
not be fulfilled).

4.2 SBS API test

4.2.1 SBS API specification

The Search and Browse Service provides an API to the other Cyclades services, as well as to its
own GUI. The methods of this API may be called using the inter-service communication protocol
XML-RPC. The only public method is getId. All other methods may be called only by the SBS
GUI.

public:

• Method: getId
Signature: String getId()
Description: this method returns the ID of the service
Parameters:
Output: Search And Browse Service ID
Calling services: any

service internal:

• Method: getSessions
Signature: SearchBrowseSession* getSessions()
Description: this method returns a list of the current S&B sessions
Parameters:
Output: a list of SearchBrowseSession objects

• Method: initiateSearch
Signature: SearchBrowseSession initiateSearch(id,folderId,userId)

57

58 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Description: this method can be called to initiate a search and browse session for the given
folderId and userId, the session id id is generated by the caller (the GUI)
Parameters:
Input: id: the id of the new session

userId: the id of user who started the search
folderId: the id of the folder the user started the search from

Output: a new SearchBrowseSession object

• Method: deleteSession
Signature: void deleteSession(sessionId)
Description: this method can be called to explicitly remove the temporary data stored for
a session from the SBS memory
Parameters:
Input: sessionId: the id of the session

• Method: validateSession
Signature: boolean validateSession(sessionId,flderId,userId)
Description: check if there is a session with the specified ID for the specified userId and
the specified folderId
Parameters:
Input: sessionId: the id of the session

folderId: the id of the folder
userId: the id of the user

Output: true, if session ID, user ID, and folder ID are consistent, false otherwise

• Method: getNewForFolder
Signature: Record* getNewForFolder(sessionId)
Description: determines the list of new records that are relevant to the current folder topic
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: a list of records

• Method: search
Signature: Record* search(sessionId, query)
Description: returns a list of records that are deemed relevant with respect to the specified
query
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to

query: the query to be evaluated (string)
Output: a list of records

• Method: filteredSearch
Signature: Record* filteredSearch(sessionId, query)
Description: returns a list of records that are deemed relevant with respect to the specified
query, filtered with respect to the current folder topic
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to

query: the query to be evaluated (string)
Output: a list of records

System Testing Report(D4.2.1) 59

• Method: saveResults
Signature: void saveResults(sessionId, recordId*)
Description: saves the records specified by recordId* to the user’s folder
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to

list of recordId: the list of record ids of the records that are to be stored to the user’s folder

• Method: saveQuery
Signature: void Query(sessionId, Query)
Description: saves the specified query to the user’s folder
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to

Query: an SBS Query object

• Method: getSchemas
Signature: Schema* getSchemas(sessionId)
Description: returns the list of schemas available in a search and browse session
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: a list of Schema objects

• Method: getCollections
Signature: (Collection*, Schema*) getCollections(sessionId)
Description: returns the list of collections and the corresponding schemas available in a
search and browse session
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: list of Collection: list of Collection objects

list of Schema: list of Schema objects

• Method: getPersonalCollections
Signature: (Collection*, Schema*) getCollections(sessionId)
Description: returns the list of personal collections for the user together with the corre-
sponding schemas
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: list of Collection: list of Collection objects

list of Schema: list of Schema objects

• Method: getFolderCollections
Signature: (Collection*, Schema*) getCollections(sessionId)
Description: returns the list of collections associated to the current folder together with
the corresponding schemas
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: list of Collection: list of Collection objects

list of Schema: list of Schema objects

• Method: getAttributeValues
Signature: value* getAttributeValues(sessionId, schemaName, attributeName, maxNo)
Description: returns the list of values for the specified attribute and schema available in a
search and browse session
Parameters:

60 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Input: sessionId: the id of the SearchBrowseSession object this method refers to
schemaName: the name of the schema
attributeName: the name of the attribute
maxNo: the maximum number of values to be returned

Output: a list of attribute values, ordered by the default order according to the attribute’s
type

• Method: getRecord
Signature: Record getRecord(sessionId,recordId)
Description: get the metadata record specified by recordId
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to

recordId: the ID of the record
Output: a Record object

• Method: getResultHistory
Signature: (queryId,Record*)* getResultHistory(sessionId)
Description: get the all results of all queries that were submitted during this session
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: a list of query IDs, each with a list of resulting Records associated

• Method: getQuery
Signature: Query getQuery(sessionId,queryId)
Description: get the query specified by queryId
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to

queryId: the ID of the query
Output: a Query object

• Method: getQueryHistory
Signature: Query* getQueryHistory(sessionId)
Description: get the queries that were submitted or saved during this session
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: a list of Query objects

• Method: getFolderQueries
Signature: Query* getFolderQueries(sessionId)
Description: get the queries stored in the current folder
Parameters:
Input: sessionId: the id of the SearchBrowseSession object this method refers to
Output: a list of Query objects

The definition of the class SearchBrowseSession, that is used in some API signatures and that
translates to XML-RPC <struct>s is as follows:

• SearchBrowseSession

– id: the unique ID of this session (string)

System Testing Report(D4.2.1) 61

– expirationTime: the time this session will be expired and its temporary data deleted
(string)

– userId: the unique ID of the user who initiated this session (string)

– folderId: the unique ID of the folder from which this session was started (string)

– currentQuery: the current SB query in XML (string)

The classes Query and Record are described in the CWS chapter (3).

4.2.2 SBS API test

SBS API test (UNIDO/UNIDUE)

• Tester: Sascha Kriewel (kriewel@is.informatik.uni-duisburg.de)

• Test date: 7 March 2003

• Scope of test:

Testing SBS API methods

• Test environment:

Test client was a Java1 application running on Debian Linux, the XML-RPC implementation
of Apache XML Project.

• Test plan:

Each method was called first with valid parameters, then with invalid parameters.

With the valid method calls, the semantic result was checked:

– getId did return the service ID

– initiateSearch returned a new SearchBrowseSession object with the given folderId and
userId

– getSessions returned a list of SearchBrowseSession objects including the one for the
search and browse session initiated during the step before

– validateSession resulted in true for the existing session and false otherwise

– search returned a list of records for the query to be evaluated

– saveResults verifiably saved the records specified to the intended folder (using the web
interface to verify this)

– saveQuery saved the query specified to the intended folder, which could be checked by
use of

– getFolderQueries

– getFolderQueries returned the query objects that had been saved to the current folder

– getCollections returned a list of Collection and Schema objects

– getPersonalCollections returned a list of Collection and Schema objects

– getFolderCollections returned a list of Collection and Schema objects

– getAttributeValues returned a list of values for the specified attribute and schema

– getRecord returned a metadata record with the correct identifier

– getQuery returned a query object with the correct identifier

– getQueryHistory returned a list of query objects
1Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)

62 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

– getSchema returned a list of available schemas

– getNewForFolder returned a list of records

– getResultHistory returned a list of query ids and lists of records for each id

With the intentionally invalid calls, it was checked whether the method returned the appro-
priate error code and message.

• Test log:

An excerpt of the last test log is shown below.

...

Mar 5, 2003 4:24:46 PM: Reading from tests_sbs/SBSComponentTest.properties
Mar 5, 2003 4:24:46 PM: ServerURL=http://woodstock.is.informatik.uni-duisburg.de:15220
Mar 5, 2003 4:24:46 PM: ServerName=service
Mar 5, 2003 4:24:46 PM: proxyHost=
Mar 5, 2003 4:24:46 PM: proxyPort=

===
Mar 5, 2003 4:24:46 PM: Method.1=getId
Mar 5, 2003 4:24:46 PM: comment.1=get SBS ID, no parameters
Mar 5, 2003 4:24:46 PM: flags.1=

Mar 5, 2003 4:24:47 PM: TestService: getId returned SB438
Mar 5, 2003 4:24:47 PM: TestService: spent 146 millis for request

===
Mar 5, 2003 4:24:47 PM: Method.2=initiateSearch
Mar 5, 2003 4:24:47 PM: comment.2=start a new search and browse session
Mar 5, 2003 4:24:47 PM: flags.2=

Mar 5, 2003 4:24:47 PM: param.2.1.type=String
Mar 5, 2003 4:24:47 PM: param.2.1.value=id14556
Mar 5, 2003 4:24:47 PM: param.2.2.type=String
Mar 5, 2003 4:24:47 PM: param.2.2.value=CW665_20186
Mar 5, 2003 4:24:47 PM: param.2.3.type=String
Mar 5, 2003 4:24:47 PM: param.2.3.value=CW665_20164
Mar 5, 2003 4:24:47 PM: TestService: initiateSearch returned

[activeFolderId=CW665_20186,
userId=CW665_20164,
currentQuery=,
expirationTime=Wed Mar 05 17:10:21 CET 2003,
id=id14556]

Mar 5, 2003 4:24:47 PM: TestService: spent 15 millis for request

===
Mar 5, 2003 4:24:47 PM: Method.3=getSessions
Mar 5, 2003 4:24:47 PM: comment.3=test if new session is there, no parameters
Mar 5, 2003 4:24:47 PM: flags.3=

Mar 5, 2003 4:24:47 PM: TestService: getSessions returned [[...],
[activeFolderId=CW665_20186,
userId=CW665_20164,
currentQuery=,

System Testing Report(D4.2.1) 63

expirationTime=Wed Mar 05 17:10:21 CET 2003,
id=id14556]]

Mar 5, 2003 4:24:47 PM: TestService: spent 28 millis for request

===
Mar 5, 2003 4:24:47 PM: Method.4=validateSession
Mar 5, 2003 4:24:47 PM: comment.4=validate the existing session
Mar 5, 2003 4:24:47 PM: flags.4=

Mar 5, 2003 4:24:47 PM: param.4.1.type=String
Mar 5, 2003 4:24:47 PM: param.4.1.value=id14556
Mar 5, 2003 4:24:47 PM: param.4.2.type=String
Mar 5, 2003 4:24:47 PM: param.4.2.value=CW665_20186
Mar 5, 2003 4:24:47 PM: param.4.3.type=String
Mar 5, 2003 4:24:47 PM: param.4.3.value=CW665_20164
Mar 5, 2003 4:24:47 PM: TestService: validateSession returned

[unknown type: true]
Mar 5, 2003 4:24:47 PM: TestService: spent 49 millis for request

===

...

===
Mar 5, 2003 4:24:47 PM: Method.8=search
Mar 5, 2003 4:24:47 PM: comment.8=
Mar 5, 2003 4:24:47 PM: flags.8=-ids-only

Mar 5, 2003 4:24:47 PM: param.8.1.type=String
Mar 5, 2003 4:24:47 PM: param.8.1.value=id14557
Mar 5, 2003 4:24:47 PM: param.8.2.type=String
Mar 5, 2003 4:24:47 PM: param.8.2.value=
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sbquery SYSTEM

"http://woodstock.is.informatik.uni-duisburg.de:15210/ac/query.dtd">
<sbquery schema="dc">
<condition weight="+" field="format">
<field-condition predicate="cw" value="video"/>

</condition>
<collection id="SB438_CO_all"/>

</sbquery>
Mar 5, 2003 4:27:43 PM: TestService: search returned

[id=AC143_oai_dc_oai:VTETD:etd-5414132139711101]
Mar 5, 2003 4:27:43 PM: TestService: spent 176372 millis for request

===

...

===
Mar 5, 2003 4:27:48 PM: Method.16=getAttributeValues
Mar 5, 2003 4:27:48 PM: comment.16=
Mar 5, 2003 4:27:48 PM: flags.16=

64 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Mar 5, 2003 4:27:48 PM: param.16.1.type=String
Mar 5, 2003 4:27:48 PM: param.16.1.value=id14557
Mar 5, 2003 4:27:48 PM: param.16.2.type=String
Mar 5, 2003 4:27:48 PM: param.16.2.value=oai_dc
Mar 5, 2003 4:27:48 PM: param.16.3.type=String
Mar 5, 2003 4:27:48 PM: param.16.3.value=subject
Mar 5, 2003 4:27:48 PM: param.16.4.type=Integer
Mar 5, 2003 4:27:48 PM: param.16.4.value=10
Mar 5, 2003 4:27:51 PM: TestService: getAttributeValues returned

[’AUHELAWA LANGUAGE,*Fang,*PB,*ProtoBantu,01 |
AERONAUTICS,02 | AERODYNAMICS,03 | AIR TRANSPORTATION AND
SAFETY,04 | AIRCRAFT COMMUNICATIONS AND NAVIGATIONS,05 |
AIRCRAFT DESIGN, TESTING AND PERFORMANCE,06 | AVIONICS AND
AIRCRAFT INSTRUMENTATION]

Mar 5, 2003 4:27:51 PM: TestService: spent 3910 millis for request

===
Mar 5, 2003 4:27:51 PM: Method.17=getRecord
Mar 5, 2003 4:27:51 PM: comment.17=
Mar 5, 2003 4:27:51 PM: flags.17=

Mar 5, 2003 4:27:51 PM: param.17.1.type=String
Mar 5, 2003 4:27:51 PM: param.17.1.value=id14557
Mar 5, 2003 4:27:51 PM: param.17.2.type=String
Mar 5, 2003 4:27:51 PM: param.17.2.value=

AC143_oai_dc_oai:VTETD:etd-5414132139711101
Mar 5, 2003 4:27:54 PM: TestService: getRecord returned [name=
Intelligent Navigation of Autonomous Vehicles in an Automated
Highway System: Learning Methods and Interacting Vehicles Approach,
metadata=

...,
id=AC143_oai_dc_oai:VTETD:etd-5414132139711101]
Mar 5, 2003 4:27:54 PM: TestService: spent 2170 millis for request

===
Mar 5, 2003 4:27:54 PM: Method.18=getQuery
Mar 5, 2003 4:27:54 PM: comment.18=try to get query with queryId

that no longer exists
Mar 5, 2003 4:27:54 PM: flags.18=

Mar 5, 2003 4:27:54 PM: param.18.1.type=String
Mar 5, 2003 4:27:54 PM: param.18.1.value=id14557
Mar 5, 2003 4:27:54 PM: param.18.2.type=String
Mar 5, 2003 4:27:54 PM: param.18.2.value=SB438_id14557_1046873411430_1
Mar 5, 2003 4:27:54 PM: TestService: XML-RPC Fault #12500 -

org.apache.xmlrpc.XmlRpcException: Unexpected resultgetQuery:
got null for session id14557, query id SB438_id14557_1046873411430_1

Mar 5, 2003 4:27:54 PM: TestService: spent 463 millis for request

===

...

System Testing Report(D4.2.1) 65

===
Mar 5, 2003 4:28:01 PM: Method.22=getFolderQueries
Mar 5, 2003 4:28:01 PM: comment.22=test if stored query is there
Mar 5, 2003 4:28:01 PM: flags.22=

Mar 5, 2003 4:28:01 PM: param.22.1.type=String
Mar 5, 2003 4:28:01 PM: param.22.1.value=id14557
Mar 5, 2003 4:28:05 PM: TestService: getFolderQueries returned
[[name=Query: test query 1,id=test query 1,queryString=
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sbquery SYSTEM

"http://woodstock.is.informatik.uni-duisburg.de:15210/ac/query.dtd">
<sbquery schema="dc">
<condition weight="+" field="format">
<field-condition predicate="cw" value="video"/>

</condition> <collection id="SB438_CO_all"/>
</sbquery>]]
Mar 5, 2003 4:28:05 PM: TestService: spent 3459 millis for request

...

• Test summary:

All methods specified above from the SBS API were tested. All methods tested worked
according to the specification for all sets of correct input parameters. Correct calls did not
produce any errors, incorrect calls produced appropriate error codes and messages.

4.3 SBS GUI test

4.3.1 SBS GUI description

The SB GUI is used for searching and browsing for metadata records. The first page that is shown
is the query formulation dialogue (figure 4.1).

A query consists of a (possibly empty) list of collections to be searched, and a list of conditions.
This is reflected by the two list areas in the query formulation dialogue.

The Collection List

This list in the upper part of the query formulation dialogue contains those collections that the
user wants to be searched in the current query. If the list does not contain any specific collection,
a hint is displayed that all collections in the system will be searched.

