
A Logical Model for Metadata in Web Bases�

P. Atzeni2, G. Mecca1, P. Merialdo2, G. Sindoni3

1 D.I.F.A.{Universit�a della Basilicata 2 D.I.A.{Universit�a Roma Tre 3 D.C.I.{Rutherford Appleton Lab.

fatzeni, mecca, merialdo, sindonig@dia.uniroma3.it

Abstract

In systems that provide integrated management of both structured, database{style, data and semi-

structured, Web-style, data, metadata may allow for the explicit management of information about

the structure and data content of pages. Unfortunately, the HTML standard doesn't o�er any explicit

framework for document metadata management. The eXtensible Markup Language vice versa allows for

the explicit description of the structure of a document, but it lacks of database perspective. The aim of

this paper is then to describe an approach to the generation of database{derived Web meta{information

that is based on a logical model for Web pages and to show how this approach can be e�ectively used

for both HTML{ and XML{based systems.

1 Introduction

The Web scenario is increasingly being populated by sites where data play a major role. These sites are
usually built over one or more underlying databases and they are mainly used to dynamically present
a hypertext view to the user. However, the great opportunity o�ered by the Web{related technologies
being a de facto standard, calls for an evolution of these sites towards a more sophisticated and powerful
type of information systems, which overcome the vision of databases in the Web as purely data sinks or
sources. Such systems should provide integrated management of both structured, database{style, data and
semistructured, Web{style, data. In particular, the same declarative data querying functionality that is
o�ered by DBMSs should be o�ered also for semistructured data; hypertext views over the database should
be designed [8, 11, 12], described by means of a suitable model and language, and automatically generated;
�nally, it should be possible to create cooperativeWeb applications by the coordination of the above activities.
We call systems with the above characteristics Web Base Management Systems [17].

In such a context, metadata have a fundamental importance with respect to all the above features. In
fact, by allowing the system to explicitly manage meta{information about the structure and data content of
pages, it would be possible to easily (i) enable site structured querying, (ii) embed into pages some knowledge
about presented values, (iii) integrate and exchange data with other systems.

In this respect, the recent World Wide Web Consortium (W3C) recommendation for an eXtensible Mark-
up Language (XML, [5]) deserves particular attention because its formal, concise design made it straight-
forwardly usable on the Internet and it thus gained immediate consensus among research communities and
industries. XML allows for the description of the structure of a document and for the complete separation
between document structure and layout. It seems then the ideal candidate as the reference document format
for providing Web{based cooperative applications with the above classes of functions [9]. Unfortunately,
the database perspective hasn't been taken into account during XML design process and the correspond-
ing proposal lacks of the notion of site scheme and of speci�c features to describe site{database mappings,
consequently, XML meta{information framework as is, cannot tell anything about the relationships between
structured and semistructured data. It then needs to be e�ectively supported by suitable models and tools
for designing mappings between databases and XML sites.

�Contact Author: Giuseppe Sindoni, D. I. A., via della Vasca Navale 79, 00146 { Roma, Italy. Tel. +39-6-55173229, fax:
+39-6-5573030

1

The aim of this paper is to describe an approach to the generation of Web meta{information that is
based on a logical model for Web pages and to show how this approach can be e�ectively used for the
generation of both HTML and XML sites. The Araneus Data Model (adm) [6] will be presented as a
logical model for Web site design. It has been de�ned in the framework of the Araneus project [1] and it is
an ODMG{like model that allows to describe the structure of a Web hypertext. At the moment, metadata
management in Araneus is performed by a language, which is called Penelope De�nition Language [6],
that allows to describe in a declarative fashion the mappings between site pages and database data, according
to the adm model for the site. The adopted logical modeling approach, enables the Penelope interpreter
to automatically generating the site pages (data) and to embed, into standard HTML comments, suitable
meta{tags (metadata), which describe the page structure and its data content.

