
Mixing Classes and Prototypes:

An Object Oriented Approach to Semantic Image modelling

Youssef Lahlou

GMD, German National Research Center for Information Technology

E-Mail: lahlou@gmd.de

Classical object oriented database management systems fail in semantic modelling of images,
because such objects are not easily de�nable in terms of conceptual structures (classes, database
schemes, ...).

Besides, object-oriented languages have evolved in various directions, including but not lim-
ited to class-based languages. Prototype-based languages represent a serious alternative to
class-based ones and \organizing programs without classes" (dixit the Self language designers)
is a radically di�erent approach to object-oriented programming.

In this paper, we show that prototype-like languages can be of a great importance in seman-
tic image modelling if the class paradigm is maintained for the sake of retrieving large collections
of objects.

Semantic image modelling requires describing image structure and content within a suitable
model which should provide structures and constructs capable of managing the rich variety of
possible image features.

The object oriented paradigm has shown itself very suitable in most new database applica-
tions. However, adapting it to semantic image modelling is not straightforward since images are
a very special case of complex objects because they can not be easily modelled through only
simple use of hierarchical structures, or abstraction into class structures. Common applications
more often require object content indexing rather than grouping into well-structured classes.
Furthermore, unstructured objects may also refer to structured objects and vice versa, espe-
cially in multimedia environments.

Object-oriented databases make use of the class-based view of object orientation. This means
that objects in such databases are structured into classes. Each object belongs to a class which
abstracts its structure into a \conceptual structure" (an intensional de�nition of the object
structure). Thus, before creating objects, a conceptual schema has to be designed to capture
object structures. Concrete objects are then created with respect to the conceptual schema
(they are instances of some classes).

This particular view of object-orientation is well suited for managing large collections of
objects, since the conceptual schema is an invaluable source of information for querying the
database, specifying and checking integrity constraints, query processing, indexing, and so on.
But, in certain cases this schema is hard to design, when object structures can not be predicted
before creation. This is true for image databases since semantic image content varies a lot from
one image to another.

On the other hand, the prototype-based approach to object-orientation has shown itself very
useful in object-oriented languages. There is no notion of class in this approach. Objects are

1



created either ex-nihilo or by \cloning" an existing object. Each object can then evolve inde-
pendantly from the one it has been cloned from, especially by adding new features (attributes,
methods) to its structure.

The main feature of prototype-based languages is the absence of classes. Object structures
are not abstracted into some higher level conceptual entities. This feature frees the user from
having to predict object structures before actually creating them.

However, when retrieving large collections of objects, the absence of classes is a major draw-
back, since nothing is known a priori about object structures and they have to be fully checked
to respond to a query.

We propose a hybrid model that is able to cope with the representation and the manipulation
of both unstructured and structured objects (by structured objects we mean objects for which
abstract structure can be predicted within a conceptual schema). This model is particularily
suited for image modelling since such objects have both common and individual features.

The model draws its inspiration from both class-based and prototype-based systems, in the
sense that objects are tied to classes which only abstract a minimal structure implemented by the
related objects. Each object can in turn implement an extra individual structure independantly
from its class.

We thus relax the traditional instantiation link between an object and its class, and rebaptize
it the realization link. A class is no longer a set of objects having the same structure; it is only
a minimal structure that have to be implemented by each object tied to it.

Examples:
Image : [author : Photographer; date : Date; size : 2D size] is a class.
A speci�c class Monument image can be de�ned by augmenting the Image class with the at-
tribute monument : Monument.

Realization is a mechanism that links an object to a class. In other words, an object can
never exist without a class to which it is tied. The mechanism of realization can be seen as
the operation of giving a value to the attributes of the class by assigning an object to each of
them. The possibility is then left for objects to have in turn other additional objects

in their structure, besides those of the class. This enables objects to have individual
structures, whence the improved 
exibility and extensiveness of the model.

Examples:
o1 : [author : p1; date : d1; size : s1; none : o] is an object that might be a realization of class
Image, if p1, d1 and s1 are respectively realizations of Photographer, Date and 2D size classes.
An additional object named o is composing o1 with no particular role (whence a none attribute).
o2 : [author : p2; date : d2; size : s2; monument : m2] is an object that might be a realization of
class Monument image, if m2 is a realization of class Monument.

The main problems arising from this model appear when it comes to querying the database.
In classical structured models (relational, semantic, object-oriented), query formulation is based
on class structures, assuming that objects only instanciate those structures with other objects
or values.

So, when querying a database for 50 years old employees, living in Bonn, the user is aware
a priori of the existence of a class named Employee, representing employees and having an
attribute giving their age (say age) and an other giving the town they live in (say address).
The query can then be expressed by the set:

fo 2 Employee; o:age = 50 ^ o:address:town = "Bonn"g



As is the case in structured data models, this kind of query can also be speci�ed in our
model, since each object realizing the Employee class would have an age attribute, and an
address attribute, and each object realizing the class Address would have a town attribute.
But, in order to fully make use of the power of the realization link, queries have to deal also
with the additional part of object structures that is not in their class structures. The problem
is that this structure is not known at the conceptual level; for instance, the object o1, realizing
the Image class uses, in its (additional individual) structure, the object o, realizing, say, the
Employee class. This is not a mandatory (predictable) reference in the Image class.

Thus, the main question is how to make the user be able to use individual object components
in queries so that he could specify such queries as images of 50 years old employees, living in
Bonn?

In our model, a query is a quadruple q = (c; Cl;Q; p) where:

� c is a class, called target of q,

� Cl = fcl1; :::; clng is a set of clauses, called criteria of q; a clause is a logical expression
based on litterals and valid paths for c (e.g. address:town = \Bonn00).

� Q = fq1; :::; qmg, is a set of queries, called sub-queries of q,

� p is a valid path for c, called projection of q.

Criteria, sub-queries and/or projection may be empty.

The semantics of query q is that it looks for objects realizing class c, satisfying all clause
members of Cl and referencing, for each query member of Q, at least one object resulting from
this query. The result of q is the set of path p destinations for all objects satisfying those three
conditions.

Examples:
Query q1 = (c1; Cl1; Q1; p1) looks for 50 years old employees, living in Bonn.
c1 = Employee

Cl1 = fage = 50; address:town = \Bonn00g
Q1 = ;
p1 is empty.

Query q2 = (c2; Cl2; Q2; p2) looks for author names of images where such employees appear.
c2 = Image

Cl2 = ;
Q2 = fq1g
p2 = author:name.

The realization link is taken into account in our query speci�cation language, within the set
Q, which speci�es criteria on all referenced objects of the main object (those predicted in the
class and those proper to the object). Conceptual knowledge on objects, coming from their class
structure is used in the set Cl.

To validate our approach, we designed a prototype system within the Smalltalk-80 object
oriented programming environment on a SPARC station.