In the menu bar above the collection list, the user can select all collections, or none. Individial
collections can be selected via the checkbox beside the collection name. The user can then delete
the selected collections from the query by pressing the Delete button in this bar.

Conditions

The list of conditions is displayed in the lower part of the query formulation dialogue. Each
condition consists of an optional weight (which can be ”+”, ”-”, or a positive number between 1

66 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 4.1: SB Query Formulation

and 1000), an attribute (according to the current metadata schema), a predicate, and a comparison
value.

In the menu bar above the list of conditions, the user can select all, or none, for further actions.
Each condition can also be selected or deselected individually via the checkbox on the left. The
Delete button in the menu bar causes all selected conditions to be removed from the query, the
Copy button duplicates each selected condition. Add ignores selections and simply adds an empty
condition to the query.

Main menu

The main menu bar at the top of the query formulation dialogue contains the following entries:

• Action

• Current query

• Collections

The Action menu contains actions that replace the current query without saving it:

• New query - Forget the current query and start with an empty one

• Get new records for folder - Forget the current query and get new records for the current
folder instead

• Select query from history - Select another query from the session history

System Testing Report(D4.2.1) 67

• Select query from folder - Select another query from the current folder

The Current query menu contains actions that refer to the current query:

• Submit - Submit the query as is

• Submit personalized - Submit the query and filter the results (calls the Filtering and Recom-
mendation Service)

• Save to folder - Save the current query to the folder

The Collections menu contains actions to add collections to the current query:

• Add from folder - Add collections that are associated to the current folder

• Add from personal set - Add collections from the set of personal collections

• Add from system - Add collections from the set of all collections in the system

• Use all - Clear the list of collections in the current query, thus causing all collections in the
system to be searched

Collection Selection

Each of the first three actions in the Collections menu opens a dialogue with a list of collections.
The user can select all, or none, of those collections via the multi-object menu above the list, or
individual collections via the checkboxes beside each collection name, and then add the selected
collections to the current query by pressing the Add button in the menu bar. This will take the
user back to the query formulation dialogue, augmented by the additional collections.

Schema Selection

This functionality is still missing from the current Search and Browse GUI. It will be implemented
as a Schema Selection dialogue later.

Query Selection

The Query Selection dialogue is shown when the user chooses to select a query either from the query
history of the current session, or from the list of queries stored in the current folder. Each query
is displayed with its name, if it has one, else with an automatically generated ID. By clicking on
a query, the user returns to the query formulation dialogue, where the selected query is displayed.

Result List

A Result List (figure 4.2) is shown whenever a query was submitted, or the user requested to look
for new records for the current folder. It consists of a list of records, and a multi-object menu
above the list. Each record is displayed wither with its title, or, if there is no title, with its record
id. A click on a record opens a new window which displays the complete metadata record as it
was harvested from its archive.

On the left-hand side of each record list entry, there is a checkbox for selecting the record. The
user can also select all records, or none, via the multi-object menu. Selected records can be saved
to the current folder by pressing the Save button in the multi-object menu.

68 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Figure 4.2: SB Result List

4.3.2 SBS GUI test plan

The search and browse interface should provide support for the use cases described in Deliverable
D3.0.1. This test plan is based on these use cases, and tests the functionality of the user interface by
performing the necessary interactions. It will be tested if each interaction with the User Interface
results in the expected behaviour and has no side effects.

The search and browse GUI should provide dialogs for the indivual steps of the search and browse
process:

• Select Collections

– Select Collection
Within the collection selection dialog the user should be able to select from a list of
collections those that shall be queried. The list presented is either

∗ a list of all personal collections,
∗ a list of collections associated with the user’s current folder, or
∗ a list of all collections.

In order to support the user, the interface should allow for the following actions:

∗ adding of one or more collections at a time
∗ removing of one or more collections at a time
∗ searching the whole system (no collection restriction)

Check:

∗ adding new collections should leave the previously chosen ones intact

System Testing Report(D4.2.1) 69

∗ adding or removing collections should not change query conditions already specified
∗ adding a collection twice mustn’t result in a double entry for that collection

– Browse Search Schemas
The metadata browsing should present a list of available metadata schemas for a col-
lection. For one of these schemas at a time the possible attributes can be shown, from
which one can be selected to show specific information about it, e.g. its subfields or
type.
Three main actions should be possible in this dialog:

∗ browsing the metadata schema
∗ selecting one schema for the active query
∗ aborting the browsing without changing the query

– Browse Attribute Values
The values for a specific attribute or field should be provided in a manner that enables
browsing through the entire list in a user friendly way. Three actions should be possible
in this dialog:

∗ browsing through the value list
∗ selecting one value to be used in a condition of the current query
∗ aborting the browsing without changing the query

• Edit a Query

– Edit Query
Within the query formulation dialog the user should be able to perform the following
actions in order to create a satisfactory query:

∗ adding a new condition
∗ removing a given condition
∗ editing a condition by chosing from fields and predicates
∗ editing a condition by entering condition weights and values
∗ resetting the query (clearing everything)
∗ submitting the query

Check:

∗ the conditions that are not manipulated should remain unaffected
∗ already chosen collections should remain unaffected
∗ invalid entries in the free text fields should be caught and result in appropriate

warning

– Save Query
The save query dialog allows for the saving of the current query in the user’s active
folder. There needs to be a dialog for giving the query a human readable name.
Check:

∗ after the dialog ends the query should remain unchanged
∗ if the dialog is canceled the folder should not be changed

– Select Previous Queries
Within the query selection dialog the user can select from a list of previously submitted
queries, if any. At most one query can be selected from this list and then be further
modified or submitted again as is.

∗ Browse Queries from Folder
∗ Browse Queries from History

70 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Submit Query

– Submit Query without Personalization
After the query has been constructed and collections selected, this dialog submits the
query to the system, and provides the user with a view of the result.

– Submit Query with Personalization
As above this submits the query, but uses personalization that depends on the current
user and the active folder. After the query finishes, this dialog provides the user with a
view of the result.

– Browse and Save Results
This dialog consists mainly of a list of result records. Within this list it should be
possible to

∗ choose from a list of available attributes a number that will be shown for each record
∗ select one or more records
∗ save the current selecting to the active folder

• Get New Records

– Get New Records For Folder
Ignoring the current query, this dialog allows to submit a search request based on the
profile of the current folder. As with query submissing, after the request has finished, a
view of the result records should be presented.

– Browse and Save Results
This dialog consists mainly of a list of result records. Within this list it should be
possible to

∗ choose from a list of available attributes a number that will be shown for each record
∗ select one or more records
∗ save the current selecting to the active folder

4.3.3 SBS GUI test results

• Tester: Sascha Kriewel (sascha.kriewel@uni-duisburg.de)

• Test date: March 20th, 2003

• Scope of test: Complete GUI of SBS was tested according to the described test plan.

• Test environment: The test client was Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.2b)
Gecko/20021016, running under Linux

• Test log: An excerpt of the test log is presented below. A complete version of the log is
available at ...

Test 1.1.1

Description: Adding one collection to query
Action:

Menu: Collections -> Add from system
checked checkbox for collection "caltechcstr"
Button: Add

Result:
OK

System Testing Report(D4.2.1) 71

Check:
- query conditions remained unchanged

Test 1.1.2

Description: Adding multiple collections to query
Action:

Menu: Collections -> Add from system
checked checkboxes for collections
"ibiblio", "IR", "CYCLADES"

Button: Add
Result:

OK
Check:

- previously selected collections were kept
- query conditions remained unchanged

Test 1.1.3

Description: Adding all collections associated with the
current folder to query

Action:
Menu: Collections -> Add from folder
Button: Select All [x]

("caltechcstr", "CCSDarchiveSIC")
Button: Add

Result:
OK

Check:
- previously selected collections were kept
- query conditions remained unchanged
- no doubling of collection "caltechcstr"

Test 1.1.4

Description: Removing a collection from query
Action:

Object "caltechcstr": Menu: Delete
Result:

OK
Check:

- other collections weren’t affected
- query conditions remained unchanged

Comment:
- same result can be achieved by the actions
described in 1.2.5

Test 1.1.5

Description: Removing multiple collections from query
Action:

checked checkbox for collections
"ibiblio", "IR"

Button: Delete

72 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Result:
OK

Check:
- other collections weren’t affected
- query conditions remained unchanged

Test 1.1.6

Description: Removing all collections from query
Action:

Button: Select All [x] from Collections view
Button: Delete

Result:
OK

Check:
- query conditions remained unchanged

Test 1.1.7

Description: Using all collections from query
Action:

Menu: Collections -> Use all
Result:

OK
Check:

- query conditions remained unchanged
Comment:

- same result can be achieved by the actions
described in 1.2.6

Test 1.2

Description: Browsing search schema
not available at time of testing

Test 1.3

Description: Browsing attribute values
not available at time of testing

Test 2.1.1

Description: Adding a new condition to query
Action:

Button: Add from the Conditions view
Result:

OK
Check:

- previously edited conditions remained the same

Test 2.1.2

Description: Editing a query
Action:

System Testing Report(D4.2.1) 73

entered weight of "+2.0" in textbox for "weight"
chose field "title" from selection list
chose predicate "contains" from selection list
entered value "retrieval" in textbox for "comparison value"

Result:
OK

Test 2.1.3

Description: Copying a condition of the query
Action:

Object "condition 1": Menu: Copy
Result:

OK
Check:

- all other conditions remained the same

Test 2.1.4

Description: Removing a condition from query
Action:

Object "condition 2": Menu: Delete
Result:

OK
Check:

- all other conditions remained the same

Test 2.1.5

Description: Remove multiple conditions from query
Action:

checked checkboxes for conditions 3 and 4
Buttom: Delete from the Conditions view

Result:
OK

Check:
- all other conditions remained the same

Test 2.1.6

Description: Resetting the query
Action:

Menu: Actions->New query
Result:

OK

Test 2.2.1

Description: Saving the query to folder
Action:

Menu: Current query->Save to folder
in new screen entered "search for ’retrieval’"

as a title for this query
Buttom: OK

74 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Result:
OK

Test 2.2.2

Description: Aborting saving the query to folder
Action:

Menu: Current query->Save to folder
in new screen entered "search for ’retrieval’"

as a title for this query
Buttom: Cancel

Result:
OK

Check:
- the query remained unchanged

Test 2.3.1

Description: Browsing and selecting queries from folder
Action:

Menu: Action->Select query from folder
in new screen clicked on hyperlink named

"search for ’retrieval’"
Result:

OK
Check:

Test 2.3.2

Description: Browsing and selecting queries from history
Action:

Menu: Action->Select query from history
in new screen clicked on hyperlink for most recent query

Result:
OK

Check:

Test 3.1

Description: Submitting a query without personalization
Action:

Menu: Current query->Submit
Result:

OK

Test 3.2

Description: Submitting a query with personalization
Action:

Menu: Current query->Submit personalized
Result:

OK

Test 3.3

System Testing Report(D4.2.1) 75

Description: Browsing the results
Action:

clicking on the hyperlink of the first result
Result:

OK

Test 3.4

Description: Saving the results
Action:

Buttom: Select All [x]
Buttom: Save

Result:
OK

Test 4.1

Description: Getting new records for folder
Action:

Menu: Actions->Get new records from folder
Result:

OK

Test 4.2

Description: Browsing the results
Action:

clicking on the hyperlink for the last shown result
Result:

OK

Test 4.3

Description: Saving the results
Action:

checking the checkboxes on several results
Buttom: Save

Result:
OK

• Test summary: All test case functions worked according to the use case descriptions and
produced no errors or inconsistencies.

Chapter 5

FRS Component Test

5.1 Introduction

The Filtering and Recommendation Service (FRS) provide the user with highly flexible and person-
alized interaction (content-based). User’s behavior are used by the service to “understand” user’s
preferences, which is based on automatically generation a “profile” of the user and of her interest.

In Cyclades personalization is archived by implementing two basic mechanisms, filtering and
recommendation.

• Filtering refers to an activity of personalizing the interaction between user and system based
on feedback information provided by the user herself.

• Recommendation refers instead to an activity of personalizing the interaction between user
and system based on feedback information provided by other users that the system considers
“similar” to this user.

The FRS API offers two kind of methods1. (a) Filtering methods, which based on folder “profile”
allow to do both a personalized filtering and get new records. (b) Administrative methods which
allow update a folder “profile”, create/delete folders, add/delete records from a folder, set folder
recommendation status, etc.

5.2 FRS API test

5.2.1 FRS API specification

The Filtering and Recommendation Service (FRS) API to be used by Cyclades services is de-
scriber bellow. This API uses the XML-RPC protocol. Methods description contains: method
name, signature, description, input/output parameters and calling service.

• Method: filteredSearch
Signature: (record*) filteredSearch (query, maxRecordNo, folderID)
Description: this method may be invoked in order to filter records, retrieved according to
a query, with respect to the profile learned from the folder.
Parameters:

1Recommendation is done by FRS in a period basis, i.e. witout an explicit call from Cyclades system.

76

System Testing Report(D4.2.1) 77

Input: query: the query according to the syntax specified by the access
service. XML-RPC data type: <string>.

maxRecordNo: maximal number of records to be retrieved. XML-RPC data
type: <int>.

folderID: the folder ID with respect to which filtering should be
performed. XML-RPC data type: <string>.

Output: record*: list of records. XML-RPC data type: <array> of
<struct> (Record from CWS specification).

Calling service: SBS

• Method: getNewRecords
Signature: (record*) getNewRecords (query, maxRecordNo, folderID, userID)
Description: this method may be invoked in order to get new records, retrieved with re-
spect to the profile learned from the folder.
Parameters:
Input: query: the query according to the syntax specified by the access

service. XML-RPC data type: <string>.
maxRecordNo: maximal number of records to be retrieved. XML-RPC data

type: <int>.
folderID: the folder ID with respect to which filtering should be

performed. XML-RPC data type: <string>.
userID: the user ID with respect to which filtering should be

performed. XML-RPC data type: <string>.
Output: record*: list of records. XML-RPC data type: <array> of

<struct> (Record from CWS specification).
Calling service: SBS

• Method: updateFolderProfile
Signature: void updateFolderProfile (folderID)
Description: this method may be invoked in order to update the folder profile, i.e. to learn
the folder profile.
Parameters:
Input: folderID: the folder ID with respect to which filtering should be

performed. XML-RPC data type: <string>.
Calling service: CWS

• Method: createFolder
Signature: void createFolder (folderID, userID, recommendationValue)
Description: this method may be invoked in order to store a new created folder in the FRS
rating DB.
Parameters:
Input: folderID: a folder identifier. XML-RPC data type: <string>.

userID: a user identifier. XML-RPC data type: <string>.
recommendationValue: the value contains the bit encoded recommendation

preferences of the folder as describer below in
setRecommendationYesNo method. XML-RPC data type:
<int>.

Calling service: CWS

• Method: destroyFolder
Signature: void destroyFolder (folderID)
Description: this method destroy FRS folder information (profile, timestamps, etc.).

78 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Parameters:
Input: folderID: a folder identifier. XML-RPC data type: <string>.
Calling service: CWS

• Method: deleteUser
Signature: void deleteUser (userID)
Description: this method delete FRS user information.
Parameters:
Input: userID: a user identifier. XML-RPC data type: <string>.
Calling service: MS

• Method: addRecord
Signature: void addRecord (recordID, folderID, userID)
Description: this method may be invoked in order to update FRS folder information.
Parameters:
Input: recordID: a record identifier. XML-RPC data type: <string>.

folderID: a folder identifier. XML-RPC data type: <string>.
userID: a user identifier. XML-RPC data type: <string>.

Calling service: CWS

• Method: deleteRecord
Signature: void deleteRecord (recordID, folderID, userID)
Description: this method delete a record from a folder and which belong to a user.
Parameters:
Input: recordID: a record identifier. XML-RPC data type: <string>.

folderID: a folder identifier. XML-RPC data type: <string>.
userID: a user identifier. XML-RPC data type: <string>.