Finally, the relationships between adm and XML will be described and it will be shown how our approach
can be properly extended to the automatic generation of XML sites. Generated sites will be so: (i) more
easily suitable for declarative structured querying by navigational languages and advanced query systems
(see for example [6, 16]); (ii) self-described, because the implicit knowledge contained in the logical scheme
of the site can be made explicit into XML declarations and tags; and (iii) compliant with a recommended
and widely accepted standard and then suitable for data exchange in cooperative applications.

2 The Araneus Approach to Metadata Generation

In order to describe site structure and mappings between database and sites, a speci�c model and a language
for hypertext views are used. Their basic features are described by the following example concerning the
scheme of a simple University department database, from which the department Web site is derived.

PROFESSOR(Name, Area, Photo, e-mail, Phone, RoomNum)

STUDENT(Name, Area, Photo, e-mail, Tutor)

ADMSTAFF(Name, Area, Photo, e-mail, Position)

COURSE(Name, Type, Description, Instructor)

LESSON(CourseName, Day, Hour, RoomNum)

SEMINAR(Title, Author, Date, Hour, Abstract, Responsible)

PUBLICATION(Title, Abstract, Year, Reference)

RESEARCH-GROUP(Name, Topic)

PERSON-IN-GROUP(Name, Group)

PUBLICATION-AUTHORS(Name, Title)

The reference data model for hypertext views is a subset of the Araneus Data Model (adm), and it will
be described in the following, with the help of the scheme of Fig. 1, which gives a graphical intuition of how
the model can be used to describe the logical structure of a site.

adm is a page{oriented model, because page is the main concept. Each hypertext page is seen as an
object having an identi�er (its url) and a number of attributes. The structure of a page is abstracted by its
page scheme and each page is an instance of a page scheme. The notion of page scheme may be assimilated
to the one of relation scheme, in the relational data model, or object class, in object oriented databases. In
Fig. 1 for example, home pages of professors are described by the PROF GENERAL PAGE page scheme. Many
examples of adm schemes can be found at the Araneus project Web site [1].

Each PROF GENERAL PAGE instance has six simple attributes (Name, Area, Photo, E-mail, Phone and
RoomNum). Pages can also have complex attributes: lists, possibly nested at an arbitrary level, and links to
other pages. The example shows the RESEARCH GROUP PAGE page scheme, having two list attributes (Topic-
List and MemberList). In particular the elements of MemberList are couples, formed by a link, to either an
instance of PROF GENERAL PAGE or of STUDENT PAGE, and the corresponding anchor (Member). Finally, the
PUBLICATION LIST PAGE page scheme, has a list attribute with a second level nested list (AuthorList).

The structure of a page scheme can be alternatively de�ned by a simple de�nition language [6]. For
example, the adm declaration for the RESEARCH GROUP PAGE page scheme is the following.

2

U

�

ToProfessor

Name

ToMember

Member

MemberList

Topic

TopicList

Name

c
ToPublication
Title

PublList

Ref

ToGroup
GName

c
Photo

e{mail

Area

Name

ToGeneralInfo

ToGroup

"General Info"

GName

ToPublication

Title

Ref

PublList

e{mail

Name

"Research"

ToResInfo

ToCourse

CourseName

CourseList

RoomNum

Phone

e{mail

Photo

Area

Name

ToProfessor

Name

RoomNum

Hour

Day

TimeTable

Description

Name

GCourseList

UGCourseList

ProfList

ToProfessor

Responsible

Abstract

RoomNum

Hour

Date

Author

Title

SeminarList

b
Area

e{mail

Photo

Position

Name

AdmStaffList

PublicationList

ToAuthor

Author

AuthorList

Abstract

Reference

Year

Title

ProfessorList

StudentForm

Name

ToStudent

ToProfessor

Name

�
�

�
�

ToAdmStaff

ToSeminar

"Adm Staff"

"Seminar Info"

GroupList

ToPeople

ToPublication

ToGroup

"People"

"Publication"

GName

CourseName

CourseName

Name

ToCourse

ToCourse

ToProfessor

"Educ. Info"

"Research Info"

"General Info"

ToEducation

ToResearch

ToGeneral

�
�
�
�
�
��

prof research page

student page

�

�

�

6

-

6

E
E
E
E
E
EE

�����������������9

�

-

�
�

�
�

�
��+

6

��
��

�
?

