
Supporting retrieval by
“relation among documents”

in the
ERCIM Technical Reference Digital Library

Stefania BIAGIONI, Carlo CARLESI, Donatella CASTELLI

IEI, Consiglio Nazionale delle Ricerche,
Via S. Maria, 46 - 56126 Pisa, Italy

Telephone: +39 50 593111. Fax: +39 50 554342
E-mail {biagioni,carlesi,castelli}@iei.pi.cnr.it

Abstract: This paper illustrates the results of an investigation that aimed
at clarifying to what extent the system that is used for implementing the
ERCIM Technical Reference Digital Library can support the new metadata
“relation with other documents”. Particular solutions for this extension are
discussed.

1. Introduction

In a very next future, the technical reports(TR) of all the ERCIM1

member research centres and labs will be available through Web[4]. The aim
of this service is to assist ERCIM scientists to make their research result
immediately available world-wide and provide them with appropriate on-line
facilities to access the technical documentation of others working in the same
field. This service relies on a database of TR managed by a set of
interoperating servers, based on the Dienst architecture[3,7]. Dienst provides
services to store both TR and their metadata, and to retrieve and access them.
The retrieval is based on the registered metadata. The configuration of the
Dienst system that is used for handling the ERCIM TR database accepts a
particular set of metadata. Dienst, however, can be configured to handle also
other additional metadata.

At IEI-CNR, in parallel to carry out the start up of the above service, we
are designing an extension of the current configuration of the Dienst system
that aims at enlarging the set of handled metadata elements. In particular, this
extention should comprise the “relation” element as defined by the Dublin
Core(DC) metadescription standard[1]. This paper reports the results of an
investigation that has been done in order to understand to what extent the
Dienst system could support this new element. In particular, the differences
between relation and the other metadata elements are outlined. These
differences impose new requirements on the handling system. Suggestions on
how this requirements could be fulfilled are given.

The presentation is organised as follows: Section 2 introduces briefly the
Dienst system and the present version of the ERCIM Technical Reference
Digital Library system; Section 3 highlights the peculiaties of the relation
element with respect to the other currently supported metadata. Section 4
makes proposals on how this element could be handled within the current
version of the Dienst system. Finally, Section 5 contains conclusions.

1 European Research Consortium for Informatics and Matematics.

2

2. The ERCIM Technical Reference Digital Library

The ERCIM Technical Reference Digital Library(ETRDL) was developed
by the DELOS Working Group[4] 2. The aim of DELOS is to design,
implement and test a prototype infrastructure for networked access to a
distributed multi-format collection of technical documents contained in the
research libraries of the ERCIM institutes. So far, pilot server sites have been
set up at nearly half of the ERCIM national labs. Servers are expected to be
installed at the other centres in the near future. Public access to this reference
service will be provided through Internet by a common interface for end user
(both information provider and seekers).

The ERCIM collection is managed by a set of interoperating servers,
based on the Dienst system[3]. Dienst is a protocol and a reference
implementation that provides access to distributed, decentralised, multi-format
document collections over the World-Wide Web. It was originally developed
in 1992-95 for the ARPA-funded Computer Science Technical Reports
project in the USA, and currently forms the technological basis of the
Networked Computer Science Technical Reference Library (NCSTRL). The
protocol of the Dienst system, however, in no way depends on, or is
specialised for, this particular collection.

The Dienst system has three logical components:

1. the document database: a structured collection of digital documents.
Each document in the database is, at least, represented by a bibliographic
file (containing meta-information about the document) and may also
contain representations of document in multiple formats as Postscript,
TIFF, GIF, etc..

2. the Dienst server: a standalone process that provides submit, searching
and access to the local database; each server can also interoperate with
other Dienst servers, providing search and access to documents over the
distributed environments.

3. the World Wide Web server: the Dienst protocol is embedded in HTTP,
the WWW protocol. The two protocols communicate via Common
Gateway Interface (CGI).

The above three logical components are implemented by an architecture
which consists of four modules. Each of these modules provides specific
digital library services:

• Repository: it provides services for deposit, storage, access and deliver
digital documents, each of which has a unique name and may exist in
several different formats;

• Index: it supplies the mechanisms for indexing meta-information on
documents and the search engines over these indexes which return a list
of documents that match the search;

• Meta: it furnishes services (also called “contact services”) that provide
information for interoperability among servers.

