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Abstract

In the past decade, advances in speed of com-
modity CPUs have far out-paced advances
in memory latency. Main-memory access is
therefore increasingly a performance bottle-
neck for many computer applications, includ-
ing database systems. In this article, we use a
simple scan test to show the severe impact of
this bottleneck. The insights gained are trans-
lated into guidelines for database architecture;
in terms of both data structures and algo-
rithms. We discuss how vertically fragmented
data structures optimize cache performance
on sequential data access. We then focus
on equi-join, typically a random-access oper-
ation, and introduce radix algorithms for par-
titioned hash-join. The performance of these
algorithms is quantified using a detailed ana-
lytical model that incorporates memory access
cost. Experiments that validate this model
were performed on the Monet database sys-
tem. We obtained exact statistics on events
like TLB misses, L1 and L2 cache misses, by
using hardware performance counters found in
modern CPUs. Using our cost model, we show
how the carefully tuned memory access pat-
tern of our radix algorithms make them per-
form well, which is confirmed by experimental
results.
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1 Introduction

Custom hardware – from workstations to PCs – has
been experiencing tremendous improvements in the
past decades. Unfortunately, this growth has not
been equally distributed over all aspects of hardware
performance and capacity. Figure 1 shows that the
speed of commercial microprocessors has been increas-
ing roughly 70% every year, while the speed of com-
modity DRAM has improved by little more than 50%
over the past decade [Mow94]. Part of the reason for
this is that there is a direct tradeoff between capacity
and speed in DRAM chips, and the highest priority
has been for increasing capacity. The result is that
from the perspective of the processor, memory has
been getting slower at a dramatic rate. This affects
all computer systems, making it increasingly difficult
to achieve high processor efficiencies.

Three aspects of memory performance are of inter-
est: bandwidth, latency, and address translation. The
only way to reduce effective memory latency for appli-
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Figure 1: Hardware trends in DRAM and CPU speed



cations has been to incorporate cache memories in the
memory subsystem. Fast and more expensive SRAM
memory chips found their way to computer boards,
to be used as L2 caches. Due to the ever-rising CPU
clock-speeds, the time to bridge the physical distance
between such chips and the CPU became a problem; so
modern CPUs come with an on-chip L1 cache (see Fig-
ure 2). This physical distance is actually a major com-
plication for designs trying to reduce main-memory
latency. The new DRAM standards Rambus [Ram96]
and SLDRAM [SLD97] therefore concentrate on fix-
ing the memory bandwidth bottleneck [McC95], rather
than the latency problem.

Cache memories can reduce the memory latency
only when the requested data is found in the cache.
This mainly depends on the memory access pat-
tern of the application. Thus, unless special care is
taken, memory latency becomes an increasing perfor-
mance bottleneck, preventing applications – including
database systems – from fully exploiting the power of
modern hardware.

Besides memory latency and memory bandwidth,
translation of logical virtual memory addresses to
physical page addresses can also have severe impact on
memory access performance. The Memory Manage-
ment Unit (MMU) of all modern CPUs has a Trans-
lation Lookaside Buffer (TLB), a kind of cache that
holds the translation for (typically) the 64 most re-
cently used pages. If a logical address is found in the
TLB, the translation has no additional cost. Othe-
wise, a TLB miss occurs. A TLB miss is handled by
trapping to a routine in the operating system kernel,
that translates the address and places it in the TLB.
Depending on the implementation and hardware ar-
chitecture, TLB misses can be more costly even than
a main memory access.

1.1 Overview

In this article we investigate the effect of memory ac-
cess cost on database performance, by looking in detail
at the main-memory cost of typical database appli-
cations. Our research group has studied large main-
memory database systems for the past 10 years. This
research started in the PRISMA project [AvdBF+92],
focusing on massive parallelism, and is now centered
around Monet [BQK96, BWK98]; a high-performance
system targeted to query-intensive application areas
like OLAP and Data Mining. For the research pre-
sented here, we use Monet as our experimentation
platform.

The rest of this paper is organized as follows: In Sec-
tion 2, we analyze the impact of memory access costs
on basic database operations. We show that, unless
special care is taken, a database server running even a
simple sequential scan on a table will spend 95% of its
cycles waiting for memory to be accessed. This mem-
ory access bottleneck is even more difficult to avoid in
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more complex database operations like sorting, aggre-
gation and join, that exhibit a random access pattern.