?

-

prof general page

?

?

?

-

�

?

?

?

? ?

?

seminar page

admstaff page

research group page
publication list page

people page

course page

general page

research pageeducation page

department page

Figure 1: The Department adm scheme

3

PAGE-SCHEME RESEARCH GROUP PAGE

Name: TEXT;

TopicList: LIST-OF (Topic : TEXT;);

MemberList: LIST-OF (Member : TEXT;

ToMember :LINK-TO PROF GENERAL PAGE

UNION STUDENT PAGE;);

Note the use of a heterogeneous UNION type, to describe the the fact that the target of the ToMember

link attribute can be either a professor page or a student page. The reader interested in the details of the
full model, may see [6].

Hypertext views over a relational database can be de�ned in a declarative fashion using the Penelope
language for Web site de�nition [6].

The language supports both materialized and virtual solutions for page generation: pages can be either
generated from the database content and materialized on a server, or they can be dynamically delivered to
the browser after a user's explicit request. The advantages of materializing database{derived sites have been
discussed in previous works [17, 19]. Here it is worth to put into evidence that the ability of automatically
embedding meta{information in HTML code allows pages to be queried using suitable tools, as it will be
clari�ed in the follow.

In Penelope, page structure is described by DEFINE PAGE statements: they essentially specify how to
generate pages based on database table attributes. There are some main Penelope features that are worth
to put into evidence: (i) a suitable url invention mechanism is used, that allows to correlate page instances
while guaranteeing consistence to the whole hypertext; (ii) the automatic embedding of meta{information
into the derived pages allows to keep track of page structure; (iii) hypertext pages may be mapped both on
database relations and views.

For example, the following Penelope DEFINE PAGE statement generates the HTML code for the page
instances corresponding to the RESEARCH GROUP PAGE page scheme of Fig. 1:

DEFINE PAGE RESEARCH GROUP PAGE

AS URL URL(<GroupName>);

Name: TEXT <GroupName>;

TopicList: LIST OF (Topic: TEXT <Topic>;)

MemberList: LIST OF (LINK TO PROFESSOR PAGE UNION STUDENT PAGE

(Member:TEXT <MemberName>;

ToMemberPage: REF-TO URL(<MemberName>)));

FROM RESEARCH GROUP PAGE VIEW

IN DEPTDB

Where RESEARCH GROUP PAGE VIEW is the associated database view, which has attributes GroupName,
Topic and MemberName. The name of the starting database (DEPTDB) is speci�ed in the IN clause, while the
FROM clause indicates the database table(s) or view(s) that contains relevant data. The AS clause speci�es the
�lling{out of data in pages. For each page, a di�erent url is created by the use of function terms. Filling{
out of pages is speci�ed by attribute de�nitions. For example, the values of the Name TEXT attribute come
from attribute GroupName of the database view. Finally, coherently with the adm page scheme structure,
the de�nition of the MemberList attribute speci�es how, for each member, a link to the corresponding page
must be established. This is accomplished by using as an anchor the member name and by using as a value
for the the link reference the function term URL(<MemberName>).

The Penelope source code must of course be enriched by proper tagging directives, in order to achieve
the desired page layout.

It is very useful to keep track of page structures in the generated HTML �les in such a way to make those
meta{information available to Web{based applications. This is accomplished by embedding meta{tags into
HTML comments, thus making them completely transparent to ordinary Web browsers; they can however
be used by more sophisticated applications in order to extract relevant pieces of information from the page.

4

<HTML> <HEAD> <TITLE>Research Group Page</TITLE>

<!--PAGE-SCHEME Research_Group_Page

Name : TEXT;

TopicList : LIST-OF (Topic : TEXT;);

MemberList : (Member : TEXT;

ToMemberPage : LINK-TO ProfessorPage UNION StudentPage;)

END -->

</HEAD><BODY BGCOLOR="FFFFFF">

...