• User interface: it implements the service that provide a human front-end
to the three other services.

2 DELOS is an ESPRIT funded Working Group that comprises the followingERCIM
institutions:CNR, CWI, GMD, INRIA, INESC, SICS, SZTAKI, and FORTH.

3

Multiple Dienst servers interoperate to provide a logically uniform
collection to the user, even though the physical collection is distributed. Each
individual Dienst server “knows” about other sites, and visa-versa, by
periodically polling a central meta-server site.

3. Extending the metadata set

The current version of ETRDL is based on the following metadata:
Author, Title, Subject, Description, Resource Type, Publisher,
Date.Creation_of_intellectual_content, Format, Resource Identifier and
Language. This set of metadata is close to that suggested by Dublin Core
metadescription standard. Actually, only few elements are missing. One of
these is “DC.relation”. This element is frequently used in the bibliographic
area since it permits to specify relations between documents that cannot be
derived from the other metadata. At IEI-CNR, as part of the DELOS activity,
it was decided to explore which would be the effects of introducing relation as
an additional metadata element in ETRDL. What follows describes our
experience.

3.1 The relation element
The element relation is, perhaps, the less understood of the fifteen

elements proposed by the DC standard. At the present its use is considered as
experimental. In the “DC User Guide Draft” this element is defined as
follows[2]:

The relationship of this resource to other resources. The intent of this
element is to provide a mean to express relationships among resources that
have formal relationships to others, but exists as discrete resources
themselves. For example, images in a document, chapters in a book, or items
in a collection.

A list of types which accommodates most expected relationships has been
identified as part of the standard[2]. These are: IsPartOf, HasPart,
IsVersionOf, HasVersion, IsFormatOf, HasFormat, References,
IsReferencedBy, IsBasedOn, IsBasisFor, Requires, IsRequiredBy.

We decided to consider all of these relation types in our tentative extension
since each of them is meaningful for TR. Moreover, as we were not able to
envision if other types could also be useful, we decided to design extensions
to ETRDL that were parametric with respect to the relation types. This would
allow to add novel relation types dynamically as soon as they become
relevant.

An accurate analysis of the relation element highlighted that it exhibits
distinguishing peculiarities with respect to the other metadata. In particular
the followings:

• Semantics. The problem of assign a uniform meaning to a relation type
is harder than for the other metadata elements. This problem originates
especially for the relation types that are added dynamically. However, our
experience has outlined that also the interpretation of the standard types can
raise difficulties. While carrying out the analysis of the relation types listed
above, we found that, for example, IsVersionOf was interpreted differently
from different people. The definition of IsVersionOf given by the standard is:
“Version relations are those in which a resource is an historical state or
edition of another resource by the same creator”[2]. After having read this
definition, some people concluded that IsVersionOf is a symmetric relation
i.e., if a document x is a version of a document y then also y is a version of
x. Others, instead, concluded that IsVersionOf is a an order relation among
documents. A document dated later could be a version of a document produced

4

earlier, but not viceversa. Other people was unable to assign a meaning to
this definition since they do not understand the meaning of the term
“historical state”. Finally, others found the definition inappropriate since,
according their understanding of the informal meaning of IsVersionOf, the
related document should not have necessarily the same creator.

• Dependency between relation and the other metadata elements.
Currently, there is no dependency among the element values in an ETRDL
metatada record and among metadata records. These two properties do not hold
anymore if the relation element is introduced. Consider, for example,
IsVersionOf. Its definition states that if x is a version of y then the two
technical reports must have the same value for the Author element.
Moreover, if the above relation holds, then also the inverse relation
HasVersion between y and x must hold. This dependency among metadata
records imposes that the handling system be able to ensure the consistency
among the metadata records.

• Relations can be dynamically added and modified. A relation between
TR is not necessarily stated when the metadata record is created. Often it is
stated later. For example, when a version y of a TR x is created, a new link
HasVersion has to be added in the metadata record of x. If, after a while, y is
removed, the added link has to be cancelled.