Calling service: CWS

• Method: setRecommendationYesNo
Signature: void setRecommendationYesNo (folderID, value)
Description: this method may be invoked in order to activate/disactivate the production
of recommendations with respect to a folder.
Parameters:
Input: folderID: the folder ID with respect to which filtering should be

performed. XML-RPC data type: <string>.
value: the value contains the bit encoded recommendation preferences

of the folder:
- a zero value stands for no recommendations (default),
- bit 0 stands for record recommendations,
- bit 1 stands for user recommendations,
- bit 2 stands for collection recommendations, and
- bit 3 stands for community recommendations.
XML-RPC data type: <int>.

Calling service: CWS

• Method: addRating
Signature: void addRating (recordID, folderID, userID, ratingValue)
Description: this method may be invoked in order to store a rating in the FRS rating DB.
The rating is specified as in the RMS service.
Parameters:

System Testing Report(D4.2.1) 79

Input: recordID: a record identifier. XML-RPC data type: <string>.
folderID: a folder identifier. XML-RPC data type: <string>.
userID: a user identifier. XML-RPC data type: <string>.
ratingValue: the assigned rating value. XML-RPC data type: <int>.

Calling service: RMS

5.2.2 FRS API test

In the following we list the API methods by calling service indicating test responsibilities for the
methods listed.

• CWS (FIT)

– updateFolderProfile

– createFolder

– destroyFolder

– addRecord

– deleteRecord

– setRecommendationYesNo

• MS (FORTH)

– deleteUser

• RMS (FIT)

– addRating

• SBS (UNIDO)

– filteredSearch

– getNewRecords

In the following we summarize the results of the FRS API (v0.5) tests as conducted by CNR and
the partners responsible for services calling the FRS API.

FRS API test (CNR)

• Tester: Henri Avancini (avancini@iei.pi.cnr.it)

• Test date: 18 February, 2003 19:22 GMT

• Scope of test: Complete API of FRS v0.5.

• Test environment: Test client was a Java2 application running on Linux (2.4.18-19.8.0),
the XML-RPC implementation of Apache XML Project3.

• Test plan: All FRS API methods were tested according to the flow diagram presented
below. Basically it is composed by a general loop, which randomly4 decide methods to be
called in each iteration. Potentially all methods could be called on each iteration.

2Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)
3http://xml.apache.org/xmlrpc
4http://java.sun.com/j2se/1.4/docs/api/java/util/Random.html

80 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

\STRUCT{init}{Test FRS API}{%
\WHILE{continue}{%
\IF{new\\folder?}%
\THEN{%
\ACTION{createFolder}%

}%
\ELSE{%
}%
\ENDIF%
\IF{add \&\\set new?}%
\THEN{%
\ACTION{addRecord\\addRating\\setRecom.}%

}%
\ELSE{%
\ACTION{deleteRecord}%

}%
\ENDIF%
\ACTION{updateF.Prof.\\filteredSearch\\getNewRecs.}%
\IF{del\\folder \&\\user?}%
\THEN{%
\ACTION{destroyFolder\\deleteUser}%

}%
\ELSE{%
}%
\ENDIF%

}%
\ENDWHILE%

}%
\normalsize

Data type identifiers (folder, user, record) are generated sequentially, eg. Folder 01, Folder 02,
User 01, Record 01, Record 02, etc. An iteration in which no new folder (user, record) is
generated a randomly existing one is selected to call methods. Query is loaded from a file.
Both “rating” value and “recommendation” value are randomly generated for each method
call as well as the “maximum number of records” to be retrieved.

The main FRS API methods are tested on each iteration (“updateFolderProfile”, “filtered-
Search” and “getNewRecords”). The other methods are called randomly (“createFolder”,
“addRecord”, “addRating”, “setRecommendationYesNo”, “deleteFolder”, “destroyFolder”
and “deleteUser”).

• Test run: The FRS API test was performed on the server ’http://pc-avancini.iei.pi.cnr.it’
which runs the same version of Cyclades FRS as the ’http://project.iei.pi.cnr.it’ server. The
’http://pc-avancini.iei.pi.cnr.it’ server is not connected to the other services so the FRS API
functionality can be tested with no side effects on the other services. The test was performed
using adhoc designed Cyclades services (AS, CWS, MS and RMS), which simulate on line
versions.

Calls and results were logged. Log files are availables on line5. The file ’frsAPITest detailed.log’
contains for each iteration the iteration counter, specifications of methods called and counter
of total FRS API calls. For example:

Method called: frsAPITest

5http://project.iei.pi.cnr.it:8080/FRS/publicLogs/

System Testing Report(D4.2.1) 81

Loop: 350
New Folder created: Folder_260. New User created: User_260.
Recommendation Value: 7
Add record & rating. Record: Record_350. Rating: 4
Update folder profile.-
Filtered search with max.Rec.N.: 12
Get new records with max.Rec.N.: 19
FRS API calls sumatory:2318

Correspond to loop n.350 in which a new folder was created with identifier: “Folder 260” ans
well as a new user was added to the FRS data bases with identifier: “User 260”. The initial
recommendation value was setted to 7 (means 0111 binary, i.e. record, collection and user
recommendations allowed). After that a record with identifier: “Record 350” was added and
rating was setted. Later on, update folder profile, filtered search and get new records method
calls were performed. No record/folder/user was deleted on this loop. After this loop 2318
FRS API calls were successfully completed.

’FRSServer.log’ contains FRS server side log, which correspond to the test period. The file
’frsAPITest.log’ contains console outputs from the client side and error messages. During
the complete test run no errors have occurred. The file ’getFolderID.log’ keeps a trace of
FRS folders before and after test was performed. Lastly, ’startfrs.sh.log’ file contains console
outputs from the server side and error messages.

• Test summary: All available FRS API methods were executed and worked according to
specification for all sets of input parameters. A total of 3323 FRS API calls have been made.
No Errors occured during the test run. The method calls and the results produced by the
FRS system were logged and made available online.

FRS API test (FIT)

FRS API Test (FIT)
Tester: Wido Wirsam (wido.wirsam@fit.fraunhofer.de)
Date: 25.2.03
Time: 10.38

Method tested: updateFolderProfile
Argument(s) : "CW665_18629"
Return Value : none

Method tested: updateFolderProfile
Argument(s) : "CW665_18630" (Folder-ID does not exist)
Return Value : <Fault 0: ’java.lang.Exception: java.lang.NumberFormatException: ’>

Method tested: createFolder
Argument(s) : "CW665_18630", "CW665_7225", 15
Return Value : none

Method tested: destroyFolder
Argument(s) : "CW665_18630"
Return Value : none

Method tested: addRecord
Argument(s) : "Catalog of Apollo Experiment Operations", "CW665_18629", "CWCW665_7225"

82 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Return Value : none

Method tested: deleteRecord
Argument(s) : "Catalog of Apollo Experiment Operations", "CW665_18629", "CWCW665_7225"
Return Value : none

Method tested: setRecommendationYesNo
Argument(s) : "CW665_18629", 15
Return Value : none

Method tested: setRecommendationYesNo
Argument(s) : "CW665_18629", 0
Return Value : none

FRS API test (UNIDO/UNIDUE)

• Tester: Sascha Kriewel (kriewel@is.informatik.uni-duisburg.de)

• Test date: 12 March 2003

• Scope of test:

Testing FRS API methods

• Test environment:

Test client was a Java6 application running on Debian Linux, the XML-RPC implementation
of Apache XML Project.

• Test plan:

Each method was called first with valid parameters, then with invalid parameters, missing
parameters, and wrong parameter types.

With the valid method calls, the semantic result was checked:

– filteredSearch returned a list of appropriate records

– initiateSearch returned the list of new records for the specified folder

With the intentionally invalid calls, it was checked whether the method returned the appro-
priate error code and message.

• Test log:

An excerpt of the last test log is shown below.

...

Mar 12, 2003 3:55:11 PM: ServerURL=http://project.iei.pi.cnr.it:4413
Mar 12, 2003 3:55:11 PM: ServerName=service

...

Mar 12, 2003 3:55:11 PM: Method.1=filteredSearch
Mar 12, 2003 3:55:11 PM: comment.1=valid parameters
Mar 12, 2003 3:55:11 PM: flags.1=

6Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)

System Testing Report(D4.2.1) 83

Mar 12, 2003 3:55:11 PM: param.1.1.type=String
Mar 12, 2003 3:55:11 PM: param.1.1.value=
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query SYSTEM
"http://woodstock.is.informatik.uni-duisburg.de:15210/ac/query.dtd">
<query schema="dc">
<collection-query>

<condition weight="+" field="description">
<field-condition predicate="cw" value="video"/>

</condition>
</collection-query>

</query>
Mar 12, 2003 3:55:11 PM: param.1.2.type=Integer
Mar 12, 2003 3:55:11 PM: param.1.2.value=10
Mar 12, 2003 3:55:11 PM: param.1.3.type=String
Mar 12, 2003 3:55:11 PM: param.1.3.value=CW665_20186
Mar 12, 2003 3:56:09 PM: TestService: filteredSearch returned [
[name=A Tutorial on Authorware,
metadata=<?xml version="1.0" encoding="UTF-8"?>
<GetRecord xmlns="http://www.openarchives.org/OAI/1.1/OAI_GetRecord"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.1/OAI_GetRecord
http://www.openarchives.org/OAI/1.1/OAI_GetRecord.xsd">

<responseDate>2002-06-19T11:48:36-05:00</responseDate>
<requestURL>http://scholar.lib.vt.edu:80/theses/OAI/cgi-bin/index.pl?
verb=GetRecord&identifier=oai:VTETD:etd-18409759651581&
metadataPrefix=oai_dc</requestURL>

<record>
<header>
<identifier>oai:VTETD:etd-18409759651581</identifier>
<datestamp>1996-04-25</datestamp>
</header>
<metadata>
...
</metadata>
</record>
</GetRecord>
,classifierLabel=,id=AC143_oai_dc_oai:LTRS:NASA-97-81agard-awb]]

Mar 12, 2003 3:56:09 PM: TestService: spent 58047 millis for request

===
Mar 12, 2003 3:56:10 PM: Method.2=filteredSearch
Mar 12, 2003 3:56:10 PM: comment.2=invalid folder ID
Mar 12, 2003 3:56:10 PM: flags.2=

Mar 12, 2003 3:56:10 PM: param.2.1.type=String
Mar 12, 2003 3:56:10 PM: param.2.1.value=
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query SYSTEM
"http://woodstock.is.informatik.uni-duisburg.de:15210/ac/query.dtd">
<query schema="dc">

84 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

<collection-query>
<condition weight="+" field="description">

<field-condition predicate="cw" value="video"/>
</condition>

</collection-query>
</query>
Mar 12, 2003 3:56:10 PM: param.2.2.type=Integer
Mar 12, 2003 3:56:10 PM: param.2.2.value=10
Mar 12, 2003 3:56:10 PM: param.2.3.type=String
Mar 12, 2003 3:56:10 PM: param.2.3.value=bla
Mar 12, 2003 3:57:05 PM: TestService: filteredSearch returned []
Mar 12, 2003 3:57:05 PM: TestService: spent 55743 millis for request

===
Mar 12, 2003 3:57:05 PM: Method.3=filteredSearch
Mar 12, 2003 3:57:05 PM: comment.3=missing parameter
Mar 12, 2003 3:57:05 PM: flags.3=

Mar 12, 2003 3:57:05 PM: TestService: XML-RPC Fault #0 -
java.lang.NoSuchMethodException: filteredSearch

Mar 12, 2003 3:57:05 PM: TestService: spent 118 millis for request

...

Mar 12, 2003 3:57:05 PM: Method.5=getNewRecords
Mar 12, 2003 3:57:05 PM: comment.5=getNewRecords with valid parameters
Mar 12, 2003 3:57:05 PM: flags.5=

Mar 12, 2003 3:57:05 PM: param.5.1.type=String
Mar 12, 2003 3:57:05 PM: param.5.1.value=
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE query SYSTEM
"http://woodstock.is.informatik.uni-duisburg.de:15210/ac/query.dtd">
<query schema="dc">
<collection-query>

<condition weight="+" field="description">
<field-condition predicate="cw" value="video"/>

</condition>
</collection-query>

</query>
Mar 12, 2003 3:57:05 PM: param.5.2.type=Integer
Mar 12, 2003 3:57:05 PM: param.5.2.value=10
Mar 12, 2003 3:57:05 PM: param.5.3.type=String
Mar 12, 2003 3:57:05 PM: param.5.3.value=CW665_20186
Mar 12, 2003 3:57:05 PM: param.5.4.type=String
Mar 12, 2003 3:57:05 PM: param.5.4.value=CW665_20164
Mar 12, 2003 3:58:10 PM: TestService: getNewRecords returned [
[name=A Tutorial on Authorware,metadata=
<?xml version="1.0" encoding="UTF-8"?>
<GetRecord xmlns="http://www.openarchives.org/OAI/1.1/OAI_GetRecord"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.1/OAI_GetRecord
http://www.openarchives.org/OAI/1.1/OAI_GetRecord.xsd">

System Testing Report(D4.2.1) 85

<responseDate>2002-06-19T11:48:36-05:00</responseDate>
<requestURL>http://scholar.lib.vt.edu:80/theses/OAI/cgi-bin/index.pl?
verb=GetRecord&identifier=oai:VTETD:etd-18409759651581&
metadataPrefix=oai_dc</requestURL>

<record>
<header>
<identifier>oai:VTETD:etd-18409759651581</identifier>
<datestamp>1996-04-25</datestamp>
</header>
<metadata>
...
</metadata>
</record>
</GetRecord>
,classifierLabel=,id=AC143_oai_dc_oai:LTRS:NASA-97-81agard-awb]]
Mar 12, 2003 3:58:10 PM: TestService: spent 64336 millis for request

...

Mar 12, 2003 3:58:19 PM: Method.9=getNewRecords
Mar 12, 2003 3:58:19 PM: comment.9=wrong parameter type
Mar 12, 2003 3:58:19 PM: flags.9=

Mar 12, 2003 3:58:19 PM: param.9.1.type=Integer
Mar 12, 2003 3:58:19 PM: param.9.1.value=10
Mar 12, 2003 3:58:19 PM: param.9.2.type=Integer
Mar 12, 2003 3:58:19 PM: param.9.2.value=10
Mar 12, 2003 3:58:19 PM: param.9.3.type=String
Mar 12, 2003 3:58:19 PM: param.9.3.value=CW665_7880
Mar 12, 2003 3:58:19 PM: param.9.4.type=String
Mar 12, 2003 3:58:19 PM: param.9.4.value=CW665_7853
Mar 12, 2003 3:58:19 PM: TestService: XML-RPC Fault #0 -

java.lang.NoSuchMethodException: getNewRecords
Mar 12, 2003 3:58:19 PM: TestService: spent 98 millis for request

• Test summary:

All methods specified above from the FR API were tested. All methods worked for valid
parameters. Invalid parameters returned empty results. Missing parameters or wrong pa-
rameter types resulted in Java exceptions.

Chapter 6

CS Component Test

6.1 Introduction

The Collection Service (CS) manages and stores collections and it’s responsible for the dissemina-
tion of information about them.

Collection is a mechanisms for dynamically structuring the overall information space into mean-
ingful (from some community’s perspective) collections.

The CS has an API supplying 13 methods as well as a graphical user interface (GUI) with a set of
functionality about collections management described in Deliverable D3.0.1.

6.2 CS API test

6.2.1 CS API specification

The Collection Service provides an API to other Cyclades services. The methods of this API
may be called using the inter-service communication protocol XML-RPC.

Invoking the Collection Service’s methods such default exception can be thrown:

10000 no such method If the method invoked isn’t defined.
10001 bad number of parameters If you invoke a method with a wrong number of parameters.
10002 bad parameter type If you invoke a method with a wrong parameter type.
10010 internal error In all cases where an undefined exception exists.