<CENTER><H1><!--Name-->Database Group<!--/Name--></H1></CENTER><HR>

<CENTER><TABLE CELLPADDING=20 COLS=2 WIDTH=90%>

<TR><TD><H2>Topics:</H2><P><HR></TD>

<TD><!--TopicList-->

- <I><!--Topic-->Database Theory<!--/Topic--></I>;

- <I><!--Topic-->Databases and the Web<!--/Topic--></I>;

...

<!--/TopicList--></TD></TR>

<TR><TD><H2>Members:</H2><P><HR></TD>

<TD><!--MemberList-->

<!--ToMemberPage--><!--/ToMemberPage-->

<!--Member-->John Doe<!--/Member-->;<P>

<!--ToMemberPage--><!--/ToMemberPage-->

<!--Member-->Frank Smith<!--/Member-->;<P>

...

<!--/MemberList--></TR>

</TABLE>

...

Figure 2: A sample HTML source generated by Penelope with embedded meta{tags

Consider for example the HTML source shown in Fig. 2. Some hidden tags have been added, beside actual
data to be displayed. The �rst of these tags, in the page header, <!-- PAGE-SCHEME Research Group Page

... -->, describes the structure of the page-scheme according to which the page is organized. Then,
for each attribute in the page, the corresponding value is marked by suitable meta{tags in order to easily
recognize and extract the value.

Once the page has been organized in this way, applications can be developed that make use of page data.
For example it may be possible to query the site, i.e., to automatically navigate the site to extract information
based on high{level queries; this is often desirable when accessing large amounts of data, in order to avoid the
usual disorientation associated with browsing; Ulixes [6, 7], is a tool we have explicitly designed to this end;
queries over a site can be expressed based on the corresponding adm scheme using simple path-expressions,
in order to access pages and store data in a local database; as an alternative, straightforward extensions of
W3QS [15] or WebSQL [18] could be used, or even a combination of a HTTP robot and grammar parser. In
this way, the resulting site is not only a bunch of HTML �les, but a highly structured repository that can
be either browsed or queried, thus making data access more e�ective. More sophisticated applications may
be built on top of such query tools, in order to customize data use according to speci�c requirements.

The embedding mechanism for meta{tags presents however some major drawbacks. In particular:

� it does not allow for explicit separation between comments (which are supposed to be pieces of infor-
mation about the HTML code itself and not about data structure) and metadata (which are pieces of
information about the structure and content of the document to be used by applications);

� applications must be tailored for a speci�c embedding syntax;

� it essentially doubles page sizes, making site management heavy;

� in order to separate document layout and structure descriptions, speci�c application modules must be
implemented.

5

For example, in order to overcome the latter, we have developed a speci�c tool that allows to separately
manage the de�nition of a page scheme logical structure, which is stored in templates, from the de�nition of
its presentation, which is described in stylesheets.

The ability of generating XML �les for describing page storage and structure may solve those problems.

3 The eXtensible Markup Language

The aim of this section is to give some basic notions about the main features of XML, in order to keep the
reader able to understand the concepts illustrated in the following sections. For more details, see [10, 13, 20,
5].

XML is a \meta{markup" language and it allows to de�ne tagging systems to explicitly represent the
structure of a document as a tree of nested objects. A piece of XML document may in fact look like this.

...

<Research_Group>

<Name>Database Group</Name>

<TopicList>

<Topic>Database Theory</Topic>

<Topic>Databases and the Web</Topic>

...

</TopicList>

...

</Research_Group>

...

XML documents are composed by markup and content. In the above example, the couple of tags <Name>
and </Name> are the markup for the string Database Group, which is content.

Elements. There are di�erent kinds of markup that can appear in an XML document. In particular,
the example presents element markups. Elements identify the nature of the content they surround. Each
element begins with a start{tag and ends with an end{tag.

Attributes. Another important kind of markup are attributes. Attributes are name{value pairs that
occur inside tags after the element name. For example, <Topic identifier="DBT"> is the Topic element
with the attribute identifier having the value DBT.