• Queries have a different structure. A standard query to the ETRDL
collection is made by specifying a value for one or more selected metadata as
in, for example, “getTR with Carlesi=Author”. All the TR which have that
value for the given metadata are expected as a result. A query by relation has a
different structure. For example, a typical query by relation is “getTR that are
IsVersionOf TR1”. In this case, a TR in the domain of the relation is
specified and all the related TR are expected as result.

The above peculiarities impose a specific treatment for the relation element.
The following section discusses this point.

4. Handling the relation element

This section discusses how relation can be supported within the current
version of Dienst. First, a specification for the semantics is proposed. Then a
possible solution to the requirements that are imposed by the introduction of
relation is presented.

4.1 The semantics of the relation element
In order to achieve an acceptable level of interoperability, the intended

meaning of the relational types has to be specified precisely. As an attempt to
solve this problem, we associated a set of first order formulas with each type.
These formulas rely upon the basic predicates that are derivable from the RDF
semantics of the DC metadata element set[5,6]. They express the conditions,
derivable from the informal semantics, that hold among the metadata of the
related objects. For example, the semantics of IsVersionOf was expressed as:

• ∀ x ¬ IsVersionOf(x,x)
• ∀ x,y IsVersionOf(x,y) ⇒ ¬ IsVersionOf(y,x)
• ∀ x,y,z IsVersionOf(x,y) ∧ IsVersionOf(y,z) ⇒ IsVersionOf(x,z)
• ∀ x,y IsVersionOf(x,y) ⇒ HasVersion(y,x)
• ∀ x,y IsVersionOf(x,y) ⇒ Author(x) =Author(y)
• ∀ x,y IsVersionOf(x,y) ⇒ Subject(x) ∩ Subject(y) ≠ ∅
• ∀ x,y IsVersionOf(x,y) ⇒ Date.Creation_of_intellectual_content(x) ≥
 Date.Creation_of_intellectual_content (y)

5

A similar semantic was given for each of the other relation types.
We also assumed that a semantic like the one given above could be

specified each time a new dynamically added type is introduced for the first
time. For example, the semantics of the relation IsATranslationOf, that
relates a technical report to a translation of it, could be expressed as:

• ∀ x ¬ IsATranslationOf(x,x)
• ∀ x,y IsATranslationOf(x,y) ⇒ ¬ IsATranslationOf(y,x)
• ∀ x,y IsATranslationOf(x,y) ⇒ Author(x) = Author(y)
• ∀ x,y IsATranslationOf(x,y) ⇒ Subject(x) = Subject(y)
• ∀ x,y IsATranslationOf(x,y) ⇒
 ResourceIdentifier(x) ≠ ResourceIdentifier(y)
• ∀ x,y IsATranslationOf(x,y) ⇒ Language(x) ≠Language(y)

4.2 How to support relations within Dienst
This section discusses which services are required to handle the relation
element and gives suggestion on how they could be implemented within the
current version of Dienst. The presentation is organised in three subsections,
one for each module of Dienst that has to be modified.

4.2.1 Repository
In order to handle the metadata relation, both the structures and the services
that are provided by the Repository module of the Dienst system have to be
modified.

First of all, the structure that maintains the metadata record has to be
extended to maintain also the new metadata element. This can be done easily
by exploiting the extension capabilities of Dienst.

Moreover, the information that regards the relation types has to be stored.
This could be done, for example, by introducing, for each relation type, an
appropriate structure. This structure (called hereafter RelCont) could, for
example, consists of a sequence of references. The first could be a reference to
a text that lists the properties of the relation type. The other references could
be used to point to procedures which implement the relation element specific
services. For example, there could be a reference to a procedure that is
invoked when a new metadata that contains the corresponding relation type is
created.

Note that this structure can be easily implemented and permits an easy
dynamic addition of novel types.

In order to handle the element relation some of the existing Repository
services has to be modified and additional services has to be added.

The service that deposits TR and their metadata has to include the check
on the consistency between the value of the relation field and the rest the
registered metadata values. This new functionality could, for example, be
obtained by invoking, for each of the relations specified in the metadata
record, the checking procedures stored in the appropriate RelCont.

Note that, this consistency check hides an inherent difficulty. The
checking process involves different TR. These servers could be not
responding at the time the check is issued. Until now we have not reached a
clear understanding of which behaviour should the system exhibit when this
situation occurs.