• Method: addCollection
Signature: collectionId addCollection()
Description: this method creates a new collection identifier which can be assigned to a
collection which will be soon created.
Parameters:
Output: collectionId integer the identifier of the new collection that will be created.

• Method: initializeCollection
Signature: collectionId initializeCollection(collectionId, collectionName, collectionDescrip-
tion, membershipCondition, userId)
Description: this method creates a collection, which parent collection is the Cyclades col-
lection , if the membership condition is legal.
Parameters:

86

System Testing Report(D4.2.1) 87

Input: collectionId string the identifier of the new collection.
collectionName string the printable name of the collection (max 50

chars).
collectionDescription string textual description of the collection.
membershipCondition string the condition to be verified by all the members of

the collection coded in XML (see 6.2.2).
userId string the identifier of the user which sends the request.

Output: collectionId string the identifier of the collection that has been initialized.
Exception:
10003 missing or null parameter value if collectionName or collectionDescription are “”.
14112 User doesn’t exists
10200 no permission operation not allowed, user isn’t enable to do it
14113 Identifier isn’t valid collectionId isn’t valid.
14107 Bad XML file error parsing membershipCondition.
14115 Out of bounds if collectionName is out of bounds.

• Method: initializeCollection
Signature: collectionId initializeCollection(collectionId, collectionName, collectionDescrip-
tion, membershipCondition, userId, parentCollection)
Description: this method creates a collection whose parent collection is parentCollection,
if the membership condition is legal.
Parameters:
Input: collectionId string the identifier of the new collection.

collectionName string the printable name of the collection (max 50
chars).

collectionDescription string textual description of the collection.
membershipCondition string the condition to be verified by all the members of

the collection coded in XML (see 6.2.2).
userId string the identifier of the user which sends the request.
parentCollection string the identifier of the parent collection in the col-

lection hierarchy.
Output: collectionId string the identifier of the collection that has been initialized.
Exception:
10003 missing or null parameter value if collectionName or collectionDescription are “”.
14112 User doesn’t exists
10200 no permission operation not allowed, user isn’t enable to do it
14113 Identifier isn’t valid collectionId isn’t valid.
14105 Collection doesn’t exists parentCollection doesn’t exists.
14107 Bad XML file error parsing membershipCondition.
14115 Out of bounds if collectionName is out of bounds.

• Method: deleteCollection
Signature: void deleteCollection(collectionId, userId)
Description: this method removes a collection from the set of existing collections if: a) the
user is authorized to do it and b) the specified collection exists.
Parameters:
Input: collectionId string the identifier of the new collection.

userId string the identifier of the user which sends the request.
Exception:
10200 no permission operation not allowed, user isn’t enable to do it
14105 Collection doesn’t exists collectionId doesn’t exists.

• Method: addSearchBrowseFormat
Signature: void addSearchBrowseFormat(collectionId, subschema, userId)
Description: this method adds a new search/browse format if: a) the user is authorized to
do it, b) the subschema is legal.

88 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Parameters:
Input: collectionId string the identifier of the collection.

subschema string the specification of the subschema (coded in XML – see 6.2.2
–) used for querying, browsing and displaying results.

userId string the identifier of the user who sends the request.
Exception:
14107 Bad XML file error parsing subschema.
14109 Search&Browse Format already exists.
10200 no permission operation not allowed, user isn’t enable to do it
14110 Schema doesn’t exists.
14108 Attribute doesn’t exists.
14105 Collection doesn’t exists collectionId doesn’t exists.

• Method: removeSearchBrowseFormat
Signature: void removeSearchBrowseFormat(collectionId, subschemaName, userId)
Description: this method removes a search/browse format if: a) the user is authorized to
do it, b) the name of the subschema identifies an existing format.
Parameters:
Input: collectionId string the identifier of the collection from which the

search/browse format has to be removed.
subschemaName string the name of the search/browse format to remove.
userId string the identifier of the user who sends the request.

Exception:
14106 Search&Browse Format doesn’t exists.
10200 no permission operation not allowed, user isn’t enable to do it
14105 Collection doesn’t exists collectionId doesn’t exists.

• Method: listCollections
Signature: (collectionId, collectionName, collectionDescription, parentCollection)* listCol-
lections(userId)
Description: this method returns the list of existing collections whose owner is userId.
Parameters:
Input: userId string the identifier of the user who sends the request
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:
collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent. collection .

Exception:
14112 User doesn’t exists

• Method: listCollections
Signature: (collectionId, collectionName, collectionDescription, parentCollection)* listCol-
lections()
Description: this method returns the list of existing collections.
Parameters:
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:
collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent collection.

• Method: editCollection
Signature: void editCollection(collectionMetadata,userId)
Description: Update collection metadata description.
Parameters:

System Testing Report(D4.2.1) 89

Input: collectionMetadata string new collection metadata coded in XML (see 6.2.2).
userId string the identifier of the user who sends the request.

Exception:
14107 Bad XML file error parsing collectionMetadata.
10200 no permission operation not allowed, user isn’t enable to do it
14105 Collection doesn’t exists

• Method: getCollectionMetadata
Signature: (collectionId, collectionMetadata)* getCollectionMetadata(collectionIds*)
Description: for each specified collection identifier, this method returns the corresponding
descriptive metadata.
Parameters:
Input: collectionIds string* a list of collection identifiers.
Output: A list of pairs (collectionId,collectionMetadata) where:
collectionId string the identifier of the collection .
collectionMetadata string the collection metadata coded in XML (see 6.2.2).

• Method: getPersonalCollections
Signature: (collectionId, collectionName, collectionDescription, parentCollection)* getPer-
sonalCollections(userId)
Description: this method returns the list of personal set of collections for user userId.
Parameters:
Input: userId string the identifier of the user who sends the request
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:
collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent. collection .

Exception:
14112 User doesn’t exists

• Method: deleteUser
Signature: void deleteUser(userId)
Description: Notify the Collection Service that user userId was removed.
Parameters:
Input: userId string the identifier of the user.
Exception:
14112 User doesn’t exists

• Method: deleteArchive
Signature: void deleteArchive(archiveId)
Description: Notify the Collection Service that archive archiveId was removed.
Parameters:
Input: archiveId string the identifier of the archive.

6.2.2 XML objects: XML schemas

Collection Metadata Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

targetNamespace="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:query="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:cs="http://project.iei.pi.cnr.it:8080/CollectionService"

90 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

elementFormDefault="unqualified" attributeFormDefault="unqualified">
<xs:include schemaLocation="query.xsd"/>
<xs:include schemaLocation="membership.xsd"/>
<xs:element name="CollectionMetadata" type="cs:collectionMetadataType">
</xs:element>
<xs:complexType name="collectionMetadataType">
<xs:sequence>
<xs:element name="Id" type="xs:string"/>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="OwnerId" type="xs:string"/>
<xs:element name="ParentCollection" type="xs:string"/>
<xs:element name="MembershipCondition" type="cs:MCType"/>
<xs:element name="FilteringCondition" type="query:FCType"/>
<xs:element name="Schema" type="cs:schemaType" maxOccurs="unbounded"/>
<xs:element name="Subschema" type="cs:subschemaType" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="FCType">
<xs:sequence>
<xs:element name="query">
<xs:complexType>
<xs:sequence>
<xs:element name="collection-query" type="query:collection-queryType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="schema" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

<xs:complexType name="schemaType">
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="URL" type="xs:string"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="subschemaType">
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="URL" type="xs:string"/>
<xs:element name="Schema" type="xs:string"/>
<xs:element name="Attribute" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

Membership Condition Schema

<?xml version="1.0" encoding="UTF-8"?>

System Testing Report(D4.2.1) 91

<xs:schema
targetNamespace="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:cs="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:element name="MembershipCondition" type="cs:MCType"/>

<xs:complexType name="MCType">
<xs:sequence>
<xs:element name="metadataFormat" type="xs:string"/>
<xs:element name="condition" type="cs:conditionType" maxOccurs="unbounded"/>
<xs:element name="archive" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="conditionType">
<xs:attribute name="weight" type="xs:string"/>
<xs:attribute name="field" type="xs:string" use="required" />
<xs:attribute name="predicate" type="xs:string" use="required" />
<xs:attribute name="value" type="xs:string" use="required" />

</xs:complexType>

</xs:schema>

Subschema Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="subschema">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="url" type="xs:string"/>
<xs:element name="schema" type="xs:string"/>
<xs:element name="attribute">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="name" type="xs:string"/>
<xs:element name="datatype" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Query Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

targetNamespace="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

92 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

xmlns:query="http://project.iei.pi.cnr.it:8080/CollectionService"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:complexType name="archiveType">
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="collection-queryType">
<xs:sequence>
<xs:element name="condition" type="query:queryConditionType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="archive" type="query:archiveType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="queryConditionType">
<xs:sequence>
<xs:element name="field-condition" type="query:field-conditionType"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="weight" type="xs:string"/>
<xs:attribute name="field" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="field-conditionType">
<xs:attribute name="subfield" type="xs:string"/>
<xs:attribute name="predicate" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>
<xs:element name="query">
<xs:complexType>
<xs:sequence>
<xs:element name="collection-query" type="query:collection-queryType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="schema" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

6.2.3 CS API test

In the following we list the API methods by calling services indicating test responsabilities for the
methods listed.

• AS (UNIDO)

– addCollection

– initializeCollection

– deleteArchive

• CWS (FIT)

– listCollection

– getPersonalCollections

• SBS (UNIDO)

System Testing Report(D4.2.1) 93

– getCollectionMetadata

• MS (FORTH)

– deleteUser

In the following we summarize the results of the CS API tests as conducted by CNR and the
partners responsible for services calling the CS API.

CS API test (CNR)

• Tester: Leonardo Candela (candela@iei.pi.cnr.it)

• Test date: 10 February 2003

• Scope of test: API testing using a Java program which tested every method of the API
with a number of parameter sets that were read from a test data file.

• Test environment: Test client was a Java 1.3.1 program running on Windows 2000 making
use of Apache XML-RPC implementation1 .

• Test plan: The first step necessary to test the CS API is to create some dummy col-
lections2 that populate the Cyclades system. Some of this collections are created in
order to “simulate” the creation of collection in the case of new archive registration. In
order to create a collection the testing procedure calls the method addCollection and
then the method initializeCollection. File 0 createCalls.txt contains the set of calls
(method+parameters) used in this phase. This file looks like this:

call_0 = initializeCollection
param_0_0 = collection name
param_0_1 = collection description
param_0_2 = membership condition defined as an XML file
param_0_3 = creator identifier

The second step is to call a set of collection managing methods. This methods are edit-
Collection, getCollectionMetadata, addSearchBrowseFormat and removeSearchBrowse-
Format. Each method is called 10 times and the choice of the collection to use is made ran-
domly among that created3. File 1 manageCalls.txt contains the set of parameters used in
this phase. This file looks like this:

call_0 = editCollection => collectionId random
...
call_10 = getCollectionMetadata
param_10_0 = all => all collections
...
call_11 = getCollectionMetadata => collectionId random
...
call_21 = addSearchBrowseFormat => collectionId random
param_21_0 = searchBrowse1
...
call_32 = removeSearchBrowseFormat => collectionId random

1http://ws.apache.org/xmlrpc/
2File http://project.iei.pi.cnr.it:8080/CollectionService/publicLogs/test.zip contains all in-

put/output files used in this test.
3Other data like ownerId are acquired from CS system.

94 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

param_32_0 = searchBrowse1
...

Moreover in this phase is tested the method listCollections.

The third step is related to testing method getPersonalCollections. In order to test this
methods the tester have manually select the personal set of collections using the GUI for
each user. Then the method is invoked for each user created for this test as reported in the
file 2 listPersonalCalls.txt.

The fourth step is related to testing methods deleteUser, deleteArchive and delete-
Collection. As reported in files 3 clearArchsUsers.txt and 3 clearCollections.txt
all archives, users and collections created for this test will be removed.

• Test run: The CS API test was performed on the server http://pc-candela.iei.pi.cnr.it
which runs the same version of Cyclades CS. The http://pc-candela.iei.pi.cnr.it
server isn’t really connected to other Cyclades services, but simulate them.

Tester have follows procedure steps reported in test plan. For each step a log-file and an
error-log file are produced.

This is an excerpt of the file CS testRun 0.log(the log-file generated during the first step of
this test).

CS run log (0_createCalls.txt) - created Mon Feb 10 12:23:44 CET 2003

CALL Method service.addCollection
RESP CO1_Coll8673066

CALL Method service.initializeCollection
Param CO1_Coll8673066
Param collectionTest Archive1
Param collectionTest Archive1 Description
Param <?xml version="1.0" encoding="iso-8859-1"?><MembershipCondi ...
Param TestUser1

RESP CO1_Coll8673066

• Test summary: All methods worked according to specification for all sets of input parame-
ters. All together 114 API-calls have been made. The method calls and the results produced
by the CS system were logged and made available online.

CS API test (FIT)

CS API Test (FIT)
Tester: Wido Wirsam (wido.wirsam@fit.fraunhofer.de)
Date: 25.2.03
Time: 10.51

Method tested: listCollections
Argument(s) :
Return Value :

[[’CO563_Coll10843’, ’AIM25’, ’Archive AIM25’, ’CO_CollCYCLADES’],

System Testing Report(D4.2.1) 95

[’CO563_Coll1158’, ’ArchiveLyon2’, ’Archive ArchiveLyon2’,
’CO_CollCYCLADES’],

[’CO563_Coll23241’, ’CCSDJeanNicod’, ’Archive CCSDJeanNicod’,
’CO_CollCYCLADES’],

[’CO563_Coll29930’, ’CCSDarchiveSIC’, ’Archive CCSDarchiveSIC’,
’CO_CollCYCLADES’],

[’CO563_Coll84032’, ’CCSDthesis’, ’Archive CCSDthesis’,
’CO_CollCYCLADES’],

[’CO563_Coll23113’, ’CDLCIAS’, ’Archive CDLCIAS’, ’CO_CollCYCLADES’],

[’CO563_Coll72335’, ’CPS’, ’Archive CPS’, ’CO_CollCYCLADES’],

[’CO563_Coll8005’, ’CS’, ’Computer science archives’,
’CO_CollCYCLADES’],

[’CO563_Coll53270’, ’CSTC’, ’Archive CSTC’, ’CO_CollCYCLADES’],

[’CO_CollCYCLADES’, ’CYCLADES’, ’CYCLADES super-collection’, ’’],

[’CO563_Coll65160’, ’Clay Animation’, ’the most analog way to create
animated Films’, ’CO_CollCYCLADES’],

[’CO563_Coll60371’, ’DBMS papers’, ’DBMS(DB Management Systems)
papers’, ’CO_CollCYCLADES’],

[’CO563_Coll45955’, ’DLCommons’, ’Archive DLCommons’,
’CO_CollCYCLADES’],

[’CO563_Coll23667’, ’DUETT’, ’Archive DUETT’, ’CO_CollCYCLADES’],

[’CO563_Coll23606’, ’Digital Library papers’, ’Digital Library
papers’, ’CO_CollCYCLADES’],

[’CO563_Coll49044’, ’FullTex’, ’full text collection’,
’CO_CollCYCLADES’],

[’CO563_Coll83703’, ’Fusion’, ’Collection about fusion’,
’CO_CollCYCLADES’],

[’CO563_Coll29823’, ’GenericEPrints’, ’Archive GenericEPrints’,
’CO_CollCYCLADES’],

[’CO563_Coll498’, ’JTRS’, ’Archive JTRS’, ’CO_CollCYCLADES’],

[’CO563_Coll86068’, ’LSUETD’, ’Archive LSUETD’, ’CO_CollCYCLADES’],

[’CO563_Coll82242’, ’LTRS’, ’Archive LTRS’, ’CO_CollCYCLADES’],

[’CO563_Coll16645’, ’MathPreprints’, ’Archive MathPreprints’,
’CO_CollCYCLADES’],