Document Type Declarations. Document type declarations syntactically de�ne the tagged structure
of a document, allowing at the same time to present meta{information about its content. Declarations are
used by application parsers to validate documents. In fact, they de�ne the allowed sequences and nesting
of tags, attribute values and their type and defaults, the names of external �les and the formats of some
external (non{XML) data that may be included. The most important kinds of XML type declarations are
element declaration and attribute declaration.

Element Declarations. They identify the name of elements and the nature of their content. For
example, the following declaration

<!ELEMENT Research_Group (Name, TopicList, MemberList)>

identi�es the element named Research Group. This element must contain exactly one occurrence of
the element Name, followed by exactly one occurrence of the element TopicList, followed by exactly one
occurrence of the element MemberList. Declarations for Name, TopicList and MemberList must also be
present for an XML processing application to check the validity of a document. For example, the de�nition
for TopicList might be the following.

<!ELEMENT TopicList (Topic+)>

<!ELEMENT Topic (#PCDATA | TopicPage)>

6

TopicList must contain at least one, but maybe more occurrences of Topic. Topic occurrences may be
either #PCDATA, which is a keyword that means \Parseable Character DATA" and is reserved to indicate
character data, or a child element named TopicPage.

Attribute Declarations. They identify element attributes. For example, we may have the following
attribute declaration.

<!ATTLIST Topic

identifier ID #required

active (yes | no) `yes'>

Here, the element Topic has two attributes: the �rst is called identifier, it is of type ID (a speci�c
type that means essentially an identifying name) and the presence of the corresponding value is compulsory;
the second is called active (to indicate for example if research in that topic is currently active or not), its
value must be either `yes' or not and it defaults to `yes'.

Validating and non{Validating Applications. The content of an XML document might be in
principle processed without a type declaration. The start{end tagging mechanism is in fact enough for a
parser to recognize the object tree and the nesting structure. However, there are contexts where a rationale
exists for requiring a declaration. For example, most authoring environments need to read and process
document type declarations in order to understand and enforce the content models of the document. With
respect to our speci�c application environment, even if the structure of the generated document is guaranteed
by adm and Penelope, if we want XML documents to be parsed and queried by speci�c tools, we need to
make the document de�nitions available together with the documents themselves.

The document type declaration must be the �rst thing in the document and identi�es the root element of
the document. Additional declarations may come from an external de�nition �le 1, may be included directly
in the document or both. A validating application may need to read one or both the declarations, in order
to perform its validating tasks.

An XML document is valid if (i) it obeys the syntax of XML and (ii) it contains a proper document type
declaration and it obeys the constraints of that declaration.

Linking. The XML linking speci�cation (XML Linking Language, XLink [3]) is currently under devel-
opment, consequently, in the follow only a survey of its basic and more consolidated features, which are
however enough for the aims of this paper, will be presented.

A link describes a relationship between any locations that are addressed in it. The nature of this rela-
tionship depends on both the processing application and the semantic information supplied by the document
authoring application.

XML does not have a �xed set of elements, hence the element name cannot be used by a parser to locate
links. A speci�c attribute, named XML-LINK is then used to identify links. Other attributes can be used to
provide additional information to the processor. There are essentially four kinds of links in XLink, but the
most important for our aims are Simple Links.

Simple Links. They are quite similar to HTML links:

<MemberLink XML-LINK="SIMPLE" HREF="/ProfessorPage/johndoe.xml">

<Member>John Doe</Member>

</MemberLink>

They de�ne a link between two resources: the content of the linking element itself (the Member element)
and another resource, which may be for example an url or a query.

XML and Presentation. Since XML documents have no �xed tag set, the hard{coded approach
of HTML browsers will not work for presentation. XML document presentation must then be based on
stylesheets. There is also an ongoing e�ort by the W3C in this regard, the proposal is called eXtensible Style
Language (XSL [4]) and it is likely to be focused on the de�nition of a standard stylesheet language. Other
stlylesheet languages, like Cascading Style Sheets (CSS [2]) are likely to be supported as well.