In Section 3, we discuss the consequences of this
bottleneck for data structures and algorithms to be
used in database systems. We identify vertical frag-
mentation as the solution for database data structures
that leads to optimal memory cache usage. Concern-
ing query processing algorithms, we focus on equi-join,
and introduce new radix-algorithms for partitioned
hash-join. We analyze the properties of these algo-
rithms with a detailed analytical model, that quanti-
fies query cost in terms of CPU cycles, TLB misses,
and cache misses. This model enables us to show how
our algorithms achieve better performance by having
a carefully tuned memory access pattern.

Finally, we evaluate our findings and conclude that
the hard data obtained in our experiments justify the
basic architectural choices of the Monet system, which
back in 1992 were mostly based on intuition.

2 Initial Experiment

In this section, we demonstrate the severe impact of
memory access cost on the performance of elementary
database operations. Figure 3 shows results of a simple
scan test on a number of popular workstations of the
past decade. In this test, we sequentially scan an in-
memory buffer, by iteratively reading one byte with a
varying stride, i.e. the offset between two subsequently
accessed memory addresses. This experiment mimics
what happens if a database server performs a read-only
scan of a one-byte column in an in-memory table with
a certain record-width (the stride); as would happen
in a selection on a column with zero selectivity or in a
simple aggregation (e.g. Max or Sum). The Y-axis in
Figure 3 shows the cost of 200,000 iterations in elapsed
time, and the X-axis shows the stride used. We made
sure that the buffer was in memory, but not in any of
the memory caches.
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Figure 3: Reality Check: simple in-memory scan of 200,000 tuples

When the stride is small, successive iterations in the
scan read bytes that are near to each other in memory,
hitting the same cache line. The number of L1 and L2
cache misses is therefore low. The L1 miss rate reaches
its maximum of one miss per iteration as soon as the
stride reaches the size of an L1 cache line (16 to 32
bytes). Only the L2 miss rate increases further, until
the stride exceeds the size of an L2 cache line (16 to
128 bytes). Then, it is certain that every memory read
is a cache miss. Performance cannot become any worse
and stays constant.

The following model describes—depending on the
stride s—the execution costs per iteration of our ex-
periment in terms of pure CPU costs (including data
accesses in the on-chip L1 cache) and additional costs
due to L2 cache accesses and main-memory accesses:

T (s) = TCPU + TL2(s) + TMem(s)

with

TL2(s)=ML1(s) ∗ lL2, ML1(s)=min
(

s

LSL1
, 1
)

TMem(s)=ML2(s) ∗ lMem, ML2(s)=min
(

s

LSL2
, 1
)

and Mx, LSx, lx denoting the number of cache misses,
the cache line sizes and the (cache) memory access
latencies for each level, respectively.

While all machines exhibit the same pattern of per-
formance degradation with decreasing data locality,
Figure 3 clearly shows that the penalty for poor mem-
ory cache usage has dramatically increased in the last
six years. The CPU speed has improved by almost

an order of magnitude, but the memory access laten-
cies have hardly changed. In fact, we must draw the
sad conclusion that if no attention is paid in query pro-
cessing to data locality, all advances in CPU power are
neutralized due to the memory access bottleneck. The
considerable growth of memory bandwidth—reflected
in the growing cache line sizes1—does not solve the
problem if data locality is low.

This trend of improvement in bandwidth but stand-
still in latency [Ram96, SLD97] is expected to con-
tinue, with no real solutions in sight. The work
in [Mow94] has proposed to hide memory latency be-
hind CPU work by issuing prefetch instructions, before
data is going to be accessed. The effectiveness of this
technique for database applications is, however, lim-
ited due to the fact that the amount of CPU work per
memory access tends to be small in database opera-
tions (e.g., the CPU work in our select-experiment re-
quires only 4 cycles on the Origin2000). Another pro-
posal [MKW+98] has been to make the caching system
of a computer configurable, allowing the programmer
to give a “cache-hint” by specifying the memory-access
stride that is going to be used on a region. Only the
specified data would then be fetched; hence optimizing
bandwidth usage. Such a proposal has not yet been
considered for custom hardware, however, let alone in
OS and compiler tools that would need to provide the
possibility to incorporate such hints for user-programs.

1In one memory fetch, the Origin2000 gets 128 bytes, whereas
the Sun LX gets only 16; an improvement of factor 8.



