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Research Group: Main Areas & Applications

* Security and Privacy:
* Cryptography, provable security and formal verification
* Network Security, privacy-enhancing technologies
e Secure distributed systems, decentralized ID management
* Trusted execution environments, secure edge streaming

* Networking:
* Cloud and edge computing
* Beyond 5G networks & services (slicing, orchestration, ...)
* Networks and systems management
* Network virtualization and SDNs

e Application areas:
* Smart Cities, Internet of Things, 14.0, Critical Infrastructures, Mobile Devices, ...



Research Group: Selected Recent Projects

«  PRIVATEER - Privacy-first Security Enablers for 6G Networks (2023--) (HEurope SNS, Coord: SpaceHellas)

«  ARCADIAN-IoT - Autonomous trust, security and privacy management framework for loT (H2020, IPN Portugal)

* CyberSec4Europe - Cyber Security Network of Competence Centres for Europe (H2020, Univ. Frankfurt)
* DISCRETION - Disruptive SDN secure communications for European Defence (EDIDP, DEIMOS Engenharia)

« ATENA- Advanced Toolsto assEss and mitigate the criticality of ICT compoNents and their dependenciesover Critical
InfrAstructures (H2020,Leonardo S.p.A.)

- POSEIDON-Protectionand controlof Secured Information by means of a privacy enhanced Dashboard (H2020, MEF)

 DARPA SIEVE - Securing Information for Encrypted Verification and evaluation (DARPA, SRI Subcontracted)

- Safe Cities - Building Urban Safety (P2020, Bosch)

- SafeCloud - Secure and Resilient Cloud Architecture (H2020, INESCTEC)

*  SNOB5G - Scalable Network Backhauling for 5G (MIT-Portugal, Ubiwhere)

* AIDA - Adaptive, Intelligent and Distributed Assurance Platform (CMU-Portugal, Mobileum)

« COP-MODE - Context-aware Privacy protection for Mobile Devices (H2020 NGI-Trust)
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The Problem of Privacy in Mobile Devices

STEALING

PERSONAL INFORMATION

Dozens of apps Multiple Configurations Privacy Loss
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Privacy in Mobile Devices

Runtime Permissions

Install-time Permissions Latest Improvements

(Oct 2015) i .
: ® - Location Obfuscation
. Firefox Browser for
Android Allow [App] to access this - “While using the app”
eds ice’ tan? .
Sn e (location, camera and
€O Device & app history v mlcrophone)
2 Identity v - “Only this time”
Q Location v v - Auto-reset when
Precise Approximate
= y Allow Hangouts to unused
|BY  Photos/Media/Files 2 S TS
’ Camera < messages? While using the app
\./ Microphone - DENY ALLOW Only this time
Don’t allow
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Ask at all times

Privacy in Mobile Devices || m o sangous

send and view SMS

Best

messages? o Worse
usability .
usability
DENY  ALLOW Worse )
: Best privacy
privacy

Runtime permissions allow:
Never ask/

* fine-grained permissions control ask once
* to contextualize permission prompts by the needs of the app

The problem: (hundreds of daily) automatically accepted permissions

* Violate contextual integrity (preferences of user within context)

e Contradict user expectations
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Solution: Automated Privacy Decisions

* Several devices with local info on:

* Requesting Application @ Telegram FoSS
¢ Pe m | SS i O N HITellﬂgr’tm Fr.:% ﬂl photos,
* Grant Decision ®' oeny ALLOW

* Prediction of Grant Decisions (Allow / Deny)
* According to Users’ Preferences

For this, we need data!
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2. Sends personal Apps

COP-MODE: Data Gathering -

A Server
S - ’oy
o e S

" 5. CM-NPM intercepts and
Apps

Retriever collects permission decisio
- Parhc:panl \ QQQ
L st ®
93 participants ‘ \ \
Play Store
* 64.5% were students {pf%,;"b
e 71% were between 18 and 24 years old RPN
 57% with an IT background (studying or professionals)
- Biased data towards young adults with technical expertise o

Using our smartphones for 1 week+

Collected answers to 2M+ permission requests
https://cop-mode.dei.uc.pt/campaigns

65K+ manually answered requests

(~837/day, ~35/hour)
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COP-MODE Data: Main Findings

o Telegram FOSS

Allow Telegram FOSS to access photos,
media, and files on your device?