1The external de�nition is called Document Type De�nition, DTD, in the spirit of SGML [14]

7

XML and Web Site Design. It may be argued that XML could be directly used as a logical model
for Web site design. There are two main drawbacks in that respect.

1. XML lacks of the explicit notion of site scheme, which is particularly important in the Web site design
process [8].

2. In XML it is not possible to explicitly represent some class of constraints. For example, in the current
version it is not possible to bind the target object type of a link object to a given document type. The
de�nition of link semantics is somehow supported by the attribute declaration mechanism, but, in the
end, it is left to the authoring and processing applications.

To clarify the latter, let us have the following XML type declaration.

<?XML version="1.0" rmd="internal"?>

<!DOCTYPE ProfGeneralPage [

<!ELEMENT Name (#PCDATA)>

...]>

The �rst line is the XML markup declaration. The markup rmd="internal" states that only the internal
declarations needs to be processed in order to validate the document. The second line is the internal
declaration of the root element of a document. But, as the scope of the name ProfGeneralPage is limited
to the document itself, the corresponding type declaration is unknown to other documents. They cannot
bind the target of link attributes in the document type declarations to the ProfGeneralPage type. A way
out may be to spot an external DTD �le by means of a speci�c link attribute and to instruct the processing
application to parse the �le in order to bind the link target to the declared type. In the next section this
will be clari�ed with an example.

As a consequence of what has been illustrated so far, we think that the use of a more structured model like
adm for site scheme description and of a meta{markup language like XML for page and metadata storing,
together with the Penelope language for describing database{site mapping, will enable the design, realiza-
tion and maintenance of Web Base Management Systems that rely on standard and widespread technologies
and that are suitable to be easily integrated into cooperative applications.

In the follow, the relationships between adm and XML declarations will be illustrated, in order to show
how it is possible to generate XML sites with the Araneus tools.

4 Extending the Araneus Approach to the Management of XML

Sites

The Araneus Web Base Management System allows to generate HTML views over relational databases, as
illustrated in the previous sections, and to query existing sites to produce relational views over an HTML
hypertext [6]. However, as has been pointed out in Sec. 2, there are some drawbacks connected with the use
of HTML as the markup syntax for the generated pages. In particular, it is not possible to separate page
structure from its layout directives and the only way to export metadata about document contents is by
embedding them into comments. By using XML as the syntax for document storage structure de�nition, a
more e�cient and standardized management of metadata can be achieved. Hence, in order to extend both
Araneus site generation and querying to XML documents it is �rst necessary to analyze the relationships
between adm and the XML document type declaration syntax.

Document type declarations in XML can be internal or external. However, as it has been illustrated in
Sec. 3, internal declaration scope spans just the document in which they are declared. So, in order to correctly
bind link attributes to their target type in such a way to represent link type consistency, we must take into
account external declarations (i.e. DTD �les) only. In particular, we must devise a standard framework to
express the fact that a given link expresses a relationship between classes of documents. While XML syntax
allow to de�ne explicitly only relationships between document instances. Moreover, having a single external
declaration for each page scheme may allow applications to access only one �le for all the document instances

8

<!ELEMENT ResearchGroupPage (Name, TopicList, MemberList)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT TopicList (Topic)+>

<!ELEMENT Topic (#PCDATA)>

<!ELEMENT MemberList (MemberLink)+>

<!ELEMENT MemberLink (ToProf | ToStud)>

<!ELEMENT ToProf (Member)>

<!ELEMENT ToStud (Member)>

<!ELEMENT Member (#PCDATA)>

<!ATTLIST ToProf

XML-LINK CDATA #FIXED "SIMPLE"

TRG-TYPE CDATA #FIXED "/DTD/ProfPage.dtd"

HREF CDATA #REQUIRED >

<!ATTLIST ToStud

XML-LINK CDATA #FIXED "SIMPLE"

TRG-TYPE CDATA #FIXED "/DTD/StudPage.dtd"

HREF CDATA #REQUIRED >

Figure 3: The DTD �le corresponding to the RESEARCH GROUP PAGE page scheme

of a given page scheme. Take for example the RESEARCH GROUP PAGE page scheme de�nition of Sec. 2: it
may be mapped on the XML DTD of Fig. 3.