3 Architectural Consequences

In the previous sections we have shown that it is less
and less appropriate to think of the main memory of
a computer system as “random access” memory. In
this section, we analyze the consequences for both data
structures and algorithms used in database systems.

3.1 Data Structures

The default physical tuple representation is a consecu-
tive byte sequence, which must always be accessed by
the bottom operators in a query evaluation tree (typi-
cally selections or projections). In the case of sequen-
tial scan, we have seen that performance is strongly
determined by the record-width (the position on the
X-axis of Figure 3). This width quickly becomes too
large, hence performance decreases (e.g., an Item tu-
ple, as shown in Figure 4, occupies at least 80 bytes on
relational systems). To achieve better performance, a
smaller stride is needed, and for this purpose we recom-
mend using vertically decomposed data structures.

Monet uses the Decomposed Storage Model [CK85],
storing each column of a relational table in a sepa-
rate binary table, called a Binary Association Table
(BAT). A BAT is represented in memory as an array
of fixed-size two-field records [OID,value], or Binary
UNits (BUN). Their width is typically 8 bytes.

In the case of the Origin2000 machine, we deduce
from Figure 3 that a scan-selection on a table with
stride 8 takes 10 CPU cycles per iteration, whereas
a stride of 1 takes only 4 cycles. In other words, in a
simple range-select, there is so little CPU work per tu-
ple (4 cycles) that the memory access cost for a stride
of 8 still weighs quite heavily (6 cycles). Therefore we
have found it useful in Monet to apply two space op-
timizations that further reduce the per-tuple memory
requirements in BATs:

virtual-OIDs Generally, when decomposing a rela-
tional table, we get an identical system-generated
column of OIDs in all decomposition BATs, which
is dense and ascending (e.g. 1000, 1001, . . . ,
1007). In such BATs, Monet computes the OID-
values on-the-fly when they are accessed using po-
sitional lookup of the BUN, and avoids allocating
the 4-byte OID field. This is called a “virtual-
OID” or VOID column. Apart from reducing
memory requirements by half, this optimization
is also beneficial when joins or semi-joins are per-
formed on OID columns.2 When one of the join
columns is VOID, Monet uses positional lookup
instead of e.g., hash-lookup; effectively eliminat-
ing all join cost.

2The projection phase in query processing typically leads
in Monet to additional “tuple-reconstruction” joins on OID
columns, that are caused by the fact that tuples are decomposed
into multiple BATs.
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Figure 4: Vertically Decomposed Storage in BATs

byte-encodings Database columns often have a low
domain cardinality. For such columns, Monet uses
fixed-size encodings in 1- or 2-byte integer val-
ues. This simple technique was chosen because
it does not require decoding effort when the val-
ues are used (e.g., a selection on a string “MAIL”
can be re-mapped to a selection on a byte with
value 3). A more complex scheme (e.g., using
bit-compression) might yield even more memory
savings, but the decoding-step required whenever
values are accessed can quickly become counter-
productive due to extra CPU effort. Even if de-
coding would just cost a handful of cycles for each
tuple, this would more than double the amount of
CPU effort in simple database operations, like the
range-select from our experiment.

Figure 4 shows that when applying both techniques;
the storage needed for 1 BUN in the “shipmode” col-
umn is reduced from 8 bytes to just one.

3.2 Query Processing Algorithms

We now shortly discuss the effect of the memory access
bottleneck on the design of algorithms for common
query processing operators.

selections If the selectivity is low; most data needs to
be visited and this is best done with a scan-select
(it has optimal data locality). For higher selectiv-
ities, Lehman and Carey [LC86] concluded that
the T-tree and bucket-chained hash-table were the
best data structures for accelerating selections in
main-memory databases. The work in [Ron98]
reports, however, that a B-tree with a block-size



equal to the cache line size is optimal. Our find-
ings about the increased impact of cache misses
indeed support this claim, since both lookup us-
ing a hash-table or T-tree cause random memory
access to the entire relation; a non cache-friendly
access pattern.

grouping and aggregation Two algorithms are of-
ten used here: sort/merge and hash-grouping.
In sort/merge, the table is first sorted on the
GROUP-BY attribute(s) followed by scanning.
Hash-grouping scans the relation once, keeping a
temporary hash-table where the GROUP-BY val-
ues are a key that give access to the aggregate to-
tals. This number of groups is often limited, such
that this hash-table fits the L2 cache, and proba-
bly also the L1 cache. This makes hash-grouping
superior to sort/merge concerning main-memory
access; as the sort step has random access be-
havior and is done on the entire relation to be
grouped, which probably does not fit any cache.

equi-joins Hash-join has long been the preferred
main-memory join algorithm. It first builds a
hash table on the smaller relation (the inner re-
lation). The outer relation is then scanned; and
for each tuple a hash-lookup is done to find the
matching tuples. If this inner relation plus the
hash table does not fit in any memory cache, a
performance problem occurs, due to the random
access pattern. Merge-join is not a viable alterna-
tive as it requires sorting on both relations first,
which would cause random access over even a
larger memory region.