96 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

[’CO563_Coll7610’, ’NACA’, ’Archive NACA’, ’CO_CollCYCLADES’],

[’CO563_Coll11789’, ’Papers about logic’, ’A collection of papers
about logic’, ’CO_CollCYCLADES’],

[’CO563_Coll96646’, ’Query optimization papers’, ’Query optimization
papers’, ’CO563_Coll60371’],

[’CO563_Coll62217’, ’RIACS’, ’Archive RIACS’, ’CO_CollCYCLADES’],

[’CO563_Coll5579’, ’StoriaCollection’, ’collezione di record su
"storia"’, ’CO_CollCYCLADES’],

[’CO563_Coll74166’, ’Test1’, ’only test again’, ’CO_CollCYCLADES’],

[’CO563_Coll76527’, ’Test2’, ’only a test’, ’CO563_Coll29930’],

[’CO563_Coll97398’, ’UMIMAGES’, ’Archive UMIMAGES’,
’CO_CollCYCLADES’],

[’CO563_Coll38469’, ’UniversityOfNottingham’, ’Archive
UniversityOfNottingham’, ’CO_CollCYCLADES’],

[’CO563_Coll99485’, ’VTETD’, ’Archive VTETD’, ’CO_CollCYCLADES’],

[’CO563_Coll24379’, ’ackarch’, ’Archive ackarch’, ’CO_CollCYCLADES’],

[’CO563_Coll5617’, ’anlc’, ’Archive anlc’, ’CO_CollCYCLADES’],

[’CO563_Coll11014’, ’ans’, ’Archive ans’, ’CO_CollCYCLADES’],

[’CO563_Coll41676’, ’anu’, ’Archive anu’, ’CO_CollCYCLADES’],

[’CO563_Coll7907’, ’artiste’, ’Archive artiste’, ’CO_CollCYCLADES’],

[’CO563_Coll4594’, ’bmc’, ’Archive bmc’, ’CO_CollCYCLADES’],

[’CO563_Coll44215’, ’caltechEERL’, ’Archive caltechEERL’,
’CO_CollCYCLADES’],

[’CO563_Coll61013’, ’caltechETD’, ’Archive caltechETD’,
’CO_CollCYCLADES’],

[’CO563_Coll52651’, ’caltechcstr’, ’Archive caltechcstr’,
’CO_CollCYCLADES’],

[’CO563_Coll32500’, ’cav2001’, ’Archive cav2001’, ’CO_CollCYCLADES’],

[’CO563_Coll1421’, ’cbold’, ’Archive cbold’, ’CO_CollCYCLADES’],

[’CO563_Coll20887’, ’cdlib1’, ’Archive cdlib1’, ’CO_CollCYCLADES’],

[’CO563_Coll85995’, ’celebration’, ’Archive celebration’,

System Testing Report(D4.2.1) 97

’CO_CollCYCLADES’],

[’CO563_Coll59959’, ’cimi’, ’Archive cimi’, ’CO_CollCYCLADES’],

[’CO563_Coll34271’, ’cogprints’, ’Archive cogprints’,
’CO_CollCYCLADES’],

[’CO563_Coll50088’, ’conoze’, ’Archive conoze’, ’CO_CollCYCLADES’],

[’CO563_Coll68048’, ’cyclades_fuzzy_logic’, ’fuzzy logic’,
’CO563_Coll89489’],

[’CO563_Coll89489’, ’cyclades_logic’, ’a collection of papers about
logic.’, ’CO_CollCYCLADES’],

[’CO563_Coll24509’, ’dlpscoll’, ’Archive dlpscoll’,
’CO_CollCYCLADES’],

[’CO563_Coll35942’, ’eldorado’, ’Archive eldorado’,
’CO_CollCYCLADES’],

[’CO563_Coll74074’, ’epsilondiss’, ’Archive epsilondiss’,
’CO_CollCYCLADES’],

[’CO563_Coll38677’, ’epubWU’, ’Archive epubWU’, ’CO_CollCYCLADES’],

[’CO563_Coll32597’, ’ethnologue’, ’Archive ethnologue’,
’CO_CollCYCLADES’],

[’CO563_Coll66090’, ’formations’, ’Archive formations’,
’CO_CollCYCLADES’],

[’CO563_Coll87517’, ’hofprints’, ’Archive hofprints’,
’CO_CollCYCLADES’],

[’CO563_Coll35707’, ’hsss’, ’Archive hsss’, ’CO_CollCYCLADES’],

[’CO563_Coll10882’, ’ibiblio’, ’Archive ibiblio’, ’CO_CollCYCLADES’],

[’CO563_Coll15553’, ’ioffe’, ’Archive ioffe’, ’CO_CollCYCLADES’],

[’CO563_Coll55048’, ’lacito’, ’Archive lacito’, ’CO_CollCYCLADES’],

[’CO563_Coll29421’, ’lcoa1’, ’Archive lcoa1’, ’CO_CollCYCLADES’],

[’CO563_Coll19644’, ’ncstrlh’, ’Archive ncstrlh’, ’CO_CollCYCLADES’],

[’CO563_Coll66644’, ’pastel’, ’Archive pastel’, ’CO_CollCYCLADES’],

[’CO563_Coll31033’, ’perseus’, ’Archive perseus’, ’CO_CollCYCLADES’],

[’CO563_Coll15673’, ’sammelpunkt’, ’Archive sammelpunkt’,
’CO_CollCYCLADES’],

98 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

[’CO563_Coll51675’, ’test’, ’test collection’, ’CO_CollCYCLADES’],

[’CO563_Coll86770’, ’tkn’, ’Archive tkn’, ’CO_CollCYCLADES’]]

Method tested: getPersonalCollections
Argument(s) : "CW665_7225"
Return Value :

[[’CO563_Coll32597’, ’ethnologue’, ’Archive ethnologue’,
’CO_CollCYCLADES’],

[’CO563_Coll60371’, ’DBMS papers’, ’DBMS(DB Management Systems)
papers’, ’CO_CollCYCLADES’],

[’CO563_Coll65160’, ’Clay Animation’, ’the most analog way to create
animated Films’, ’CO_CollCYCLADES’],

[’CO563_Coll84032’, ’CCSDthesis’, ’Archive CCSDthesis’,
’CO_CollCYCLADES’],

[’CO563_Coll96646’, ’Query optimization papers’, ’Query optimization
papers’, ’CO563_Coll60371’]]

CS API test (UNIDUE)

• Tester: Gudrun Fischer (Gudrun.Fischer@uni-duisburg.de)

• Test date: 4 March 2003

• Scope of test: Testing CS API methods called from AS and SBS.

• Test environment: Test client was a Java4 application running on Debian Linux, the
XML-RPC implementation of Apache XML Project.

• Test plan:

Each method was called first with valid parameters, then with invalid parameters of the right
type, then with a wrong number of parameters, and finally, with a wrong parameter type.

With the valid method calls, the semantic result was checked:

– addCollection did return IDs which could be used for creating new collections

– initializeCollection did create the collections as specified

– getCollectionMetadata returned the metadata for all valid collection ids

– getPersonalCollections returned exactly the personal collections of the user

– deleteArchive could not be called twice for the same archive id, and the archive’s col-
lection was no longer available afterwards

4Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)

System Testing Report(D4.2.1) 99

With the intentionally invalid calls, it was checked whether the method returned the appro-
priate error code and message.

• Test log: An excerpt of the last test log is shown below.

...

Mar 4, 2003 8:22:35 PM: Reading from
tests_for_partners/co/CO_initializeCollection.properties
Mar 4, 2003 8:22:35 PM: ServerURL=
http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server
Mar 4, 2003 8:22:35 PM: ServerName=service
Mar 4, 2003 8:22:35 PM: proxyHost=
Mar 4, 2003 8:22:35 PM: proxyPort=

===
Mar 4, 2003 8:22:35 PM: Method.1=initializeCollection
Mar 4, 2003 8:22:35 PM: comment.1=initialize the first collection
Mar 4, 2003 8:22:35 PM: flags.1=

Mar 4, 2003 8:22:35 PM: param.1.1.type=String
Mar 4, 2003 8:22:35 PM: param.1.1.value=CO563_Coll98705
Mar 4, 2003 8:22:35 PM: param.1.2.type=String
Mar 4, 2003 8:22:35 PM: param.1.2.value=test collection 1
Mar 4, 2003 8:22:35 PM: param.1.3.type=String
Mar 4, 2003 8:22:35 PM: param.1.3.value=this is dummy collection no. 1
Mar 4, 2003 8:22:35 PM: param.1.4.type=String
Mar 4, 2003 8:22:35 PM: param.1.4.value=<MembershipCondition>
<metadataFormat>oai_dc</metadataFormat> <archive>celebration</archive>
</MembershipCondition>
Mar 4, 2003 8:22:35 PM: param.1.5.type=String
Mar 4, 2003 8:22:35 PM: param.1.5.value=CW665_7853
Mar 4, 2003 8:22:37 PM: TestService: initializeCollection returned
CO563_Coll98705
Mar 4, 2003 8:22:37 PM: TestService: spent 2155 millis for request

...

Mar 4, 2003 8:22:39 PM: Method.3=initializeCollection
Mar 4, 2003 8:22:39 PM: comment.3=initialize the 3rd collection,
child of itself
Mar 4, 2003 8:22:39 PM: flags.3=

Mar 4, 2003 8:22:39 PM: param.3.1.type=String
Mar 4, 2003 8:22:39 PM: param.3.1.value=CO563_Coll66524
Mar 4, 2003 8:22:39 PM: param.3.2.type=String
Mar 4, 2003 8:22:39 PM: param.3.2.value=test collection 3
Mar 4, 2003 8:22:39 PM: param.3.3.type=String
Mar 4, 2003 8:22:39 PM: param.3.3.value=this is dummy collection no. 3
Mar 4, 2003 8:22:39 PM: param.3.4.type=String
Mar 4, 2003 8:22:39 PM: param.3.4.value=<MembershipCondition>
<metadataFormat>oai_dc</metadataFormat> <archive>AIM25</archive>
</MembershipCondition>
Mar 4, 2003 8:22:39 PM: param.3.5.type=String
Mar 4, 2003 8:22:39 PM: param.3.5.value=CW665_7853

100 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Mar 4, 2003 8:22:39 PM: param.3.6.type=String
Mar 4, 2003 8:22:39 PM: param.3.6.value=CO563_Coll66524
Mar 4, 2003 8:22:39 PM: TestService: XML-RPC Fault #14105 -
Collection doesn’t exists
Mar 4, 2003 8:22:39 PM: TestService: spent 593 millis for request

...

Mar 4, 2003 8:36:25 PM: Reading from
tests_for_partners/co/CO_getPersonalCollections.properties
Mar 4, 2003 8:36:25 PM: ServerURL=
http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server
Mar 4, 2003 8:36:25 PM: ServerName=service
Mar 4, 2003 8:36:25 PM: proxyHost=
Mar 4, 2003 8:36:25 PM: proxyPort=

===
Mar 4, 2003 8:36:25 PM: Method.1=getPersonalCollections
Mar 4, 2003 8:36:25 PM: comment.1=valid parameter
Mar 4, 2003 8:36:25 PM: flags.1=

Mar 4, 2003 8:36:25 PM: param.1.1.type=String
Mar 4, 2003 8:36:25 PM: param.1.1.value=CW665_7853
Mar 4, 2003 8:36:26 PM: TestService: getPersonalCollections returned
[[CO563_Coll10843,AIM25,Archive AIM25,CO_CollCYCLADES],
[CO563_Coll85995,celebration,Archive celebration,CO_CollCYCLADES]]
Mar 4, 2003 8:36:26 PM: TestService: spent 784 millis for request

...

Mar 4, 2003 8:46:10 PM: Reading from
tests_for_partners/co/CO_deleteArchive.properties
Mar 4, 2003 8:46:10 PM: ServerURL=
http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server
Mar 4, 2003 8:46:10 PM: ServerName=service
Mar 4, 2003 8:46:10 PM: proxyHost=
Mar 4, 2003 8:46:10 PM: proxyPort=

===
Mar 4, 2003 8:46:10 PM: Method.1=deleteArchive
Mar 4, 2003 8:46:10 PM: comment.1=valid parameter
Mar 4, 2003 8:46:10 PM: flags.1=

Mar 4, 2003 8:46:10 PM: param.1.1.type=String
Mar 4, 2003 8:46:10 PM: param.1.1.value=celebration
Mar 4, 2003 8:46:28 PM: TestService: deleteArchive returned
Mar 4, 2003 8:46:28 PM: TestService: spent 18196 millis for request

...

Mar 4, 2003 8:46:28 PM: Method.4=deleteArchive
Mar 4, 2003 8:46:28 PM: comment.4=archive that has been deleted before
Mar 4, 2003 8:46:28 PM: flags.4=

System Testing Report(D4.2.1) 101

Mar 4, 2003 8:46:28 PM: param.4.1.type=String
Mar 4, 2003 8:46:28 PM: param.4.1.value=celebration
Mar 4, 2003 8:46:29 PM: TestService: XML-RPC Fault #14116 -
Archive doesn’t exists
Mar 4, 2003 8:46:29 PM: TestService: spent 426 millis for request

...

• Test summary: All methods called from the AS and the SBS were tested. All methods
tested worked according to the specification for all sets of correct input parameters. Correct
calls did not produce any errors, incorrect calls produced the appropriate error codes and
messages.

6.3 CS GUI test

6.3.1 CS GUI description

The graphical user interface of the CS is organized into two areas, the menu area and the working
area as shown in figure 6.1. Menu area contains a menu bar (at the upper) and an action menu.
Working area contains a collection hierarchy area and a collection data area.

Figure 6.1: CS Graphical User Interface

102 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

The menu bar

At the upper of the interface (under the Collection Management title bar) there is a menu bar
with three menus and/or action shortcut.

Via the Browse menu the user may choice the set of collections shown in the working area among
own created collections and all Cyclades collections.

Via the Personal Collections Set shortcut the user can browse/edit his “personal collection set”.
Figure 6.2 shows the GUI that allows user to manage his personal collection set. This GUI has a
working area little bit different from the previous, there are two collections hierarchy areas, one (the
left) for the “actual” personal collections set and the other (the right) for all collections. Clicking
on a collection in the left area the user can remove this from the actual personal collections set,
clicking on a collection in the right area the user can add this from the actual personal collections
set. Collection data area in the middle shows collection data (e.g. name, description) for the
selected collection.

Figure 6.2: CS Graphical User Interface for select the Personal Collections Set

Via Collection→New the user can create a new collection.

The action menus

Under the menu bar the CS interface provide an action menu. The items of this menu are related
to the collection shown in the collection data area.

If the collection data area shows a collection created by the user than the action menu contains
the item Edit, in order to edit this collection, and Delete in order to delete this collection.

System Testing Report(D4.2.1) 103

The collections hierarchy area

On the left of the working area there is the collections hierarchy area. In this area there is a
navigable hierarchical view of the set of collections actually in use (own created collections or all
collections).

Clicking on a collection allows a user to see collection data in the collection data area and, if the
user has the rights, to manage them (via the action menu).

The collection data area

On the right of the working area there is the collection data area. This area shows collection data
(e.g. name, description) for the selected collection in the collections hierarchy area.

6.3.2 CS GUI test plan

The CS GUI test plan is based on use cases that have been identified for the CS in Deliverable
3.0.1.

The interaction sequence for the test cases may involve intermediary forms where to enter param-
eters that are necessary for the completion of the test case.

Create a collection

Action: Menu bar Collection → New
Parameter:

• Collection Name

• Collection Description

• Parent Collection

• Membership Condition

Choice of parent collection is made possible via a combo box that lists all collections in Cy-
clades. When a parent collection is selected the system update the membership condition with
the membership condition of the selected parent collection.