Here, the mechanism is worth to be put into evidence to map the ToMember link attribute. There are two
problems to overcome: �rst, the fact that the link target cannot be explicitly bound to a type declaration,
because type names can either be embedded into documents or into DTD �les; second, the fact that the
ToMember target may be either a ProfPage page scheme or a StudentPage page scheme (it is in fact an adm
heterogeneous union type [6]). The problems are tackled by mapping the adm link attribute into an XML
element (MemberLink), having one element child, which is a choice between either ToProf or ToStud, which
are the link elements. The TRG-TYPE attribute of the link elements indicates the DTD �le containing the
type declarations for ProfPage and StudPage respectively. A parsing application will then access and parse
the DTD in order to extract the structure of the target document.

The general mapping rules between adm types and XML declarations follow. The rules can be used by
the Penelope interpreter to generate XML declarations corresponding to adm page schemes, in such a way
to produce a consistent set of type declarations for the generated XML documents.

An adm monovalued TEXT attribute

attName : TEXT;

is mapped to the XML element

<!ELEMENT attName (#PCDATA)>.

An adm monovalued IMAGE attribute

attName : IMAGE;

is mapped to the XML element

<!ELEMENT attName (#PCDATA)>

<!ATTLIST attName

XML-LINK CDATA #FIXED "SIMPLE"

TYPE CDATA #FIXED "IMAGE"

HREF CDATA #REQUIRED >.

9

Again, it is here worth to put into evidence the use of the TYPE attribute as a stratagem to indicate that
the element is an IMAGE type.

The adm monovalued LINK TO attribute

attName : LINK TO pageScheme;

is mapped to the XML element

<!ELEMENT attName (#PCDATA)>

<!ATTLIST attName

XML-LINK CDATA #FIXED "SIMPLE"

TRG-TYPE CDATA #FIXED "pageScheme.dtd"

HREF CDATA #REQUIRED >.

where pageScheme.dtd is the �le containing the declarations for pageScheme page scheme. A processing
application must then be speci�cally instructed that, in order to validate the target documents, the DTD
�le must be parsed.

The adm monovalued LINK TO attribute

attName : LINK TO P1 UNION P2 UNION ...Pn;

where each Pi is a page scheme name, is mapped to the set of XML elements

<!ELEMENT attName (P1 | P2 | ... | Pn)>

<!ELEMENT P1 anchor>

<!ELEMENT P2 anchor>

...

<!ELEMENT Pn anchor>

<!ATTLIST P1

XML-LINK CDATA #FIXED "SIMPLE"

TRG-TYPE CDATA #FIXED "P1.dtd"

HREF CDATA #REQUIRED >

<!ATTLIST P2

XML-LINK CDATA #FIXED "SIMPLE"

TRG-TYPE CDATA #FIXED "P2.dtd"

HREF CDATA #REQUIRED >

...

<!ATTLIST Pn

XML-LINK CDATA #FIXED "SIMPLE"

TRG-TYPE CDATA #FIXED "Pn.dtd"

HREF CDATA #REQUIRED >.

Where anchor is the link element content.
The adm multivalued LIST OF attribute

attName : LIST OF (A1 : T1, A2 : T2, ...An : Tn);

where each Ai is an attribute name and each Ti is an attribute type, is mapped to the XML element

<!ELEMENT attName (A1, A2, ... An)+>

and the mapping of each Ai is recursively de�ned.
The above mapping rules will allow the Penelope interpreter to produce XML DTDs for the derived

XML site documents. The XML document for the Database group page should then look like the one in
Fig. 4.

10

<?XML version="1.0" rmd="all"?>

<!DOCTYPE ResearchGroupPage SYSTEM "research_group_p.dtd">

<Name>Database Group</Name>

<TopicList>

<Topic>Database Theory</Topic>

<Topic>Databases and the Web</Topic>

...