Consequently, we identify join as the most prob-
lematic operator, therefore we investigate possible al-
ternatives that can get optimal performance out of a
hierarchical memory system.
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3.3 Clustered Hash-Join

Shatdahl et al. [SKN94] showed that a main-memory
variant of Grace Join, in which both relations are
first partitioned on hash-number into H separate clus-
ters, that each fit the memory cache, performs better
than normal bucket-chained hash join. This work em-
ploys a straightforward clustering-algorithm that sim-
ply scans the relation to be clustered once, inserting
each scanned tuple in one of the clusters, as depicted
in Figure 5. This constitutes a random access pattern
that writes into H separate locations. If H exceeds the
number available cache lines (L1 or L2), cache trashing
occurs, or if H exceeds the number of TLB entries, the
number of TLB misses will explode. Both factors will
severely degrade overall join performance.

As an improvement over this straightforward algo-
rithm, we propose a clustering algorithm that has a
cache-friendly memory access pattern, even for high
values of H.

3.3.1 Radix Algorithms

The radix-cluster algorithm splits a relation into H
clusters using multiple passes (see Fig. 6). Radix-
clustering on the lower B bits of the integer hash-value
of a column is done in P sequential passes, in which
each pass clusters tuples on Bp bits, starting with the
leftmost bits (

∑P
1 Bp = B). The number of clusters

created by the radix-cluster is H =
∏P

1 Hp, where each
pass subdivides each cluster into Hp = 2Bp new ones.
When the algorithm starts, the entire relation is con-
sidered as one cluster, and is subdivided in H1 = 2B1

clusters. The next pass takes these clusters and sub-
divides each in H2 = 2B2 new ones, yielding H1 ∗H2

clusters in total, etc.. Note that with P = 1, radix-
cluster behaves like the straightforward algorithm.
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The interesting property of the radix-cluster is that
the number of randomly accessed regions Hx can be
kept low; while still a high overall number ofH clusters
can be achieved using multiple passes. More specifi-
cally, if we keep Hx = 2Bx smaller than the number of
cache lines, we avoid cache trashing altogether.

After radix-clustering a column on B bits, all tu-
ples that have the same B lowest bits in its column
hash-value, appear consecutively in the relation, typ-
ically forming chunks of C/2B tuples. It is therefore
not strictly necessary to store the cluster boundaries
in some additional data structure; an algorithm scan-
ning a radix-clustered relation can determine the clus-
ter boundaries by looking at these lower B “radix-
bits”. This allows very fine clusterings without intro-
ducing overhead by large boundary structures. It is
interesting to note that a radix-clustered relation is in
fact ordered on radix-bits. When using this algorithm
in the partitioned hash-join, we exploit this property,
by performing a merge step on the radix-bits of both
radix-clustered relations to get the pairs of clusters
that should be hash-joined with each other.

The alternative radix-join algorithm, also pro-
posed here, makes use of the very fine clustering ca-

partitioned-hashjoin(L, R, H):
radix-cluster(L,H)
radix-cluster(R,H)
FOREACH cluster IN [1..H]

hash-join(L[c], R[c])
radix-join(L, R, H):

radix-cluster(L,H)
radix-cluster(R,H)
FOREACH cluster IN [1..H]

nested-loop(L[c], R[c])

Figure 8: Join Algorithms Employed

pabilities of radix-cluster. If the number of clusters
H is high, the radix-clustering has brought the poten-
tially matching tuples near to each other. As chunk
sizes are small, a simple nested loop is then sufficient
to filter out the matching tuples. Radix-join is similar
to hash-join in the sense that the number H should
be tuned to be the relation cardinality C divided by
a small constant; just like the length of the bucket-
chain in a hash-table. If this constant gets down to 1,
radix-join degenerates to sort/merge-join, with radix-
sort [Knu68] employed in the sorting phase.