65K+ manually answered permission requests:

* Avg 836 requests/day/user, nearly 35/hour

\

* 15% privacy violations

> &) peEny iy ALLOw
Select your current location:
HOME WORK
TRAVELLING OTHER

For what you were doing with the phone, is this
request expected?

—> DON'T
YES NO KNOW

To catch 15% privacy violations » answer 35 requests/hour

[Mendes et al., “Effect of User Expectation on Mobile App Privacy: A Field Study”, PerCom’22]
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Solution: Automated Privacy Decisions

* Several devices with local info on:

* Requesting Application @ Telegram FoSS
* Permission Alow Telegram POSS 1o oot phokos
* Grant Decision #' oeny ALLOW

* Prediction of Grant Decisions (Allow / Deny)
* According to Users’ Preferences

For this,XIeed data!
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Solution: Automated Privacy Decisions

* Several devices with local info on:

* Requesting Application @ Telegram FoSS
* Grant Decision ®' oeny ALLOW

* Prediction of Grant Decisions (Allow / Deny)
* According to Users’ Preferences

WITHOUT ACCESS/SHARING OF USER DATA
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Prediction of Grant Decisions

A 2-stage approach:
1) Clustering users into profiles

2) Predict privacy decisions with profile data & others

a User. Privacy
F r usterin : . i
Context Features usteri g Profiles _‘ Prediction Pred.lc.ted
« App Category (SVM, Decision trees, Decision
« Permission AdaBoost, RF, NN) (allow/deny)
o Location
o Visibility
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Prediction of Grant Decisions with Privacy Guarantees

A 2-stage approach:
1) Clustering users into profiles
2) Predict privacy decisions with profile data & others

In a privacy-aware manner, i.e. without access to user data:
- Privacy-preserving clustering mechanisms
- Federated mechanisms for prediction of privacy decisions



1) Secure Generation of Privacy Profiles

* Clustering of users into privacy profiles

&

* (app category, permission, avg_grant_result)
* Profiles represent users’ beliefs and expectations

e 2 approaches:
* Distributed hierarchical clustering [Hamidietal. PDP’18]

* Private k-means clustering [Branddo et al. IDA'21]
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Distributed Hierarchical Clustering [Hamidi etal. PDP'18]

* Per user (Category, Permission, Grant result):

App category: EVENTS EVENTS ... AUTO_AND VEHICLES AUTO_AND_VEHICLES
Requested permission: | CALENDAR CAMERA ... PHONE CONTACTS
0.9 0 e 0 0
Grant result: 0.2 0.1 e 0.35 0.4

* Hierarchical clustering to divide users into profiles by creating a
dendogram of distances and make a cut were appropriate

- f_:l i ﬁﬁ

Distance

a
SOOI COAD LT O L OO =L S T WO O A0 MO M= OAD =0 M 00 O~ Lo 00 K0 GO AL WD00n 1 N o0 = G e M e P W00 =5 R0 O 00— — RO COUPLNILTY
W DA RO P00t SR ADCOUADCO M~ SO DMNDORDird==F  UTrr M SN SFOODMUNOe000Mr M PGS N CNSFOOOYT CNICdMRDrILTED
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Distributed Hierarchical Clustering [Hamidi et al. PDP'18]
* Making a cut at distance 4.3

* Would result in 3 profiles as follows

SCMIORS CALL LOG CALEKDAR STORAGE LOCATION S CAMERA  COWTACTS MICROPHONE  PHONE

STORAGE CALL LOG  CAMERA  WICROPHORE 5

(a) Profile 1 - the privacy conscious user. (b) Profile 2 - permissive user. (c) Profile 3 - the middle ground user.
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Prediction of Grant Decisions