</TopicList>

<MemberList>

<MemberLink>

<ToProf XML-LINK="SIMPLE" HREF="/ProfessorPage/johndoe.xml">

<Member>John Doe</Member>

</ToProf>

</MemberLink>

...

<MemberLink>

<ToStud XML-LINK="SIMPLE" HREF="/StudentPage/franksmith.xml">

<Member>Frank Smith</Member>

</ToStud>

</MemberLink>

...

</MemberList>

Figure 4: A sample XML source, whose DTD is depicted in Fig. 3

The value "all" for the rmd directive means that both the internal (if present) and external declarations
must be read in order to validate the document. The SYSTEM "research group p.dtd" directive indicates to
applications the external DTD �le to be read. In our case it is the only document type declaration available
for each class of pages.

11

References

[1] Araneus Home Page. http://poincare.dia.uniroma3.it:8080/Araneus.

[2] Cascading Style Sheets, level 2 CSS2 Speci�cation. http://www.w3.org/TR/REC-CSS2/.

[3] The XML Linking Language (XLink). http://www.w3.org/TR/WD-xlink.

[4] A Proposal for XSL. http://www.w3.org/TR/NOTE-XSL.html.

[5] Extensible Markup Language (XML). http://www.w3.org/TR/PR-xml.html.

[6] P. Atzeni, G. Mecca and P. Merialdo. To Weave the Web. In International Conf. on Very Large Data
Bases (VLDB'97), Athens, Greece, pages 206{215, 1997.

[7] P. Atzeni, G. Mecca, and P. Merialdo. Semistructured and structured data on the Web: Going back
and forth. In Workshop on the Management of Semistructured Data (in conjunction with ACM SIG-
MOD). http://www.research.att.com/~ suciu/workshop-announcement.html , 1997. http://poincare.-

inf.uniroma3.it:8080/Araneus/publications.html.

[8] P. Atzeni, G. Mecca, P. Merialdo. Design and Maintenance of Data{Intensive Web Sites. In International
Conf. on Extending Datbase Technology (EDBT'98), Valencia, Spain, 1998.

[9] J. Bosak. XML, Java, and the Future of the Web. World Wide Web Journal, 2(4):219{227, Fall 1997
1997.

[10] T.Bray Annotated XML 1.0. Available at http://xml.com/axml/axml.html.

[11] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. STRUDEL { a Web site management sys-
tem. In ACM SIGMOD International Conf. on Management of Data (SIGMOD'97), Tucson, Arizona,
1997. Exhibits Program.

[12] P. Fraternali, P. Paolini. A Conceptual Model and a Tool Environment for Developing More Scalable,
Dynamic, and Customizable Web Applications. In International Conf. on Extending Datbase Technology
(EDBT'98), Valencia, Spain, 1998.

[13] L.M.Garshol Introduction to XML. Available at http://www.stud.ifi.uio.no/~ larsga/download/xml/-
xml eng.html.

[14] E. van Herwijnen. Practical SGML. Kluwer Academic Publishers, 1990.

[15] D. Konopnicki and O. Shmueli. W3QS: A query system for the world-wide web. In International Conf.
on Very Large Data Bases (VLDB'95), Zurich, pages 54{65, 1995.

[16] O. Liechti, M.J. Sifer, T. Ichikawa. Structured graph format: XML metadata for describing Web site
structure. In Proceedings of the 7th International World Wide Web Conference (WWW7), Brisbane,
Australia, 1998.

[17] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The Araneus Web{Base Management
System. In International Conf. on Extending Database Technology (EDBT'98), Valencia, Spain, 1998.
Exhibits Program.

[18] A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web. Journal of Digital Libraries,
1(1):54{67, April 1997.

[19] G. Sindoni. Incremental Maintenance of Hypertext Views. In International Workshop on the Web
and Databases (WebDB'98 In conjunction with EDBT 1998), Valencia, Spain, Available at http://-

poincare.dia.uniroma3.it:8080/webdb98/papers/.

[20] N. Walsh. A Guide to XML. World Wide Web Journal, 2(4):97{107, Fall 1997 1997.

12