3.4 Quantitative Assessment

The radix-cluster algorithm presented in the previous
section provides three tuning parameters:

1. the number of bits used for clustering (B), imply-
ing the number of clusters H = 2B,

2. the number of passes used during clustering (P ),

3. the number of bits used per clustering pass (Bp).

In the following, we present an exhaustive series
of experiments to analyze the performance impact of
different settings of these parameters. After establish-
ing which parameters settings are optimal for radix-
clustering a relation on B bits, we turn our attention
to the performance of the join algorithms with vary-
ing values of B. Finally, these two experiments are
combined to gain insight in overall join performance.

3.4.1 Experimental Setup

In our experiments, we use binary relations (BATs)
of 8 bytes wide tuples and varying cardinalities, con-
sisting of uniformly distributed unique random num-
bers. In the join-experiments, the join hit-rate is one,
and the result of a join is a BAT that contains the
[OID,OID] combinations of matching tuples (i.e., a
join-index [Val87]). Subsequent tuple reconstruction
is cheap in Monet, and equal for all algorithms, so just
like in [SKN94] we do not include it in our comparison.

The experiments were carried out with an Ori-
gin2000 machine on one 250Mhz MIPS R10000 pro-
cessor. This system has 32Kb of L1 cache, consisting
of 1024 lines of 32 bytes, 4MB of L2 cache, consisting
of 32,768 lines of 128 bytes, and sufficient main mem-
ory to hold all data structures. Further, this system
uses a page size of 16Kb and has 64 TLB entries. We
used the hardware event counters of the MIPS R10000
CPU [Sil97] to get exact data on the number of cycles,
TLB misses, L1 misses and L2 misses during these
experiments.3 Using the data from the experiments,
we formulate an analytical main-memory cost model,
that quantifies query cost in terms of these hardware
events.

3The Intel Pentium family, SUN UltraSparc, and DEC Alpha
provide similar counters.



3.4.2 Radix Cluster

To analyze the impact of all three parameters (B, P ,
Bp) on radix clustering, we conduct two series of ex-
periments, keeping one parameter fixed and varying
the remaining two.

First, we conduct experiments with various num-
bers of bits and passes, distributing the bits evenly
across the passes. The points in Figure 9 depict the re-
sults for a BAT of 8M tuples—the remaining cardinali-
ties (≤ 64M) behave the same way. Up to 6 bits, using
just one pass yields the best performance (cf. “mil-
lisecs”). Then, as the number of clusters to be filled
concurrently exceeds the number of TLB entries (64),
the number of TLB misses increases tremendously (cf.
“TLB misses”), decreasing the performance. With
more than 6 bits, two passes perform better than one.
The costs of an additional pass are more than compen-
sated by having significantly less TLB misses in each
pass using half the number of bits. Analogously, three
passes should be used with more than 12 bits, and four
passes with more than 18 bits. Thus, the number of
clusters per pass is limited to at most the number of
TLB entries. A second more moderate increase in TLB
misses occurs when the number of clusters exceeds the
number of L2 cache lines, a behavior which we cannot
really explain.

Similarly, the number of L1 cache misses and L2
cache misses significantly increases whenever the num-
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Figure 9: Performance and Model of Radix-Cluster

ber of clusters per pass exceeds the number of L1 cache
lines (1024) and L2 cache lines (32,768), respectively.
The impact of the additional L2 misses on the total
performance is obvious for one pass (it doesn’t oc-
cur with more than one pass, as then at most 13 bits
are used per pass). The impact of the additional L1
misses on the total performance nearly completely van-
ishes due to the heavier penalty of TLB misses and L2
misses.

Finally, we notice that the best-case execution time
increases with the number of bits used.

The following model calculates the total execution
costs for a radix cluster depending on the number of
passes, the number of bits, and the cardinality:

Tc(P,B,C) =

P ∗
(
C∗wc+ML1,c

(
B

P
,C

)
∗lL2+ML2,c

(
B

P
,C

)
∗lMem

+MTLB,c

(
B

P
,C

)
∗lTLB

)
with MLi,c(Bp, C) =

2 ∗ |Re|Li +


C ∗ Hp

|Li|Li
, if Hp ≤ |Li|Li

C ∗
(

1 + log
(
Hp

|Li|Li

))
, if Hp < |Li|Li

and MTLB,c(Bp, C) =

2 ∗ |Re|Pg +


|Re|Pg ∗

(
Hp

|TLB|

)
if Hp ≤ |TLB|

C ∗
(

1− |TLB|
Hp

)
, if Hp > |TLB|

|Re|Li and |Cl|Li denote the number of cache lines per
relation and cluster, respectively, |Re|Pg the number
of pages per relation, |Li|Li the total number of cache
lines, both for the L1 (i = 1) and L2 (i = 2) caches,
and |TLB| the number of TLB entries.