In order to edit the Membership Condition the user has to select a set of archives, eventually none,
and to edit a list of condition. The set of archives may be chose via a combo box that lists all
archives in Cyclades system and a menu action. Selected archives will be shown on the left side of
the combo box. The list of collections are in a tabular representation and can be manipulated via
a menu action; adding, deleting and copying of selected conditions are possible. For each condition
the user has to specify:

• weight

• field (via a combo box)

• predicate (via a combo box)

• value

Edit a collection

Action: Menu bar Browse → user’s created collections → chose a collection in hierarchical
view → Action menu Edit
Parameter: new collection description

104 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Delete a collection

Action: Menu bar Browse → user’s created collections → chose a collection in hierarchical
view → Action menu Delete

Selecting personal collections set

Action: Menu bar Personal Collections Set

Browse own created collections

Action: Menu bar Browse → user’s created collections

Browse all Cyclades collections

Action: Menu bar Browse → All collections

6.3.3 CS GUI test results

• Tester: Leonardo Candela (candela@iei.pi.cnr.it)

• Test date: 13 February 2003

• Scope of test: Complete GUI of CS v0.25 was tested.

• Test environment: Test client was a Internet Explorer 6 running on Windows 2000.

• Test log: An excerpt of test log is shown below. The complete test log is available on-line6.

19:31:11 - listCollections - userId=CW665_7131
19:31:17 - addCollection
19:31:17 - listCollections
19:31:43 - listCollections
19:31:44 - initializeCollection

Id=CO563_Coll3483
Name=Collection GUI test 1
Description=Collection GUI test 1 name
userId=CW665_7131
parent=CO_CollCYCLADES

19:31:48 - listCollections - userId=CW665_7131
19:31:52 - getCollectionMetadata - [CO563_Coll3483]
19:31:55 - addCollection
19:31:56 - listCollections
19:32:12 - listCollections
19:32:39 - listCollections
19:32:42 - listCollections
19:32:55 - listCollections
19:32:55 - initializeCollection

Id=CO563_Coll1253
Name=Collection GUI test 1.1
Description=Collection GUI test 1.1 description
userId=CW665_7131

5http://project.iei.pi.cnr.it:8080/CollectionService/start?userid=CW665 7131
6http://project.iei.pi.cnr.it:8080/CollectionService/publicLogs/CSGUItest 2003 02 13.log

System Testing Report(D4.2.1) 105

parent=CO563_Coll3483
...
19:58:01 - getCollectionMetadata - [CO563_Coll1065]
19:58:04 - deleteCollection - Id=CO563_Coll1065 - userId=CW665_7131
...

• Test summary: All test case functions worked according to the use case descriptions and
produced no errors or inconsistencies.

Chapter 7

MS Component Test

7.1 Introduction

The Mediator Service (MS) integrates and enables the various services of the Cyclades to commu-
nicate with each other. The MS stores information about the services and the registered users in
Cyclades. The MS is responsible for services’ ”registration” to Cyclades. Also, services in Cyclades
refer to MS in order to get information about other services.

The MS partly handles the registration of the users in Cyclades and fully handles the loggin of
the users to the system, via the graphical user interface. Also the MS, in interaction with the
Collaborative Work Service, is involved in the cases of user’s invitation.

Thus, the MS supports:

• Inter-System Communication,

• User Registration and Login,

• Service Registration.

The MS has an API supplying 13 methods as well as a graphical user interface (GUI) for supporting
the users’ registration and users’ loggin to Cyclades.

7.2 MS API test

7.2.1 MS API specification

The Mediator Service provides an API to the other Cyclades services. The methods of this
API may be called using the inter-service communication protocol XML-RPC. For every method,
the services that call this method, according to the service interaction as specified in Deliverable
D3.0.1, are also listed.

• (servId, version, address, quality)* getService(type)
Description: this method is used in order to get a list of services of particular type.
Input: type: string a service type.
Output: a list of tuples that describe a service (the ID,

the version number, the address and the quality of a service).
Calling service: all

106

System Testing Report(D4.2.1) 107

• description getServiceDescription(servId)
Description: this method is used in order to get the description of a service.
Input: servId: string a service ID.
Output: description string the (short) description of the particular service.

Calling service: all

• errorLog getErrorLog(servId)
Description: this method is used in order to get the error log file of a service.
Input: servId: string a service ID.
Output: errorLog string the error log file of the particular service.

Calling service: all

• void reportError(servId, errorLog)
Description: this method is used in order to report an error(s) for a service.
Input: servId: string a service ID.

errorLog: string an error to be added to the already existing
error log file of the service.

Calling service: all

• (serviceId, servicePassword) addService(version, address, type, description,URL)
Description: this method is used in order to add a service to the system.
Input: version: string the version of the service.

address: string the machine address.
type: string the type of the service.
description: string a short description of the service.
URL: string the URL for the GUI of the service.

Output: a tuple containing
serviceId string a service ID
servicePassword string a service password (for use in particular methods).

Calling service: all

• void deleteService(servicePassword)
Description: this method is used in order to delete/remove a service from the system.
Input: servicePassword: string the service’s password.

Calling service: all

• void updateService(servicePassword, version, address, description, URL)
Description: this method is used in order to update the information (version, machine
address, description, URL) of a service.
Input: servicePassword: string the service’s password.

version: string the (new) version of the service.
address: string the (new) machine address.
description: string a (new) short description of the service.
URL: string the (new) URL for the GUI of the service.

Calling service: all

• void resetErrorLog(servicePassword)
Description: this method is used in order to reset the error log file of a service.
Input: servicePassword: string the service’s password.

Calling service: all

108 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• void addUser(id, username, password, mailAddr, folderId)
Description: this method is used in order a registered user of Cyclades to be added to
the MS database.
Input: id: string the id of the user to be added (id is generated by CWS).

username: string the username of the user to be added.
password: string the password which the user will use.
mailAddr: string the e-mail address of the user.
folderId: string the id of the user’s home folder (folder id is generated by CWS).

Calling service: CWS

• void deleteUser(id)
Description: this method is used in order for a registered user of Cyclades to be deleted
from the MS only.
Input: id: string the id of the user to be deleted.

Calling service: all

• void inviteUser(mailAddr, inviteMsg)
Description: this method is used in order for a registered user of Cyclades to be able to
invite another unregister user to the system.
Input: mailAddr: string e-mail address of the invitee.

inviteMsg: string the invitation message to the inviter.
Calling service: CWS

• UserId* getUserIds()
Description: this methods is used in order to obtain the ids of all users.
Output: UserIds: a list containing the IDs of all users.

Calling service: all

• (userId, username, mailAddress, homeFolder)* getUserInfo(userIds*)
Description: this methods is used in order to obtain information about users.
Input: userIds: a list containing the IDs of the users we want to obtain information about.
Output: a list containing information (userId, username, mailAddress, homeFolder)

about some users.
Calling service: all

• Service

– servId: the unique ID of the service.

– password: the password of the service.

– version: the version of the service.

– address: the machine address of the service, so as others can ommunicate with it.

– quality: a number between 0-1, indicating the quality of the service.

– type: the type of the service.

– dscription: (short) textual description of the service.

– errorLog: for descriping-holding the various errors that occur.

System Testing Report(D4.2.1) 109

7.2.2 MS API test

In the following list the API methods are listed by calling service indicating test responsibilities
for the methods listed.

• CWS

– addUser
– invitePasswd

• all services

– getService
– getServiceDescription
– getErrorLog
– reportError
– addService
– deleteService
– updateService
– resetErrorLog
– getUserIds
– getUserInfo

MS API test (FORTH)

MS API test (CNR)

• Tester: Leonardo Candela (candela@iei.pi.cnr.it)

• Test date: 14 February 2003

• Scope of test: Testing MS API v0.21

methods called from CS.

• Test environment: Test client was a Java program running on Windows 2000 making use
of

Apache XML-RPC v1.0 implementation2.

• Test plan: Test plan can be divided in two phases: acquire users informations

and manage services.

The acquire users information phase consists in calling the method getUserInfo.

This method require as parameters a list of valid user identifiers that can be acquired

via the getUserIds method.

The manage service phase consists in calling, and testing, methods addService,

updateService, getService and deleteService. When a new service is added

the MS create a service identifier and a service password, this password must be used to
manage

the service (updateService and deleteService). Moreover services has a

parameter type (e.g. ’CO’ for CS, ’CW’ for CWS), in this test ’CO’ is used.
1http://calliope.ics.forth.gr:8888
2

http://xml.apache.org/xmlrpc

110 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• Test log: An excerpt of test log is shown below. The complete test log

is available on-line3.

MS run log - created Fri Feb 14 12:06:14 CET 2003

Method: getUserIds

Parameters:

Result:

[CW665_7225, CW665_13620, CW665_6971, CW665_7131, ...

...

Method: addService

Parameters:

1.1

http://project.iei.pi.cnr.it:8080/CollectionServi...

CO

Service created for test API 2

http://project.iei.pi.cnr.it:8080/CollectionServi...

Result:

[CO364, COrhz493jl]

...

Method: updateService

Parameters:

COn0wba8mm

1.0.1

http://project.iei.pi.cnr.it:8080/CollectionServi...

Service created for test API updated

http://project.iei.pi.cnr.it:8080/CollectionServi...

Result:

void
3http://project.iei.pi.cnr.it:8080/CollectionService/publicLogs/MStestAPI.log

System Testing Report(D4.2.1) 111

...

Method: deleteService

Parameters:

COflovd6h8

Result:

void

...

• Test summary: All methods tested worked according to specification for all sets of input
parameters.

No errors occurred during the test run.

First test from CNR:

Report on a ME API v 0.2 Test
=============================

Date 13 September 2002
Author Leonardo Candela - ISTI-CNR - Italy

Test procedure

All methods were tested manually with a small number of parameter
combinations (see MediatorTestLog.txt) from a Java Client.

Results

- getService OK but

getService(’aaa’) --> []
should reply ’bad/invalid service type’

- getServiceDescription OK
- getErrorLog OK
- reportError OK
- getErrorLog OK
- resetErrorLog OK
- getUserIds OK
- getUserInfo OK
- inviteUser OK but

inviteUser(’aaa’) --> void
should reply ’bad/invalid email address’

- addService OK
- updateService OK
- deleteService OK

Other comments

112 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

None.

Second test from CNR:

Logs on a ME API v 0.2 Test
===========================

Date 13 September 2002
Author Leonardo Candela - ISTI-CNR - Italy

===

Method: getService

Parameters:

CO
Result:

[[CO002, 1.0, http://www.address.com, 0.79999995],
[CO176, 0.2, http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server, 1.0]]

Parameters:

ME
Result:

[[ME000, 0.1, http://calliope.ics.forth.gr:8888, 0.9],
[ME038, 1.0.1, http://abc.xyz.com, 1.0], [ME335, 1.0.1, http://abc.xyz.com, 1.0]]

Parameters:

aaa
Result:

[]

Parameters:

aaa
bbb

Result:
FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(getService): got 2,expected 1

Parameters:
Result:

FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(getService): got 0,expected 1

Parameters:

1
Result:

FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(getService(1)): got java.lang.Integer,expected String
===

Method: getServiceDescription

System Testing Report(D4.2.1) 113

Parameters:

CO176
Result:

Collection Service v.0.2

Parameters:

CO176
CO002

Result:
FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(getServiceDescription): got 2,expected 1

Parameters:

12
Result:

FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(getServiceDescription(12)): got java.lang.Integer,expected String
===

Method: getErrorLog

Parameters:

aaa
Result:

FaultCode 17101
FaultString org.apache.xmlrpc.XmlRpcException: Bad service id (getErrorLog): aaa

Parameters:

1
Result:

FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(getErrorLog(1)): got java.lang.Integer,expected String

Parameters:

CO176
Result:

void
===

Method: reportError

Parameters:

CO176
Error 1

Result:
void

Parameters:

CO176
Error 2

114 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Result:
void

Parameters:

CO176
1

Result:
FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(reportError(CO176,1)): got java.lang.Integer,expected String

Parameters:

1
Error

Result:
FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(reportError(1,Error)): got java.lang.Integer,expected String

Parameters:
Result:

FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(reportError): got 0,expected 2

Parameters:

a
b
c

Result:
FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(reportError): got 3,expected 2
===

Method: getErrorLog

Parameters:

CO176
Result:

Error 1
Error 2

Parameters:
Result:

FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(getErrorLog): got 0,expected 1
===

Method: resetErrorLog

Parameters:

1

System Testing Report(D4.2.1) 115

Result:
FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(resetErrorLog(1)): got java.lang.Integer,expected String

Parameters:

aaa
Result:

FaultCode 17102
FaultString org.apache.xmlrpc.XmlRpcException: Bad service password

(resetErrorLog): aaa

Parameters:

CO2dhk7ub0
Result:

void

check error log for
getErrorLog(’CO176’) ---> void
===

Method: getUserIds

Parameters:

a
Result:

FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(getUserIds): got 1,expected 0

Parameters:
Result:

[CW111_5520, CW111_5541, CW111_5021, CW111_397, CW111_4812, CW111_457, CW111_4849,
CW111_4879, CW111_4767, CW111_5303, CW111_5479, CW111_5562, CW111_5583, CW111_5604,
CW111_5625, CW111_5646, CW111_5667, CW111_5688]
===

Method: getUserInfo

Parameters:

CW111_5520
a
CW111_5541

Result:
FaultCode 17109
FaultString org.apache.xmlrpc.XmlRpcException: Bad user id (getUserInfo): a

Parameters:

CW111_5520
CW111_5541

Result:
[[CW111_5520, wirsam2, wido.wirsam@fit.fhg.de, CW111_5523],

[CW111_5541, wirsam3, wirsam@web.de, CW111_5544]]

116 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Parameters:
1

Result:
FaultCode 17109
FaultString org.apache.xmlrpc.XmlRpcException: Bad user id (getUserInfo): 1

===

Method: inviteUser

Parameters:
Result:

FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(inviteUser): got 0,expected 1

Parameters:

candela@iei.pi.cnr.it
Result:

void

The email was generated!

Parameters:

ccc
Result:

void
===

Method: addService

Parameters:

3
http://address.com
CO
bad service version type
http://address.com

Result:
FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(addService(3,http://address.com,CO,bad service version type,http://address.com)):
got java.lang.Integer,expected String

Parameters:

’0.3’
http://address.com
CO
service desc
http://address.com

Result:
[CO678, CO93cbfnuc]

===

Method: updateService

System Testing Report(D4.2.1) 117

Parameters:
aaa
’0.3’
http://address.com
CO
service desc
http://address.com

Result:
FaultCode 17001
FaultString org.apache.xmlrpc.XmlRpcException: Bad number of parameters

(updateService): got 6,expected 5

Parameters:

’aaa’
0.3
http://address.com
service desc
http://address.com

Result:
FaultCode 17102
FaultString org.apache.xmlrpc.XmlRpcException: Bad service password

(updateService): aaa

Parameters:

1
0.3
http://address.com
service desc
http://address.com

Result:
FaultCode 17002
FaultString org.apache.xmlrpc.XmlRpcException: Bad parameter type

(updateService(1,0.3,http://address.com,service desc,http://address.com)):
got java.lang.Integer,expected String

Parameters:

CO93cbfnuc
0.4
http://addressUpdated.com
service desc updated
http://addressUpdated.com

Result:
void

check service data
getService(’CO’)--->[[CO002, 1.0, http://www.address.com, 0.79999995],
[CO678, 0.4, http://addressUpdated.com, 1.0],
[CO176, 0.2, http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server, 1.0]]
===

Method: deleteService

Parameters:

CO678

118 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Result:
FaultCode 17102
FaultString org.apache.xmlrpc.XmlRpcException: Bad service password (deleteService): CO678

Parameters:

CO93cbfnuc
Result:

void

check service
getService(’CO’)--->[[CO002, 1.0, http://www.address.com, 0.79999995],
[CO176, 0.2, http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server, 1.0]]

===
Add, update and remove a service
===
Method: addService

Parameters:

0.3
http://address.com
CO
service desc
http://address.com

Result:
[CO172, CO1iug8c9g]

Method: getService
Parameters:

CO
Result:

[[CO002, 1.0, http://www.address.com, 0.79999995],
[CO176, 0.2, http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server, 1.0],
[CO172, 0.3, http://address.com, 1.0]]

Method: getServiceDescription
Parameters:

CO172
Result:

service desc

Method: updateService
Parameters:

CO1iug8c9g
0.4
http://addressUpdated.com
service desc updated
http://addressUpdated.com

Result:
void

Method: getService
Parameters:

System Testing Report(D4.2.1) 119

CO
Result:

[[CO002, 1.0, http://www.address.com, 0.79999995],
[CO176, 0.2, http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server, 1.0],
[CO172, 0.4, http://addressUpdated.com, 1.0]]

Method: getServiceDescription
Parameters:

CO172
Result:

service desc updated

Method: deleteService
Parameters:

CO1iug8c9g
Result:

void

Method: getService
Parameters:

CO
Result:

[[CO002, 1.0, http://www.address.com, 0.79999995],
[CO176, 0.2, http://project.iei.pi.cnr.it:8080/CollectionService/CS_Server, 1.0]]
===

MS API test (FIT)

MS API Test (FIT)
Tester: Wido Wirsam (wido.wirsam@fit.fraunhofer.de)
Date: 25.2.03
Time: 11.13

Method tested: addUser
Argument(s) : "CW111_7225", "wirxam", "cyclades", "wido.wirxam@fit.fraunhofer.de", "CW111_7228"
Return Value : none

Method tested: inviteUser
Argument(s) : "wirsam@web.de", "Join the Team"
Return Value : none
Side Effect: the following Email was sent to ’wirsam@web.de’:

"
Mail generated by CYCLADES System.