A 2-stage approach:
1) Clustering users into profiles

2) Predict privacy decisions with profile data & others

User Privacy

Context Features

Clustering

Profiles _‘ Prediction Pred.ic.ted
(SVM, Decision trees, Decision

AdaBoost, RF, NN) (allow/deny)

o App Category
Permission

o« Location
o Visibility
l




2) Grant Prediction with Federated Learning

* Features:

* Profile (previousslide)

e app_category

e jisForeground

* checkedPermissionGroup
* isTopAppRequestingApp
* checkedPermission

 Federated learning:

screenlsinteractive
hour
networkStatus
weekday

profile

Allow WhatsApp to access your
:ontacts?

&' peny ALLOW

1. Train neural network locally, on each smartphone, using only local data
2. Share only the neural network weights (not the data) with a central server on

each iteration

[Brandao et al., “Prediction of Mobile App Privacy Preferences with User Profiles via Federated Learning”, CODASPY’22]
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Federated Learning for Grant Prediction

CLIENT A

SERVER

CLIENT B

Include clustering
labels in the
local dataset

Clustering Algorithm

Include clustéring
labels in the
local dataset



Federated Learning for Grant Prediction

CLIENT A

Divide dataset
66% for train
33% for test

Overéampling training
dataset to achieve 50/50
on the grantResult

Send weights

SERVER

Define random weights
for the Neural Networks

CLIENT B

Divide dataset
66% for train
33% fqr test

Oversampling training
dataset to achieve 50/50
on the grantResult

Send weights :
>

i<

Initiate Neural Network
with received weights

Initiate Neural Network
with received weights



Federated Learning for Grant Prediction

CLIENT A SERVER ‘ CLIENT B

Repeat Until Convergence or
max iterations is reached.

Train Neural Network Train Neural Network

Send local weights >< Send local weights

Average local weights

' Send average weights Send average weights )
Set received weights Set received weights

on Neural Network | on Neural Network
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Federated Learning for Grant Prediction

CLIENT A SERVER ‘ CLIENT B

Use tést set to Use test éet to

compute F1-score | compute F1-score
Send F1-score >< Send F1-score



Mean Test F1-score

Applied to our dataset of ~“65K grant decisions from 93 users [Mendes et al. PerCom’ 22]

Eva I u atl On http://cop-mode.dei.uc.pt/dataset

e Validation:

e Grid search on the following parameters:

* Clustering Algorithm.
e Number of Clusters.

e 5-fold cross validation with 809% of the dataset

1.001 Algorithm and Imputation Strategy
0.95- B distributed hc B centralized hc
' B distributed kmeans [ centralized kmeans

3 4 5 6 7 8 9 10
Number of Profiles
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Eva I u atiOn Applied to our dataset of ~“65K grant decisions from 93 users [Mendes et al. PerCom’ 22]
http://cop-mode.dei.uc.pt/dataset

* \Validation: ® Best Mean F1-score of 0.91 with:

e Grid search on the following parameters: Distributed k-Means (k = 9)

* Clustering Algorithm. @ | Worst Mean F1-score of 0. 87 with:
* Number of Clusters. Distributed hc (k = 3)

e 5-fold cross validation with 809% of the dataset

1.00- Algorithm and Imputation Strategy GIObaI Fl-score:

= distributed hc B centralized hc
distributed kmeans B centralized kmeans
0.91

o
©
al

g

8 0.0/

n

= 0:85] Comparable to the

@

2 0.80. centralized version
0-11 Prediction and

o
o

clusteringin a privacy-

Number of Profiles preserving manner
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Conclusions and Future Work

* Privacy-preserving strategy to predict user’s grant decisions

* Based on a 2-step approach:
* Privacy-preserving clustering of users into profiles
* Predict grant results through federated mechanisms

* Applied to a real world dataset of “65K grant decisions from 93 users

* Maintain SoA prediction performance, while preserving user privacy
* Reduces amount of privacy violations

e Future work:

 Predicting User Expectation
* DL + FL to replace the two-step process by a single one
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