As a further effect of the introduction of relations, a new Repository
service for updating relations has to be introduced. As Dienst does not
support updates, the only possible solution is to simulate it by first
removing a metadata record and then inserting a new one with the modified
values. This solution, however, is quite heavy since, given the characteristics

6

of the current services of Dienst, not only the metadata has to be removed
and added again, but also the document.

4.2.2 Index
In order to handle relations, for each of the relation types that are

permitted, a new index has to be introduced. Dienst allows to make these
extensions quite easy.

Moreover, specific services for retrieving TR through the relation links
has to be provided. A possible solution for implementing such retrieval is to
simulate the queries by exploiting the inverse relations. The query “getTR
with Author = Carlesi” could be equivalently expressed as: “getTR with TR1
in HasVersion”, where “in” stand for the set inclusion operator. The
translation of the query in the appropriate form can be implemented by a
procedure stored in RelCont.

Note that this solution is possible only if each time the direct relation is
registered, the inverse is registered too. This last registration could be done
automatically by modifying appropriately the creation service. The
implementation of this service, however, it is not trivial since the metadata
record to be modified might reside on a different server. In the Dienst
architecture there is no protocol for either requiring remote updates and for
being ensured that a request for a remote update is served.

4.2.3 User interface
Both the registering and querying interface have to be modified to handle

the relation metadata.
In order to guide the administrator, a pull down menu with the list of

relation types that can be specified should be available on the registering
interface. Moreover, an help facility that visualises the semantic of each
relation type should be provided on the same interface.

The querying interface should permit queries of the type “GetTR that are
R-related to x” where R is a relation type and x is the identifier of a technical
report.

New interfaces should also to be developed. In particular: 1) an interface
for retrieving and then updating metadata records and 2) an interface for
registering information about a new relation type, i.e., the semantics of new
relation types and the associated procedures.

5. Conclusions

This paper has reported the results of a preliminary investigation on how
the ETRDL system could be extended to cover also the retrieval by relation
among documents.
Several topics emerged from this investigation:
1. An informal description of the semantics of the relational types is not

sufficient for supporting the required interoperability. An appropriate
form for expressing this semantics must be defined.

2. A semantics like the one that we have proposed is strictly dependent
from the set metadata elements that has been chosen and by the set of
their possible values. This means that there is no “general” definition
of, for example, IsVersionOf, but the definition depends on the
interaction with the chosen metadata. This may cause problems if the
metadata element set is changed and if alternative metadata element sets
are used.

3. Relation, differently from other metadata, is not necessarily independent
from the other metadata. This raises the problem of the maintaining the
consistency among the metadata values. This problem is made hard by
the distribution of the documents that may reside on different servers.

7

The updates are not necessarily guaranteed, while the checks are not
guaranteed to be completed.

4. Relations can be dynamically added. A mechanisms for updating a
metadata record has to be provided.

5. The retrieval by relation has a different form than that of the other
metadata elements. Given a document, the interest is in finding all the
related documents. The existing query language needs to be appropriately
extended.

The paper has proposed a solution to be implemented within the Dienst
framework for some of the above items. Not all the solutions are, however,
satisfying enough. A more powerful architecture seems to be required for
better supporting the metadata relation.

References

[1] Metadata Resources - Dublin Core,

http://www.ukoln.ac.uk/metadata/resources/dc.html

[2]A User Guide for Simple Dublin Core,

http://128.253.70.110/DC5/UserGuide3.html

[3] C. Lagoze, E. Shaw, J. R. Davis and D.B. Krafft, Dienst:

Implementation Reference manual, Cornell Computer

ScienceTechnical Report TR95-1514,

http://cs-tr.cscornell.edu:80/Dienst/UI/2.0/Describe/ncstrl.cornell/tr96-
1595.

[4] S. Biagioni, ERCIM Technical Reference Digital Library, ERCIM News,

n.33, April 1998.

[5] Resource Description Framework(RDF) Model and Syntax,

http://www.w3.org/TR/WD-rdf-syntax/

[6] Resource Description Framework(RDF)Schemas,

http://www.w3.org/TR/WD-rdf-schema/

[7] C. Lagoze, J. R. Davis Dienst: an Architecture for Distributed Document

Libraries, Communications of the, 38 (4) April 1995, page 45.