You have been invited to the CYCLADES System with the following message:

--
Join the Team
--

120 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

In order for this invitation to take effect you must visit the CYCLADES registration page.
You can do so by following the link:

http://calliope.ics.forth.gr:7007/Cyclades/RegistrationForm.html

Invitation will only take effect if the e-mail address under which you received
that mail is used.
"

Method tested: getService
Argument(s) : "CW"
Return Value : [[’CW665’, ’0.2’, ’http://cyclades.gmd.de/cgi-bin/cyc_cws.cgi’,

0.79999995000000002]]

Method tested: getServiceDescription
Argument(s) : "CW665"
Return Value : "The Collaborative Work Service manages and organizes metadata

records in folders and lets users share their folders"

Method tested: getErrorLog
Argument(s) : "CW665"
Return Value : 13/1/2003 14:58:48 test-error1

13/1/2003 14:59:28 test-error2

Method tested: reportError
Argument(s) : "CW665", "25.02.2003 11.26.00 CWS test error report"
Return Value :
Side Effect: Error message has been added to the error log.

Method tested: addService
Argument(s) : "1.0", "http://addressOfAPI", "CW", "Service created for testing",

"http://addressOfGUI"
Return Value : [’CW455’, ’CW5m985zbk’]

Method tested: deleteService
Argument(s) : "CW5m985zbk"
Return Value :

Method tested: updateService
Argument(s) : "CWaflve4bx", "1.1", "http://addressOfAPI",

"Service created for testing", "http://addressOfGUI"
Return Value :

Method tested: resetErrorLog
Argument(s) : "CWaflve4bx"
Return Value :

Method tested: getUserIds
Argument(s) :
Return Value :
[’CW665_7225’, ’CW665_13620’, ’CW665_6971’, ’CW665_7131’, ’CW665_7471’, ’CW665_7512’,
’CW665_7558’, ’CW665_7594’, ’CW665_7853’, ’CW665_8042’, ’CW665_30’, ’CW665_8102’,
’CW665_10244’, ’CW665_10770’, ’CW665_11159’, ’CW665_11497’, ’CW665_11577’,

System Testing Report(D4.2.1) 121

’CW665_11610’, ’CW665_11643’, ’CW665_12520’, ’CW665_12550’, ’CW665_12580’,
’CW665_12610’, ’CW665_7441’, ’-’, ’CW665_15325’, ’CW665_18867’, ’CW665_19135’,
’CW665_19938’, ’CW665_19564’, ’CW111_7225’]

Method tested: getUserInfo
Argument(s) : ["CW665_7225"]
Return Value : [[’CW665_7225’, ’wirsam’, ’wirsam@fit.fraunhofer.de’, ’CW665_7228’]]

7.3 MS GUI test

7.3.1 MS GUI description

The MS implements the Graphical User Interface of Cyclades for users’ registration and login.
Through this the user is able to register and login into Cyclades. Also she is able to access the
Cyclades services (and their GUIs, when provided) and thus navigate through them.

When a user is visitting the Cyclades page she might choose whether she wants to login (in case
she has already registered) or she can go to the registration page for registrtation.

After succesfull login user is presented with an interface where both her home folder (CWS GUI)
and buttons for accessing Cyclades services are shown. A user can either navigate through her
folders or choose to activate a service. If she chooses to activate another service, then she is
presented with that service’s user interface.

Among the buttons that the user is presented with, at the MS GUI, there is a button for admin-
istration purposes. If the user chooses to press that button then a form asking for administration
password will be shown. There the user in order to continue must fill in the administrator’s pass-
word or, in the case that she has been granted with the administration privilege, she must fill in
her name and her pasword. In the MS administration area someone can see all the registered users
in Cyclades and can apply various actions on them.

The actions an administrator can apply onto the users (for the moment) are:

• remove a user

• delete a user

• check whether a user has administrator’s privileges or not

• set the administrator privilege to a user

• un-set the administrator privilege to a user

(Of course the set of actions can be extended.)

7.3.2 MS GUI test plan

The MS GUI test plan is based on the list of use cases that have been identified for the MS in the
Deliverable D3.0.1. These use cases are:

• User registration

• User login

122 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• User navigation through services

Also the MS GUI test plan presents the administration section at MS level where administrator
can apply a set of actions on users. For the moment this set includes the followin actions:

• remove a user

• delete a user

• get the status of a user (whether she is an administrator or not)

• set a user to be an administrator

• ’un-set’ a user of being an administrator

Also the MS GUI test plan presents the options that a user has, which for the moment are:

• change password

• un-register from Cyclades

7.3.3 MS GUI test results

• Tester: Papadopoulos Nikos (npap@ics.forth.gr)

• Test date: 22 November, 2002

• Scope of test: Complete GUI of MS was tested according to the above test plan.

• Test environment: Test client was an Internet Explorer running on Windows 2000.

Case: User registration
username: test
password: test
e-mail address: npap@ics.forth.gr
Result: OK
Checked: registration succeeded and after confirmation user was presented with the main
user interface where both her home folder and the buttons for activating the various
services are shown.

Case: User login
username: test
password: test
Result: OK
Checked: login succeeded and user was presented with the main user interface where both
her home folder and the buttons for activating the various services are shown.

Case: User navigation through services
Result: OK
Checked: User chosed to activate Collection Service and she was (successfully) presented
with the GUI of CS.

Case: administration actions
Result: OK
Checked: after entering a valid administration username and password, user was presented
with all the registered users and the administration actions.

System Testing Report(D4.2.1) 123

Case: administration actions: remove a user
Result: OK
Checked: User successfully removed from the CYCLADES. Removed from each service and from
the MS.

Case: administration actions: delete a user
Result: OK
Checked: User successfully deleted only from the MS Database only and not from the
CYCLADES.

Case: administration actions: set a user as administration - get status - ’un-set’ that
user of being an administrator
Result: OK
Checked: Administrator user sets a user as administration and confirms that by applying
’get status’ action on that user. Now that user is shown as an administrator. Then, the
administrator user applys ’un-set’ action on the same user and removes administration
right. Now that user (with ’get status’ action) is not shown as an administrator.

Case: User options: change password
Result: OK
Checked: User after selecting to change her password, she re-logined into CYCLADES and
now the new password required.

Case: User options: un-register CYCLADES
Result: OK
Checked: User was successfully removed from the CYCLADES, meaning that she was removed
from all the services and the MS databse too. User had to re-register in order to be able
to use CYCLADES and its services.

Chapter 8

RMS Component Test

8.1 Introduction

The Rating Management Service (RMS) stores record ratings that take place within the CWS and
makes them available to other services. The RMS stores the ratings in form of a table where every
row corresponds to a rating with entries of the rated record, the user that rated, the folder in
whose context the rating was made and finally date and time of rating and the rating value itself.

The RMS has an API with 5 methods, but no graphical user interface.

8.2 RMS API test

8.2.1 RMS API specification

The RMS provides an API to the other Cyclades services. The methods of this API may be called
using the inter-service communication protocol XML-RPC. For every method also the services are
listed that call this method according to the service interaction as specified in Deliverable D3.0.1.

• Method: saveRating
Signature: void saveRating(recordId, folderId, userId, ratingValue)
Description: this method is invoked in order to store a rating in the RMS rating table.
The rating is specified by the identifier of the record that has been rated, the identifier of
the folder that contained the record when it was rated, the identifier of the user that rated,
and the rating value that was assigned by the user to the record. The rating timestamp is
generated within the RMS.
Parameters:
Input: recordId: a record identifier.

folderId: a folder identifier.
userId: a user identifier.
ratingValue: an integer representing the rating value.

Calling service: CWS

• Method:
Signature: (recordId, userId, value)* getFolderRatings(folderId, timestamp)
Description: this method is invoked in order to get all ratings that the records contained
in a given folder received since a given point in time.
Parameters:

124

System Testing Report(D4.2.1) 125

Input: folderId: a folder identifier.
timestamp: a point in time coded as an ISO 8601 date/time in UTC.

Output: a list of triples containing each:
recordId: a record identifier,
userId: a user identifier,
value: an integer representing a rating value.

Calling service: FRS

• Method:
Signature: (folderId, userId, value)* getRecordRatings(recordId, timestamp)
Description: this method is invoked in order to get all ratings that a given record has
received since a given point in time.
Parameters:
Input: recordId: a record identifier,

timestamp: a point in time coded as an ISO 8601 date/time in UTC.
Output: a list of triples containing each:

folderId: a folder identifier.
userId: a user identifier,
value: an integer representing a rating value.

Calling service: FRS

• Method:
Signature: (recordId, folderId, value)* getUserRatings(userId, timestamp)
Description: this method is invoked in order to get all ratings that a given user has made
since a given point in time.
Parameters:
Input: userId: a user identifier,

timestamp: a point in time coded as an ISO 8601 date/time in UTC.
Output: a list of triples containing each:

recordId: a record identifier,
folderId: a folder identifier.
value: an integer representing a rating value.

Calling service: FRS

• Method:
Signature: void anonymizeUserRatings(userId)
Description: this method is invoked in order to anonymize all ratings of a given user; the
user identifier in the ratings table is replaced by the string ‘Anonymous’.
Parameters:
Input: userId: a user identifier,
Calling service: CWS

8.2.2 RMS API test

In the following we list the API methods by calling service indicating test responsibilities for the
methods listed.

• CWS (FIT)

– saveRating

– anonymizeUserRatings

126 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• FRS (CNR)

– getFolderRatings

– getRecordRatings

– getUserRatings

In the following we summarize the results of the RMS API tests as conducted by FIT and the
partners responsible for services calling the RMS API.

RMS API test (FIT)

• Tester: Wido Wirsam (wido.wirsam@fit.fraunhofer.de)

• Test date: 6 November, 2002 10:43 GMT

• Scope of test: Complete API of RMS v0.21 was tested via several Python scripts which
tested every method of the API with a number of parameter sets that were read from a test
data file.

• Test environment: Test client was a Python 2.2 script running on Windows XP making
use of xmlrpclib module v. 0.9.9, the XML-RPC implementation of Secret Labs AB2.

• Test plan: The RMS XML-RPC test platform provides a tool to automatically create CWS-
users. All API methods that are provided by the RMS-service are performed on these users
and their folders.

The platform consists of the following python programs:

– definitions.py This configuration file defines a set of values necessary for the creation of
the test-users and the behaviour of the testrun.

– TestFieldGenerator.py This script performs the generation of test-users. All relevant
information about the generated users is stored in a log file.

– logfile.py This class provides access to all information about the users created by the
TestFieldGenerator.

– main.py This script executes all XML-RPC calls provided by the RMS-services on the
users generated by the TestFieldGenerator.

To test the RMS API the same dummy users are used, that have been created to test the
CWS API methods. Then all RMS API methods have been executed. Most of the methods
require a user-Id or a folder-Id as parameters. All methods of the RMS API that require a
user-Id and no folder-Id as parameter are called once for every user, with that specific user-Id
as parameter. All methods that require a folder-Id as parameter are called once per folder
of every user. Each call of every method and its results are logged the ’Access.txt’ file.

The RMS API test was performed on the server ’http://cosidetti.gmd.de’ which runs the same
version of Cyclades CWS as the ’http://cyclades.gmd.de’ server. The ’http://cosidetti.gmd.de’
server is not connected to the other services so the CWS API functionality can be tested with
no side effects on the other services. The test was performed with 20 computer generated
users on November 6th 2002. Every user was generated by the CWS API method:

createUser(name, password, emailAddress)

The username and password are automatically generated. For the emailAddress argument a
valid eMail address is used. This is the resulting logfile ’TFGLog83.txt’ :

1http://cosidetti.gmd.de/rpc2/cyc cws.cgi
2http://www.pythonware.com/products/xmlrpc/

System Testing Report(D4.2.1) 127

ID userName userPwd userMail userID userFolder

0 Karlitpqr zxtbqo wirsam@web.de CW111_11179 CW111_11182
1 Karlmdx kjooqh wirsam@web.de CW111_11222 CW111_11225
2 Karlthbe qvuxyun wirsam@web.de CW111_11265 CW111_11268
3 Karllvpzij cbahu wirsam@web.de CW111_11308 CW111_11311
4 Karlasg ozjhlt wirsam@web.de CW111_11351 CW111_11354
5 Karlhkrvqf bttfgc wirsam@web.de CW111_11394 CW111_11397
6 Karlcjfb vkgvvjn wirsam@web.de CW111_11437 CW111_11440
7 Karluaje ttkgna wirsam@web.de CW111_11480 CW111_11483
8 Karlselx bbfsovw wirsam@web.de CW111_11523 CW111_11526
9 Karlngj dfxdr wirsam@web.de CW111_11566 CW111_11569
10 Karlcrmi gskib wirsam@web.de CW111_11609 CW111_11612
11 Karlmxdtii eouvhmn wirsam@web.de CW111_11652 CW111_11655
12 Karlbavk mccmoqa wirsam@web.de CW111_11695 CW111_11698
13 Karlxno nwjlvbw wirsam@web.de CW111_11738 CW111_11741
14 Karlcldq fkiri wirsam@web.de CW111_11781 CW111_11784
15 Karlfqk izlkeo wirsam@web.de CW111_11824 CW111_11827
16 Karlbkw acabwh wirsam@web.de CW111_11867 CW111_11870
17 Karlwxrf yqxjn wirsam@web.de CW111_11910 CW111_11913
18 Karlwueige hyyaodv wirsam@web.de CW111_11953 CW111_11956
19 Karloed vrsqffj wirsam@web.de CW111_11996 CW111_11999

The file ’TFGLog83.txt’ is available online3. For each user four folders were produced: one
private folder, one project folder, one community root folder and one community folder. This
was done by calling the CWS API method:

createFolder(userID, folderID, folderType)

In the test run all RMS API methods were called. The calls and the results were stored in a
logfile called ’Access.txt’. In the logfile ’Errors.txt’ error messages would have been logged if
any had occured. Most methods take either a userID or a folderID as argument. Every API
method that needs a userID is called once for every user. The method ’getFolders(userID)’
returns a list of folders that are owned by the user. In our testrun the method returned the
four folders that previously were created. The results of these calls were stored during the
testrun. Thereafter every method of the RMS API that needs a folderID as argument was
called with each of the returned folderIDs for every user. In detail these were the following
methods:

called once at all:

getRecordRatings()

called once per user:

getUserRatings()

called once per folder:

saveRating()
getFolderRatings()

3http://cyclades.gmd.de/publicLogs/RMS/TFGLog83.txt

128 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

All together 181 API-Calls have been made.

This is an excerpt of the ’Access.txt’ logfile. The complete file is available online4.