The first term of MLi,c equals the minimal number
of Li misses per pass for fetching the input and storing
the output. The second term counts the number of ad-
ditional Li misses, when the number of clusters either
approaches the number of available Li or even exceeds
this. MTLB,c is made up analogously. Due to space
limits, we omit the term that models the additional
TLB misses when the number of clusters exceeds the
number of available L2 lines. A detailed description of
these and the following formulae is given in [MBK99].

The lines in Figure 9 represent our model for a BAT
of 8M tuples. The model shows to be very accurate4.

The question remaining is how to distribute the
number of bits over the passes. The experimen-
tal results—not presented here due to space limits
(cf. [MBK99])—showed, that the performance strongly
depend on even distribution of bits.

4On our Origin2000 (250 Mhz) we calibrated lTLB = 228ns,
LL2 = 24ns, LMem = 412ns, and wc = 50ns.



3.4.3 Isolated Join Performance

We now analyze the impact of the number of radix-
bits on the pure join performance, not including the
clustering cost.

The points in Figure 10 depict the experimental
results of radix-join (L1 and L2 cache misses, TLB
misses, elapsed time) for different cardinalities. The
lower graph (“millisecs”) shows that the performance
of radix-join improves with increasing number of radix-
bits. The upper graph (“L1 misses”) confirms, that
only cluster sizes significantly smaller than L1 size are
reasonable. Otherwise, the number of L1 cache misses
explodes due to cache trashing. We limited the ex-
ecution time of each single run to 15 minutes, thus,
using only cluster sizes significantly smaller than L2
size and TLB size (i.e. number of TLB entries * page
size). That’s why the number of L2 cache misses stay
almost constant. The performance improvement con-
tinues until the mean cluster size is 1 tuple. At that
point, radix-join has degenerated to sort/merge-join.
The high cost of radix-join with large cluster-size is
explained by the fact that it performs nested-loop join
on each pair of matching clusters. Therefore, clus-
ters need to be kept small; our results indicate that a
cluster-size of 8 tuples is optimal.

The following model calculates the total execution
costs for a radix-join, depending on the number of bits
and the cardinality5

Tr(B,C) =

C ∗
⌈
C

H

⌉
∗ wr + C ∗ w′r +ML1,r(B,C) ∗ lL2

+ML2,r(B,C) ∗ lMem +MTLB,r(B,C) ∗ lTLB

with MLi,r(B,C) =

3 ∗ |Re|Li + C ∗


|Cl|Li
|Li|Li

, if |Cl|Li ≤ |Li|Li
|Cl|Li, if |Cl|Li > |Li|Li

and MTLB,r(B,C) =

3 ∗ |Re|Pg + C ∗ ||Cl||||TLB||

|Re|Pg, |Re|Li, |Cl|Li, and |Li|Li are as above (i ∈
{1, 2}), ||Cl|| denotes the cluster size (in byte), and
||TLB|| = |TLB| ∗ ||Pg|| denotes the memory range
covered by |TLB| pages.

The first term of Tr calculates the costs for evaluat-
ing the join predicate—each tuple of the outer relation
has to be checked against each tuple in the respective
cluster; the cost per check is wr . The second term
represents the costs for creating the result with w′r
denoting the costs per tuple. The left term of MLi,r

5For simplicity of presentation, we assume the cardinalities
of both operands and the result to be the same.
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Figure 10: Performance and Model of Radix-Join
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Figure 11: Performance and Model of Partitioned
Hash-Join

equals the minimal number of Li misses for fetching
both operands and storing the result. The right term
counts the number of additional Li misses during the
inner loop, when the number of Li lines per cluster
either approaches the number of available Li lines or
even exceeds this. MTLB,r is made up analogously.
The lines in Figure 10 prove the accuracy of our model
for different cardinalities (wr = 24ns, w′r = 240ns).