AccessLogfile created Wed Nov 06 10:43:03 2002

result = s.service.getUserRatings(’CW111_11179’, xmlrpclib.DateTime(time.time()
-30000000))
[[’AC_00001’, ’CW111_11200’, 1], [’AC_00001’, ’CW111_11204’, 1], [’AC_00001’,
’CW111_11211’, 1], [’AC_00001’, ’CW111_11218’, 1]]

result = s.service.saveRating(testRecords[0], ’CW111_11200’, ’CW111_11179’, 1)

result = s.service.getFolderRatings(’CW111_11200’, xmlrpclib.DateTime(time.time
()-30000000))
[[’AC_00001’, ’CW111_11179’, 1]]

result = s.service.saveRating(testRecords[0], ’CW111_11204’, ’CW111_11179’, 1)

result = s.service.getFolderRatings(’CW111_11204’, xmlrpclib.DateTime(time.time
()-30000000))
[[’AC_00001’, ’CW111_11179’, 1]]

result = s.service.saveRating(testRecords[0], ’CW111_11211’, ’CW111_11179’, 1)

result = s.service.getFolderRatings(’CW111_11211’, xmlrpclib.DateTime(time.time
()-30000000))
[[’AC_00001’, ’CW111_11179’, 1]]

During the complete testrun no errors have occured. This is the contens of the error logfile
’Errors.txt’:

ErrorLogfile created Wed Nov 06 10:43:03 2002

ErrorLogfile closed Wed Nov 06 10:45:27 2002

• Test summary: All methods worked according to specification for all sets of input param-
eters. 20 computer generated users were created via the CWS API method ’createUser()’.
On these users all available RMS API methods were executed. No Errors occured during the
testrun. The method calls and the results produced by the RMS system were logged and
made available online.

RMS API test (CNR)

• Tester: Henri Avancini (avancini@iei.pi.cnr.it)

• Test date: 24 February 2003

• Scope of test: Testing RMS API5 methods called from FRS.
4http://cyclades.gmd.de/publicLogs/RMS/Access.txt
5http://cyclades.gmd.de/cgi-bin/cyc cws.cyc

System Testing Report(D4.2.1) 129

• Test environment: Test client was a Java6 application running on Linux (2.4.18-19.8.0),
the XML-RPC implementation of Apache XML Project7.

• Test plan: Test is divided in two stages. First, all user and folder identifiers are gathering
from MS and CWS respectively (using MS getUserIds method and CWS getFolders method).
Second, a user defined number of iterations are executed testing RMS methods.

Each iteration consist of:

– Select both a random8 valid user and folder identifier.

– Call used RMS method: getFolderRating. Write down returned values. “Timestamp”
is setted to an arbitrary initial value.

• Test log: An excerpt of test log is show bellow (file: frsCalledAPITest detailed.log). The
complete test log is available on-line9.

Method called: frsCalledAPITest
Mon Feb 24 12:21:05 CET 2003
Initialize {AS, CWS, MS, RMS}Clients.

Method called: msclient.getUserIds ()
[CW665_7225, CW665_13620, CW665_6971, CW665_7131, ...]

Method called: cwsclient.getFolders (userID)
Retrieving user folders. User: CW665_7225
Folders: [CW665_7103, CW665_7111, CW665_7495, CW665_7499, ...]

Loop: 8
Selected user: CW665_7131
Selected folder: CW665_19406

rmsclient.getFolderRatings:
[[AC832_oai_dc_oai:UMIMAGES:1000505, CW665_7131, 2]]

{AS, CWS, MS, RMS} API calls sumatory: 101

’FRSServer.log’ contains FRS server side log, which correspond to the test period. The
file ’frsCalledAPITest.log’ contains console outputs from the client side and error messages.
Lastly, ’startfrs.sh.log’ file contains console outputs from the server side and error messages.

• Test summary: All methods called from FRS were tested. All methods tested worked
according to specification for all set of correct input parameters. A total of 120 API calls
were executed10. No errors occurred during the test run.

6Java version 1.4.0 02, Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 02-b02)
7http://xml.apache.org/xmlrpc
8http://java.sun.com/j2se/1.4/docs/api/java/util/Random.html
9http://project.iei.pi.cnr.it:8080/FRS/publicLogs/

10Total number of calls from FRS. As AS, CWS, MS, RMS test were made together, because of his dependencies,
this number correspond to the sumatory of calls made from FRS to other Cyclades services.

Chapter 9

Integrated System Test

9.1 Introduction

Integrated system testing is to ensure that the single Cyclades components communicate properly
to provide the intended system functionality. The components, i. e. the single Cyclades services,
communicate using the inter-service communication protocol XML-RPC making use of the diverse
service APIs. The components reside on the developing partner’s hosts during the test.

Integrated system testing uses as a general test plan the use cases as described in Deliverable
D3.0.1 focussing specifically on use cases that involve inter-service communication (the other use
cases have been tested during component testing). When integrated system functionality is to
be tested that involved more than one user, the existing use cases are extended, or two or more
use cases are put together to form a multi-user test case. The interaction diagrams depicted
in the “Service interaction diagrams” sections of Deliverable D3.0.1 served as a check-list for the
integrated systems testing because they typically represent system functionality that involves inter-
service communication.

9.2 Integrated system test plan

The test plan for the integrated system test of the Cyclades system comprises all use cases
identified in D3.0.1 that involve more than one service. The test cases are executed from the
initiating service. This will normally be done by a user from the service GUI; with some use
cases, however, the execution is triggered by a service internal schedule, e. g. folder profile update
at scheduled time. The effects of the inter-service communication are checked with the services
involved to confirm a successful test, e. g. registering with the Mediator Service should also create
a user and home folder object in the Collaborative Work Service.

Some of the service GUIs are started by pushing buttons in other service GUIs. This inter-service
communication does not involve the service APIs and is tested separately, i. e. test cases for the
Collection Service start from the CS GUI and not from the Mediator Service GUI that is used to
start up the CS GUI window. Following is the list of services that start up other service GUIs:

• MS: Start up Mediator Service and Collaborative Work Service after login

• MS: Start up the Archive Service GUI

• MS: Start up the Collection Service GUI

• CWS: Start up the Search and Browse Service GUI

130

System Testing Report(D4.2.1) 131

The rest of the test plan is organized by the services from whose GUI the test case starts out. The
name of the test case is normally the name of the use case that is the initial step of the test case.
The steps to be executed by other services in the course of the test case are listed.

• AS: register archive
should also create an archive collection in the CS by adding and initializing the archive
collection in the CS which in turn asks the AS for the archive description and samples the
new archive

• AS: delete archive
should also notify the CS of the deletion

• CWS: create folder
should notify FRS along with recommendation preferences

• CWS: destroy folder
should notify FRS

• CWS: add record
should notify FRS

• CWS: delete/cut record
should notify FRS

• CWS: edit folder preferences
should notify FRS of changed recommendation preferences

• CWS: rate records
should notify FRS and RMS

• CWS: invite members by e-mail addresses
should ask MS to actually invite the new members to register; the invitees should receive an
e-mail asking them to register; after registration the invitees should be members of the folder
to which they were invited

• CWS: update folder profile (on demand)
should ask FRS to immediately update the folder profile; the FRS in turn should receive
records put into the folder since the last recommendation of records from the CWS; after
computation of new record recommendations the CWS should receive them if there are any

• CWS: update collections (scheduled and on demand)
should receive the up-to-date list of collections from CS

• CWS: update services (scheduled and on demand)
should receive the up-to-date list of services from MS

• SBS: browse system collections
should receive all collections in the system from CS and receive these collections’ metadata
from the CS

• SBS: browse folder collections
should receive the associated collections of current folder from CWS and receive these col-
lections’ metadata from the CS

• SBS: browse personal collections
should receive the personal collection for the user set from CS and receive these collections’
metadata from the CS

• SBS: browse attribute values
should receive the attribute values from AS

132 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

• SBS: request new records for folder
should receive the associated collections of current folder from CWS and receive for each
collection the ‘new’ records from FRS which in turn should retrieve these records from the
AS based on collection and folder profile

• SBS: save results
should store the selected results in the CWS

• SBS: save query
should store the current query in the CWS

• SBS: submit query without personalization
should receive the matching records from the AS

• SBS: submit query with personalization
should receive the matching records from the FRS which in turn should receive these records
from the AS based on the query and the folder profile

• FRS: update folder profiles (scheduled)
should receive all folder ids of all users from the CWS; should then for each folder receive the
records put into the folder since the last profile update from the CWS, receive the indexed
terms and weights of these records from the AS, receive the ratings of records in the folder
from the RMS if there are any, and then compute the new folder profile

• FRS: recommend records for folder (scheduled)
should receive records that were put into similar folders since last recommendation from
CWS, compute recommendations and recommend the top scorers to the CWS folder

• FRS: recommend collections for folder (scheduled)
should receive collections associated to similar folders from CWS, compute recommendations
and recommend the top scorers to the CWS folder

• FRS: recommend users for folder (scheduled)
should receive members of similar folders from CWS, compute recommendations and recom-
mend the top scorers to the CWS folder

• FRS: recommend communities for folder (scheduled)
should receive the communities that similar folders belong to from CWS, compute recom-
mendations and recommend the top scorers to the CWS folder

• CS: create collection
should notify CWS of the new collection

• CS: delete collection
should notify CWS of the deletion

• CS: select personal collection set
should notify the CWS of the new personal collection set

• MS: register
should have the CWS create a user object with password and mail address given and receive
user identifier and home folder identifier back

• MS: change password
should change the password also in the CWS

• MS: delete user
should delete the user object in the CWS which in turn anonymizes all ratings of this user
in the RMS

• MS: become collection administrator

System Testing Report(D4.2.1) 133

9.3 Integrated system test results

The system version tested was 1.0 The test reports on the diverse portions of the test plan are
included below.

MS test cases (FIT)

• Tester: Thomas Kreifelts (kreifelts@fit.fraunhofer.de)

• Test date: February 25 14:19:23 MET 2003

• Scope of test: All test cases of Mediator Service were tested.

• Test environment: Test client was a Netscape 4.7 browser on a SUN workstation running
Solaris.

• Test plan: The MS test cases as listed above were tested for a new user.

• Test log: The CWS access log file for the test cases is appended below.

...

• Test summary: All test cases worked according to specification. However, a button or link
to start the interaction to become a collection administrator was not found in the MS GUI.

AS test cases (UniDuE)

• Tester: Gudrun Fischer (Gudrun.Fischer@uni-duisburg.de)

• Test date: March 25 16:40:02 MET 2003

• Scope of test: All test cases of the Access Service were tested.

• Test environment: Test client was Mozilla 1.2b under Debian Linux.

• Test plan: The AS test cases as listed above were tested for the user CW665 7853 - gf.

• Test log: The AS access log file for the test cases is appended below.

Case Register archive
Methods invoked:
- addCollection
- initializeCollection

Id=CO563_Coll70457
Name=mundus.ac.uk
Description=Cyclades archive mundus.ac.uk
userId=CW665_7853

- getUserInfo
Result:
- OK

Checked:
- user information was returned by the CWS, the user gf received and

e-mail message
- new collection was sampled by the Collection Service

134 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

- new collection was available for search

Case Delete archive
Methods invoked:
- deleteArchive - Id=TalkBank

Result:
- OK

Checked:
- the collection was not available any more afterwards

• Test summary: Both test case worked according to specification.

SBS test cases (UniDuE)

• Tester: Gudrun Fischer (Gudrun.Fischer@uni-duisburg.de)

• Test date: March 25 16:57:00 MET 2003

• Scope of test: All test cases of the Search and Browse Service were tested.

• Test environment: Test client was Mozilla 1.2b under Debian Linux.

• Test plan: The SBS test cases as listed above were tested for the user CW665 7853 - gf
and folder CW665 7880.

• Test log: The SBS access log file for the test cases is appended below.

Case Browse system collections
Methods invoked:
- listCollections
- getCollectionMetadata
Result:
- OK
Checked:
- all system collection IDs were received from the CS
- for all IDs specified, the metadata was returned by the CS

Case Browse folder collections
Methods invoked:
- getCollections (CWS)
- getCollectionMetadata (CS)
Result:
- OK
Checked:
- all folder collection IDs were received from the CWS
- for all IDs specified, the metadata was returned by the CS

Case Browse personal collections
Methods invoked:
- getPersonalCollections
- getCollectionMetadata
Result:
- OK
Checked:

System Testing Report(D4.2.1) 135

- all personal collection IDs for the user were received from the CS
- for all IDs specified, the metadata was returned by the CS

Case Browse attribute values
(Tested by calling the getAttributeValues API method at the SB, as
this functionality is still missing in the SB GUI.)
Methods invoked:
- getAttributeValues (AS)
Result:
- OK
Checked:
- the values for the given attributes and schemas were returned by

the AS

Case Get new records for folder
Methods invoked:
- getCollections (CWS)
- getNewRecords (FRS)
Result:
- OK
Checked:
- the ids of the collections associated to the given folder were
returned by the CWS
- the query was generated correctly by the SBS and passed to the FRS
- the FRS returned a list of records as expected

Case Save results
Methods invoked:
- saveResults
Result:
- OK
Checked:
- after refreshing the folder frame, the saved records were shown in
the user’s folder

Case Save query
Methods invoked:
- saveQuery
Result:
- OK
Checked:
- after refreshing the folder frame, the query was shown in
the user’s folder

Case Submit query without personalization
Methods invoked:
- search (AS)
Result:
- OK
Checked:
- a correct query was generated by the SBS and submitted to the AS
- the AS returned records from the specified collections, which were
matching the query conditions

136 CYCLADES IST-2000-25456. An Open Collaborative Virtual Archive Environment

Case Submit query with personalization
Methods invoked:
- filteredSearch

Result:
- OK

Checked:
- a correct query was generated by the SBS and submitted to the FRS
- the FRS submitted the query to the AS
- the AS returned records from the specified collections, which were

matching the query conditions
- the FRS returned the list of records from the AS, filtered

according to the folder profile

• Test summary: All test cases worked according to the specifications.

CS test cases (CNR)

• Tester: Leonardo Candela (candela@iei.pi.cnr.it)

• Test date: February 27 17:04:02 MET 2003

• Scope of test: All test cases of Collection Service v0.21 were tested.

• Test environment: Test client was a Internet Explorer 6 browser running on Windows
2000.

• Test plan: The CS test cases as listed above were tested for the user CW665 7131 - candela.

• Test log: The CS access log file for the test cases is appended below.

Case Create collection
Methods invocked:
- addCollection
- initializeCollection

Id=CO563_Coll74282
Name=IntegratedTestCollection
Description=IntegratedTestCollection description
userId=CW665_7131
parent=CO_CollCYCLADES

Result:
- OK

Checked:
- new collection is shown in the candela’s created collection
tree hierarchy

- new collection is notified to CWS (trying to create a new
project folder I can see the list of all collection - if
no personal collection are selected -)

Case Delete collection
Methods invocked:
- deleteCollection - Id=CO563_Coll74282 - userId=CW665_7131

Result:

1http://project.iei.pi.cnr.it:8080/CollectionService/start?userid=CW665 7131

System Testing Report(D4.2.1) 137

- OK
Checked:
- collection CO563_Coll74282 was removed from candela’s created

collection tree hierarchy
- deletion of collection CO563_Coll74282 is notified to CWS

(trying to create a new project folder I can see the list of
all collection - if no personal collection are selected -)

Case Select personal collection set
Methods invocked:
- listCollections - userId=CW665_7131
- listCollections
- getCollectionMetadata - [CO563_Coll49044]
- listCollections
- getCollectionMetadata - [CO563_Coll23606]
- listCollections
- listCollections - userId=CW665_7131
Result:
- OK
Checked:
- candela’s personal collection set contains collections

CO563_Coll49044 and CO563_Coll23606
- new candela’s personal collection set is notified to CWS

(trying to create a new project folder I can see now the
list of my personal selected collection)

• Test summary: All test cases worked according to specification.