The partitioned hash-join also exhibits increased
performance with increasing number of radix-bits.
Figure 11 shows that performance increase flattens af-
ter the point where the entire inner cluster (includ-
ing its hash table) consists of less pages than there
are TLB entries (64). Then, it also fits the L2 cache
comfortably. Thereafter performance decreases only
slightly until the point that the inner cluster fits the L1
cache. Here, performance reaches its minimum. The
fixed overhead by allocation of the hash-table struc-
ture causes performance to decrease when the cluster
sizes get too small (200 tuples) and clusters get very
numerous.

As for the radix-join, we also provide a cost model
for the partitioned hash-join:

Th(B,C) =
C ∗ wh +H ∗ w′h +ML1,h(B,C) ∗ lL2

+ML2,h(B,C) ∗ lMem +MTLB,h(B,C) ∗ lTLB

with MLi,h(B,C) =

3∗|Re|Li +


C ∗ ||Cl||||Li||, if ||Cl|| ≤ ||Li||

C ∗ 10 ∗
(

1− ||Li||||Cl||

)
, if ||Cl|| < ||Li||

and MTLB,h(B,C) =

3∗|Re|Pg

+


C ∗ ||Cl||||TLB||, if ||Cl|| ≤ ||TLB||

C ∗ 10 ∗
(
1− ||Li||
||TLB||

)
, if ||Cl|| > ||TLB||

||Cl||, ||Li||, and ||TLB|| denote (in byte) the clus-
ter size, the sizes of both caches (i ∈ {1, 2}), and the
memory range covered by |TLB| pages, respectively.
wh represents the pure calculation costs per tuple, i.e.
building the hash-table, doing the hash lookup and
creating the result. w′h represents the additional costs
per cluster for creating and destroying the hash-table.

The left term of MLi,h equals the minimal number
of Li misses for fetching both operands and storing the
result. The right term counts the number of additional
Li misses, when the cluster size either approaches Li
size or even exceeds this. As soon as the clusters get
significantly larger than Li, each memory access yields
a cache miss due to cache trashing: with a bucket-
chain length of 4, up to 8 memory accesses per tuple



are necessary while building the hash-table and doing
the hash lookup, and another two to access the actual
tuple. For simplicity of presentation, we omit the for-
mulae for the additional overhead for allocating the
hash-table structure when the cluster sizes get very
small. The interested reader is referred to [MBK99].
Again, the number of TLB misses is modeled analo-
gously.

The lines in Figure 11 represent our model for dif-
ferent cardinalities (wh = 680ns, w′h = 3600ns). The
predictions are very accurate.

3.4.4 Overall Join Performance

After having analyzed the impact of the tuning pa-
rameters on the clustering phase and the joining phase
separately, we now turn our attention to the combined
cluster and join cost for both partitioned hash-join and
radix-join. Radix-cluster gets cheaper for less radix
B bits, whereas both radix-join and partitioned hash-
join get more expensive. Putting together the exper-
imental data we obtained on both cluster- and join-
performance, we determine the optimum number of B
for relation cardinality and join-algorithm.

It turns out that there are four possible strategies,
which correspond to the diagonals in Figures 11 and
10:

phash L2 partitioned hash-join on B = log2(C ∗
12/||L2||) clustered bits, so the inner relation plus
hash-table fits the L2 cache. This strategy was
used in the work of Shatdahl et al. [SKN94] in
their partitioned hash-join experiments.

phash TLB partitioned hash-join on B = log2(C ∗
12/||TLB||) clustered bits, so the inner relation
plus hash-table spans at most |TLB| pages. Our
experiments show a significant improvement of
the pure join performance between phash L2 and
phash TLB.

phash L1 partitioned hash-join on B = log2(C ∗
12/||L1||) clustered bits, so the inner relation plus
hash-table fits the L1 cache. This algorithm uses
more clustered bits than the previous ones, hence
it really needs the multi-pass radix-cluster al-
gorithm (a straightforward 1-pass cluster would
cause cache trashing on this many clusters).

radix radix-join on B = log2(C/8) clustered bits.
The radix-join has the most stable performance
but has higher startup cost, as it needs to radix-
cluster on significantly more bits that the other
options. It therefore is only a winner on the large
cardinalities.

Figure 12 compares radix-join (thin lines) and par-
titioned hash-join (thick lines) throughout the whole
bit range, using the corresponding optimal number of
passes for the radix-cluster (see Section 3.4.2). The

diagonal lines mark the setting for B that belong to
the four strategies. The optimal setting for each join
algorithm is even beyond these strategies: partitioned
hash-join performs best with cluster size of approxi-
mately 200 tuples (“phash min”) and radix with just
4 tuples per cluster (“radix min”) is slightly better
than radix 8.

Finally, Figure 13 compares our radix-cluster-based
strategies to non-partitioned hash-join (“simple hash”)
and sort-merge-join. This clearly demonstrates that
cache-conscious join-algorithms perform significantly
better than the “random-access” algorithms. Here,
“cache-conscious” does not only refer to L2 cache, but
also to L1 cache and especially the TLB. Further, Fig-
ure 12 shows that our radix algorithms improve hash-
performance, both in the “phash L1” strategy (cardi-
nalities larger than 250,000 require at least two clus-
tering passes) and with the radix-join itself.

4 Evaluation

In this research, we brought to light the severe im-
pact of memory access on performance of elementary
database operations. Hardware trends indicate that
this bottleneck remains here for quite some time; hence
our expectation that its impact eventually will be-
come deeper than the I/O bottleneck. Database al-
gorithms and data structures should therefore be de-
signed and optimized for memory access from the out-
set. A sloppy implementation of the key algorithms
or ’features’ at the innermost level of an operator tree
(e.g. pointer swizzling/object table lookup) can be-
come a performance disaster, that ever faster CPUs
will not come to rescue.

Conversely, careful design can lead to an order of
magnitude performance advancement. In our Monet
system, under development since 1992, we have de-
creased the memory access stride using vertical de-
composition; a choice that back in 1992 was mostly
based on intuition. The work presented here now pro-
vides hard backing that this feature is in fact the ba-
sis of good performance. Our simple-scan experiment
demonstrates that decreasing the stride is crucial for
optimizing usage of memory bandwidth.

Concerning query processing algorithms, we
have formulated radix algorithms and demonstrated
through experimentation that these algorithms form
both an addition and an improvement to the work
in [SKN94]. The modeling work done to show how
these algorithms improve cache behavior during join
processing represents an important improvement over
previous work on main-memory cost models [LN96,
WK90]. Rather than characterizing main-memory
performance on the coarse level of a procedure call
with “magical” costs factors obtained by profiling, our
methodology mimics the memory access pattern of the
algorithm to be modeled and then quantifies its cost
by counting cache miss events and CPU cycles. We
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were helped in formulating these models through our
usage of hardware event counters present in modern
CPUs.

We think our findings are not only relevant to main-
memory databases engineers. Vertical fragmentation
and memory access cost have a strong impact on per-
formance of database systems at a macro level, includ-
ing those that manage disk-resident data. Nyberg et
al. [NBC+94] stated that techniques like software as-
sisted disk-striping have reduced the I/O bottleneck;
i.e. queries that analyze large relations (like in OLAP
or Data Mining) now read their data faster than it can
be processed. We observed this same effect with the
Drill Down Benchmark [BRK98], where a commercial
database product managing disk-resident data was run
with a large buffer pool. While executing almost ex-
clusively memory-bound, this product was measured
to be a factor 40 slower on this benchmark than the
Monet system. After inclusion of cache-optimization
techniques like described in this paper, we have since
been able to improve our own results on this bench-
mark with almost an extra order of magnitude. This
clearly shows the importance of main-memory access
optimization techniques.

In Monet, we use I/O by manipulating virtual
memory mappings, hence treat management of disk-
resident data as memory with a large granularity. This
is in line with the consideration that disk-resident data
is the bottom level of a memory hierarchy that goes up
from the virtual memory, to the main memory through

the cache memories up to the CPU registers (Figure
2). Algorithms that are tuned to run well on one level
of the memory, also exhibit good performance on the
lower levels (e.g., radix-join has pure sequential access
and consequently also runs well on virtual memory).
As the major performance bottleneck is shifting from
I/O to memory access, we therefore think that main-
memory optimization of both data structures and algo-
rithms – like described in this paper – will increasingly
be decisive in order to efficiently exploit the power of
custom hardware.

5 Conclusion

It was shown that memory access cost is increas-
ingly a bottleneck for database performance. We sub-
sequently discussed the consequences of this finding
on both data structures and algorithms employed in
database systems. We recommend using vertical frag-
mentation in order to better use scarce memory band-
width. We introduced new radix algorithms for use
in join processing, and formulated detailed analytical
cost models that explain why these algorithms make
optimal use of hierarchical memory systems found in
modern computer hardware. Finally, we placed our
results in a broader context of database architecture,
and made recommendations for future systems.
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